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Abstract 

Background:  Animal movement is a key ecological process that is tightly coupled to local environmental conditions. 
While agriculture, urbanisation, and transportation infrastructure are critical to human socio-economic improvement, 
these have spurred substantial changes in animal movement across the globe with potential impacts on fitness and 
survival. Notably, however, human disturbance can have differential effects across species, and responses to human 
activities are thus largely taxa and context specific. As human disturbance is only expected to worsen over the next 
decade it is critical to better understand how species respond to human disturbance in order to develop effective, 
case-specific conservation strategies.

Methods:  Here, we use an extensive telemetry dataset collected over 22 years to fill a critical knowledge gap in 
the movement ecology of lowland tapirs (Tapirus terrestris) across areas of varying human disturbance within three 
biomes in southern Brazil: the Pantanal, Cerrado, and Atlantic Forest.

Results:  From these data we found that the mean home range size across all monitored tapirs was 8.31 km2 (95% CI 
6.53–10.42), with no evidence that home range sizes differed between sexes nor age groups. Interestingly, although 
the Atlantic Forest, Cerrado, and Pantanal vary substantially in habitat composition, levels of human disturbance, and 
tapir population densities, we found that lowland tapir movement behaviour and space use were consistent across all 
three biomes. Human disturbance also had no detectable effect on lowland tapir movement. Lowland tapirs living in 
the most altered habitats we monitored exhibited movement behaviour that was comparable to that of tapirs living 
in a near pristine environment.

Conclusions:  Contrary to our expectations, although we observed individual variability in lowland tapir space use 
and movement, human impacts on the landscape also had no measurable effect on their movement. Lowland tapir 
movement behaviour thus appears to exhibit very little phenotypic plasticity in response to human disturbance. 
Crucially, the lack of any detectable response to anthropogenic disturbance suggests that human modified habitats 
risk being ecological traps for tapirs and this information should be factored into conservation actions and species 
management aimed towards protecting lowland tapir populations.
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Background
While agriculture, urbanisation, and transportation 
infrastructure are critical to human socio-economic 
improvement [17], the associated habitat transformations 
represent a major threat to species survival [18, 54, 76]. 
Of particular concern is the impact of human activities 
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on animal movement and space use [3, 16, 71]. Animal 
movement governs how individuals, populations, and 
species interact with each other and the environment [29, 
39, 63] and mediates key ecological processes [6]. The 
capacity for individuals to move unhindered across com-
plex landscapes is therefore critical for species survival 
and ecosystem function. Problematically, human devel-
opment has reduced the amount of habitat available to 
wildlife [8, 13, 32]. This has spurred substantial changes 
in animal movement behaviour across the globe [16, 
19, 71], with potential consequences including reduced 
fitness and survival, altered predator–prey dynamics, 
reduced seed dispersal, genetic isolation and local extinc-
tion [14, 15, 19, 72].

Notably, human disturbance has been shown to have 
differential effects across species [16, 70], even for closely 
related taxa occupying the same habitat [68]. Responses 
to human activities are thus largely context specific [16] 
and cannot be expected to be consistent across taxa. For 
instance, while Wall et al. [78] found a tendency for Afri-
can elephants (Loxodonta spp.) to exhibit reduced move-
ment in human modified landscapes, Morato et  al. [47] 
noted that jaguars (Panthera onca) living in regions with 
high human population densities in South America occu-
pied home ranges that were orders of magnitude larger 
than those of jaguars living in more pristine habitats. As 
human disturbance is only expected to worsen over the 
next decade it is critical to better understand how species 
respond to human disturbance to develop effective, case-
specific conservation strategies.

Here we focus on understanding how the movement 
behaviour of lowland tapirs (Tapirus terrestris) varies 
across areas of varying human disturbance within the 
Pantanal, Cerrado, and Atlantic Forest biomes in south-
ern Brazil. Lowland tapirs are herbivores of the order 
Perissodactyla that can reach over 2.5  m in length and 
weigh up to 250 kg [40]. While lowland tapirs are distrib-
uted throughout South America [27], their populations 
have suffered severe reductions, with local and regional 
extirpations, and are currently classified as vulnerable to 
extinction [74]. Although the incorporation of informa-
tion on animal movement is a key component in design-
ing effective conservation and recovery strategies [3], 
currently, very little is known about the movement ecol-
ogy of tapirs (but see [22, 52, 69]). This knowledge gap 
is especially pertinent given that large terrestrial mam-
mals, such as tapirs, tend to have larger home ranges 
and greater absolute mobility than do small mammals 
[11, 51], making them more susceptible to anthropo-
genic impacts than smaller bodied species [31, 71]. Here, 
we use an extensive telemetry dataset collected over 
22 years to describe the movement ecology of tapirs and 
study how changes in habitat composition and human 

disturbance influence their movement and space use. 
First, animals living in highly productive environments 
do not need to range over wide areas to meet their ener-
getic needs [35, 48, 57]. As such, we expected that tapirs 
should exhibit plasticity in their movement and space use 
in relation to local environmental conditions as well as 
biome type. Furthermore, because human activity tends 
to result in increased movement for large herbivores [16] 
our underlying hypothesis was that tapirs should exhibit 
greater movement distances and larger home-range areas 
when living in human-modified landscapes.

Methods
Study area and data collection
The data were collected in three different biomes in 
southern Brazil (Fig.  1): Atlantic Forest (1997–2007), 
Pantanal (2008–2019), and south-western Cerrado 
(2016–2018).

Atlantic forest
Morro do Diabo State Park is a protected area located in 
the Municipality of Teodoro Sampaio (22°32’S, 52°18’W), 
state of São Paulo, in the southeastern region of Brazil. 
The park has an area of 370 km2 composed of a mosaic of 
mature and secondary deciduous forest, surrounded by 
the Paranapanema River in the south, and of a matrix of 
cattle ranches and agriculture, mostly sugar cane, in the 
remaining borders [73]. Its average annual temperature 
is 22 °C and annual rainfall is 1347 mm [28]. The park is 
part of the “Planalto Forest,” which is distinguished from 
the coastal forest of the Atlantic Forest biome by having 
lower annual rainfall and a marked dry season from May 
to September and is thus more similar to the Cerrado 
biome [61]. In fact, the semi-deciduous forests of the 
“Planalto Forest” are similar to those occurring within or 
on the edges of the Cerrado [61]. The Atlantic Forest was 
the most disturbed biome we monitored tapirs in, with 
only ca. 12–29% of the natural habitat remaining [37, 58, 
59, 66].

Cerrado
The study site in the Cerrado biome is a 2200 km2 mosaic 
of private properties (cattle ranches and farms) and land-
less people settlements within the Municipalities of Nova 
Alvorada do Sul and Nova Andradina, Mato Grosso do 
Sul State (21°37’S, 53°40’W). The area includes small frag-
ments of natural Cerrado habitat (Cerradão fragments, 
gallery forests, and marshland—25% of the study area), 
surrounded by areas highly impacted by human activities 
such as agriculture (particularly sugarcane, soybean and 
corn), cattle-ranching (cultivated pastureland), eucalyp-
tus plantations, rural communities, and highways. The 
average annual temperature is 25 °C and annual rainfall is 
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1185 mm. The Cerrado has lost almost 50% of its natural 
area due primarily to human driven land-use change to 
agriculture and cattle ranching [36, 45].

Pantanal
Baía das Pedras Ranch, a private property of 145 km2, is 
located in the Nhecolândia Sub-Region of the Southern 
Pantanal, Municipality of Aquidauana (19°20’S, 55°43’W), 
Mato Grosso do Sul State, in the central-western region 
of Brazil. The ranch includes a mosaic of seasonally inun-
dated grasslands, lakes, gallery forests, scrub, and decid-
uous forests that supports an abundance of wildlife and 
is situated far away from the edges of the biome where 
deforestation and other anthropogenic threats are occur-
ring. Cattle are raised extensively on the native grasses. 
The average annual temperature is 25 °C and annual rain-
fall is 1185  mm [12]. The Pantanal is a nearly pristine 
biome with substantially less human disturbance than the 
Atlantic Forest and Cerrado.

In each study site, tapirs were captured by darting 
after physical restraint in either box traps or pitfall 
traps, or by darting from a distance [55]. Animals were 
anesthetized mostly using a combination of butorpha-
nol, medetomidine and ketamine, as described by Med-
ici et al. [41] and Fernandes-Santos et al. [20]. Reversal 
agents were administrated at the end of procedures. The 
procedures carried out during immobilization included 
the subcutaneous insertion of a microchip, morpho-
metric measurements, sex and age class determination, 
physical examination, collection of biological sam-
ples for health and genetic studies, and placement of a 
telemetry collar on adults. Animals were tracked using 
VHF tracking (all three regions,Telonics® MOD500) 
and GPS tracking (Pantanal and Cerrado; Telonics® 
TGW SOB and GPS IRIDIUM models). A total of 74 
tapirs were tracked starting in July of 1997 until Octo-
ber of 2019, with the majority of the individuals being 

Fig. 1  Location of the three study sites (Pantanal, Cerrado, Atlantic Forest) over a raster of machine-learning-based human footprint index (ml-HFI), 
an index of human pressure on the landscape that is derived from remotely sensed surface imagery and ranges on a scale between 0 (no human 
impact), and 1 (high human impact). The Atlantic Forest was the most disturbed biome we monitored tapirs in with only ca. 12–29% of the natural 
habitat remaining, whereas the Cerrado has lost almost 50% of its natural area, and the Pantanal is a nearly pristine biome
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in the Pantanal (46), while 17 and 11 were from the 
Cerrado and Atlantic Forest regions, respectively.

Tapirs equipped with VHF collars were monitored for 
5 days per month with data collection concentrated dur-
ing crepuscular times, 3  h at dawn (04:00–07:00  h) and 
3  h at dusk (17:00–20:00  h). These periods are the two 
main peaks of tapir activity [40]. Each tapir was located 
every 30  min during the sampling periods. GPS collars 
were programmed to obtain a fix every hour and oper-
ated for a median of 15.4 months across all tagged tapirs. 
GPS fix success rates were 75% in the Pantanal and 90% 
in the Cerrado. The full dataset comprised 232,622 loca-
tion estimates collected over a period of 22  years (for 
full details see Additional file  1: File S1). In addition to 
the tapir location data, we collected 883 and 174 meas-
urements from tags in fixed locations in the Pantanal and 
Cerrado, respectively in order to calibrate the measure-
ment error of the GPS tracking collars.

Data analysis
Initial exploratory analyses were carried out in ctm-
mweb (version 0.2.11, [10]. All formal statistical analysis 
and plotting were performed using R (version 4.0.5, R 
Core Team 2021 [56]), with the packages ctmm (version 
0.6.1, [9], mgcv (version 1.8-36, [80], ggplot2 (version 
3.3.4, [79], ggmap (version 3.0.0, [33]. The furrr package 
(version 0.2.2, [75] was used for parallel computation 
on Windows machines. All R code can be found in the 
GitHub repository at https://​github.​com/​Stefa​noMez​
zini/​tapirs. Details on the analyses are presented in Addi-
tional file 2: Appendix S2.

Data calibration and cleaning
Before analysis, we performed an error calibration and 
data cleaning process to minimise the impacts of GPS 
measurement error and outliers on our subsequent anal-
yses [21]. Data cleaning and calibration were carried out 
using the methods implemented in the ctmm R pack-
age. For this process, measurement error for location 
estimates collected via VHF telemetry was assumed to 
be insubstantial relative to the coarsely sampled move-
ment data (median step length: 260.7  m) and raw loca-
tions were carried forward in the analyses. Measurement 
error on the GPS data was calibrated using a unitless 
Horizontal Dilution of Precision (HDOP), which quan-
tifies the accuracy of each positional fix. We then esti-
mated an equivalent range error with the HDOP values 
from the tags in fixed locations. This allowed for the 
unitless HDOP values to be converted into estimates 
of measurement error in meters. Notably, we found no 
effect of sampling technique, and thus error handling 
protocols, on home range area estimates (see Additional 
file  1: Appendix S1). After calibration, data points were 

considered as outliers (and removed) if they had a large 
(error-informed) distance from the median location and 
the minimum speed required to explain the displace-
ment was unusually high (≥ 1m/s). The Atlantic Forest 
dataset contained a total of 4,082 observations, 8 (ca. 
0.2%) of which were removed as outliers; the Pantanal 
dataset contained 139,138 observations, 914 (ca. 0.7%) 
of which were removed; while the Cerrado dataset con-
tained 90,402 observations, 193 (ca. 0.2%) of which were 
removed.

Movement modelling and home range estimation
For each of the monitored tapirs we quantified a number 
of key movement metrics and home range-related char-
acteristics that allowed us to test for an effect of habitat 
composition and human disturbance on tapir movement 
behaviour. For this we first identified the best Continu-
ous-Time Movement Model (CTMM) for each animal 
using the ctmm.select function from the ctmm pack-
age. This fits a series of CTMMs to location data using 
perturbative Hybrid Residual Maximum Likelihood 
(pHREML, [22] and chooses the best model using small-
sample-sized corrected Akaike’s Information Criterion 
(AICc). The models used here are insensitive to sampling 
frequency (Johnson et al. 2008; [7, 24]) and they account 
for spatio-temporal autocorrelation in the data (when 
necessary), so they are robust to irregular or frequent 
sampling frequency [23]. The parameter estimates from 
each individual’s movement model provided information 
on the tapir’s home range crossing time ( τp , in days), and 
directional persistence timescale ( τv , in hours).

We then conditioned on the selected CTMMs to esti-
mate each animal’s 95% home range (HR) area (in km 2 ) 
using small-sample-size bias corrected Autocorrelated 
Kernel Density Estimation (AKDE, [25, 49], and average 
daily movement speed (in km/day) using continuous-
time speed and distance (CTSD) estimation [50].

Movement pattern analyses
We were first interested in understanding whether home-
range areas and movement metrics differed across the 
three biomes, as well as between animals of different age 
and sex. For these comparisons, home-range estimates 
were compared using the meta-analysis methods imple-
mented in the ctmm package, which treats the individual 
home-range area estimates as having a chi-squared sam-
pling distribution, and the population of home-range 
areas as having an inverse-Gaussian distribution [26]. 
This approach also allowed for uncertainty in the indi-
vidual home-range estimates to be propagated to the 
population-level estimates. Home-range crossing time, 
directional persistence, and mean movement speed were 
analysed using generalized linear models (GLMs) with 

https://github.com/StefanoMezzini/tapirs
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a Gamma distribution and a log link function for the 
response. The GLMs were fit using the mgcv package [80] 
and Residual Maximum Likelihood (REML). Notably, 
because different tracking technologies were used to col-
lect the tapir location data, we assessed whether tracking 
technique in-and-of-itself could have impacted the indi-
vidual home range estimates. From these analyses found 
no effect of sampling technique on home range area (see 
Additional file 1: Appendix S1 for full details).

To test whether tapirs responded to different environ-
ment types, the HR sizes and average daily speeds were 
regressed against the proportions of the habitat types 
in each HR. For the Atlantic Forest, we used the habitat 
map provided in the park’s management plan [28]. For 
the Pantanal and Cerrado, we obtained satellite imagery 
from the periods of data collection. Habitat classifica-
tion was then carried out using GIS software, and a 
team of researchers confirmed the classifications in the 
field. The primary habitat types included: (1) forest, (2) 
savannah, (3) exposed soil, (4) floodplain, and (5) water. 
For full details on the habitat composition of the differ-
ent study areas see Additional file 1: Figure S2 in Appen-
dix S1. Similarly, the HR sizes and average daily speeds 
were regressed against their HR’s average machine-learn-
ing-based human footprint index (ml-HFI) [34] to test 
whether human activity significantly altered the animals’ 
behavior. Briefly, convolutional neural networks, are used 
to identify patterns of human activity from the Hansen 
Global Forest Change imagery version 1.7 (GFCv1.7,for 
full details see [34]. The resulting ml-HFI is an index of 
human pressure on the landscape that is derived from 
remotely sensed surface imagery and ranges on a scale 
between 0 (no human impact), and 1 (high human 
impact). For these models we applied Generalized Addi-
tive Models (GAMs) with a Gamma distribution and a log 
link function for the response. The Gamma distribution 
allows for more accurate significance testing and is an 
appropriate distribution for variables that range between 
0 and ∞ , while the log link scale allows HFI to have a 
multiplicative effect on the response. The GAMs were 
fit using the mgcv package [80] and REML, and the best 
model was selected using AICc based model selection. 
All analyses were carried out at both the 95% and 50% 
quantiles. The findings were consistent between quantiles 
and only results at the 95% quantile are presented in the 
main text. Full results for the 50% core home ranges are 
presented in Additional file 2: Appendix S2.

Results
Individual variation in movement and space use
The mean home-range size across all monitored tapirs 
was 8.31  km2 (95% CI: 6.53—10.42; Fig.  2), ranging 
between 1.0  km2 and 29.7  km2 (Fig.  3a). Tapirs had HR 

crossing times of 0.72  days on average (95% CI 0.42–
1.25), ranging from 0.05 to 12.8  days (Fig.  3b), and a 
mean velocity autocorrelation timescale of 0.44  h (95% 
CI 0.38–0.51), ranging from 0.17 to 1.88 h (Fig. 3c). We 
estimated that tapirs had mean movement speeds of 
11.2  km/day (95% CI 10.1–12.3), ranging from 1.51 to 
25.96 km/day (Fig. 3d). There was no evidence that aver-
age daily speed differed between sexes (females: 10.5 km/
day, 95% CI 9.19–12.0; males: 11.9  km/day; 95% CI 
10.3–13.7, p = 0.22 , 4a), nor between age groups (adults: 
11.8  km/day, 95% CI 10.6–13.2; sub-adults: 9.5  km/day, 
95% CI 7.9–11.4; p = 0.053 , Fig. 4b).

There was no evidence that home range sizes dif-
fered between sexes (males: 5.46  km2, 95% CI 4.03–
7.23; females: 6.11  km2, 95% CI: 4.53–8.07 Fig.  4c), nor 
between age groups (adults: 5.37  km2, 95% CI: 4.39–
11.64; sub-adults: 6.98 km2, 95% CI: 3.87–11.65; Fig. 4d). 
We estimated the male/female ratio of mean home-range 
areas to be 0.87 (0.56–1.30), and the adult/subadult ratio 
to be 0.70 (0.37–1.32), both of which include 1 and are 
thus non-significant.

Variation in movement across biomes and variation 
in human disturbance
The Atlantic Forest, Cerrado, and Pantanal vary sub-
stantially in habitat composition, levels of human dis-
turbance, and tapir population densities. Despite these 
differences, we found that lowland tapir movement 
behaviour and space use were consistent across all three 
biomes (Fig. 3).

We also found that habitat type had little effect on HR 
area or average individual movement speeds. The best 
HR area regression model only accounted for the effect of 
areas of exposed soil (approximate p-value: 0.023, R2

adj = 
0.48; Fig.  5a), while no land use types had a significant 
effect on an animal’s average speed. There was very little 
difference between the AIC of the full model (315.69, 
df = 10.18, 7 predictors and an intercept) and that of the 
intercept-only model (310.89, df = 2). However, the direc-
tional persistence term ( τv ) was marginally, though non-
significantly lower for animals who had a higher amount 
of forested area (p = 0.093; Fig. 5b) or water (p = 0.025) in 
their home ranges. Importantly, we note here that the 
significant differences in directional persistence persisted 
even after adjusted for the increased location error in the 
forested areas.

HFI had no significant effect on lowland tapir home 
range size (p = 0.90; Fig. 6a), nor average daily movement 
speed (p = 0.53; Fig.  6b), nor directional persistence 
(p = 0.596, R2

adj = −0.0184 ). A tapir living in a near pris-
tine environment (HFI = 0.004) had a home range esti-
mate of 7.77  km2 (95% CI 2.12–28.6) and an average 
speed of 13.2  km/day (95% CI 7.8–22.1) with a 
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directional persistence of 0.36  h (95% CI 0.16–0.78), 
while a tapir from the most altered habitat we monitored 
(HFI = 0.31) had an estimated home range area of 
6.93  km2 (95% CI 3.36–14.30) and an average speed of 
10.4 km/day (95% CI 8.3–13.2) with a directional persis-
tence of 0.48 h (95% CI 0.34–0.68).

Discussion
Understanding individual movement and space use 
requirements is a key step in conservation planning [3]. 
Prior to the present study, very little was known about 
the movement ecology of tapirs despite their vulnerable 
status and declining population sizes [74]. From detailed 
tracking of 74 tapirs collected over 22  years, we found 
that although individuals varied in their movement, these 
inter-individual differences were not explained by differ-
ences in age, sex, habitat composition, biome, nor human 
disturbance. Overall, human activity and land use change 
did not appear to significantly affect their behaviour one 
way or another. This contradicts patterns in large her-
bivores generally [16, 71], and further emphasizes the 
need to understand the movement ecology of target 
populations when designing conservation and recovery 
strategies.

The ecology of lowland tapir space use
Interestingly, we found that the home range sizes and 
mean daily movement speeds of lowland tapirs were con-
sistent across the three study sites. This consistency in 
movement was surprising as these different biomes have 
substantially different habitat compositions, patterns of 
seasonality, and productivity [47],  see also Additional 
file  1: Appendix S1). Tapirs living in the Pantanal, for 
instance, occupy a near pristine ecosystem but must cope 
with significant seasonal flooding, whereas individuals in 
the Cerrado occupied an agricultural and cattle ranching 
mosaic with more stability across seasons. The unique 
requirements of these three different biomes, however, 
did not impact the space use and movement speed of 
tapirs in any statistically detectable way. Furthermore, 
the only pre-existing study on tapir movement found that 
individuals had complex home range structures, with 
multiple core areas of use that were established accord-
ing to the distribution of patches of preferred habitat 
types [69]. While individuals may exhibit differential use 
of patchily distributed resources, we found that habi-
tat composition had no effect on home range sizes. In 
addition to exhibiting little inter-individual variation in 

Fig. 2  Autocorrelated kernel density estimates of each tapir’s 95% 
home range in each of the three regions: a Atlantic forest, b Cerrado, 
and c pantanal
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movement, variogram analysis [24] showed that tapir 
movement was extremely consistent over time (see also 
[22]. Here again, this seasonal stability in movement 

was interesting, especially for animals living in the Pan-
tanal where, every year, large parts of the biome change 
from terrestrial into aquatic habitats and vice-versa [1]. 

Fig. 3  Parameter estimates from each tapir’s movement model (circles) and group means (triangles), with 95% confidence intervals. Individuals 
with a movement model that does not allow for inferences in movement speed are left blank
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We note though that the flooding regime in the Pantanal 
has been changing over the last decade and the biome 
is expected to become drier under the IPCC’s climate 
change scenarios [38].

We did find that animals with a higher proportion of 
forest and/or more water bodies in their home ranges 
had reduced directional persistence. This shows how 
habitat complexity can impact movement [15], with 
potential implications for foraging efficiency and encoun-
ter rates [5, 39, 77]. Nonetheless, these differences did 
not translate into patterns in tapir home range sizes and 
mean daily movement speeds.

Lowland tapir movement and human disturbance
This is the first study aimed at understanding how low-
land tapir space use and movement vary across differing 
biomes and degrees of human disturbance. Contrary to 
our initial expectations, and to patterns in large herbi-
vores generally [16], human impacts on the landscape had 
no measurable effect on tapir movement. To put this land-
scape scale effect into perspective, tapirs inhabiting the 
Atlantic Forest, the most disturbed biome with only ca. 
12–29% of habitat remaining [37, 58, 59, 66], had home 
ranges that were comparable in size to tapirs inhabiting 
the Cerrado, a biome that has lost almost 50% of its natu-
ral area (36, 45), and the Pantanal, a near pristine biome. 
Notably, the Lowland Tapir Conservation Action Plan 

published by the IUCN SSC Tapir Specialist Group (TSG) 
in 2007 [43], and the Lowland Tapir National Action Plan 
(PAN—Plano de Ação Nacional, ICMBIO—Instituto 
Chico Mendes de Conservação da Biodiversidade, Brazil) 
published in 2019 prioritize the mitigation of the impacts 
of small, isolated tapir populations. Population isolation 
thus emerges as one of the most important threats to the 
species’ long-term persistence. However, addressing this 
issue will require additional efforts as the average and 
maximum distances we recorded for tapir movements 
were substantially less than the distances between most 
tapir populations.

Humans are directly responsible for more than one-
quarter of global terrestrial vertebrate mortality [30]. 
Mortality at this scale is expected to impose strong 
selection pressure on animal populations [53, 67]. As 
genotypic adaptation takes generations to occur [4], 
behavioral plasticity provides the most immediate 
response to the pressures of Human Induced Rapid Envi-
ronmental Change (HIREC, [65]. The capacity for behav-
ioural plasticity in movement and space use in response 
to human disturbance is especially important for long-
lived, K-selected species such as tapirs [46, 60, 65] that 
take years to reach sexual maturity and have long inter-
generational intervals [40]. Despite the key importance 
of behavioural adaptations in response to HIREC, tapir 
movement appeared to exhibit very little plasticity in 

Fig. 4  Daily average speed (a, b) and estimated home range size (c, d) by sex and age group across the three different biomes. White points and 
the shaded bands depict the population-level means and 95% confidence intervals. We note that estimation of movement speeds for adult females 
was only possible for a single tapir in the Atlantic Forest. In addition, we could only estimate speed for a single young tapir in the Cerrado
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response to human disturbance. The lack of any measur-
able response to human activity suggests that tapirs living 
near humans may experience increased exposure to vehi-
cle collisions [2, 42], pesticide and environmental pol-
lutants [20, 41, 44] and poaching [62]. Human modified 
habitats thus risk being ecological traps [64] for tapirs as 
individuals showed no detectable responses to degrada-
tions in habitat quality. Although tapir home range area 
and mean daily movement speed exhibited no statisti-
cally detectable response to the human footprint index, it 
is possible that individuals are responding to human dis-
turbance at a finer temporal and/or spatial scale than the 
long-term averages that were examined here. It may also 
be possible that tapirs exhibit non-linear, or even binary, 
responses to human disturbance that were not possible to 
detect. Future investigation into lowland tapir behaviour 
in more heavily modified habitats is clearly warranted.

Conclusions
We compared home range areas and movement behav-
ior of lowland tapirs using telemetry data collected 
over 22  years across 3 biomes in southern Brazil: the 

Pantanal, Cerrado, and Atlantic Forest. These data rep-
resent the largest lowland tapir tracking dataset yet to be 
collected, with over 232,000 locations from 74 tracked 
individuals and fill a critical knowledge gap in lowland 
tapir ecology, which can contribute to long-term spe-
cies management and conservation planning. Contrary 
to our expectations, we observed very little individual 
variability in lowland tapir space use and movement, and 
human impacts on the landscape also had no measur-
able effect on their movement. Lowland tapir movement 
behaviour thus appears to exhibit very little phenotypic 
plasticity. The lack of any adaptive response to anthropo-
genic disturbance suggests that human modified habitats 
risk being ecological traps for tapirs and this informa-
tion should be factored into conservation actions aimed 
towards protecting lowland tapir populations.
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Fig. 5  Effect of habitat types on lowland tapir space use and 
movement. The vertical error-bars indicate the 95% confidence 
intervals for the movement parameter estimates. Panel a depicts 
the estimated mean effect of exposed soil on the tapirs’ estimated 
home-range area. The effects of b forested area in a tapir’s home 
range on its estimated directional persistence are also shown

Fig. 6  Estimated mean effect of machine-learning-based human 
footprint index (ml-HFI) on the tapirs’ estimated home range area and 
estimated average daily speed. The vertical segments indicate the 
95% confidence intervals for the movement parameter estimates
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