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Abstract: In recent years, various organizations have focused on considering the sustainability
concept in the supply chain (SC) design. Managers try to increase the sustainability of SCs to achieve
a competitive advantage in today’s growing market. Designing a sustainable supply chain (SSC) by
integrating economic, social, and environmental dimensions affects the SC’s overall performance. To
achieve the SSC, decision makers (DMs) are required to evaluate different strategies and then apply
the most effective one to design SC networks. This study proposes an assessment approach based on
the network data envelopment analysis (DEA) to choose an efficient strategy for each stage of an SSC
network. This approach seeks to provide a sustainable design with DMs to avoid imposing additional
costs on SCs that result from noncompliance with environmental and social issues. To this end, we
consider sustainability-concept-related inputs and outputs in the network DEA model to choose
the most efficient strategy for SSC design. The strategy selection process can become an important
issue, especially when SCs active in a competitive environment. Accordingly, a crucial feature of the
presented model is considering the issue of competition to choose the efficient strategy. Furthermore,
undesirable outputs and feedbacks and independent inputs and outputs for intermediate stages in
the network system are considered to create a structure compatible with the real world. The output
of the proposed approach enables DMs to select the appropriate strategy for each stage of the SSC
network to maximize the aggregate efficiency of the network.

Keywords: sustainable supply chain; strategy selection; network design; data envelopment analysis;
aggregate efficiency

1. Introduction

Today, due to globalization, demand uncertainty, and economic competition, organiza-
tions are looking for the implementation of supply chain management (SCM) effectively
to survive [1,2]. On the other hand, the concept of sustainability has been received more
attention in recent years due to increasing socio-environmental problems, including cli-
mate change and air pollution [3,4]. Organizations, therefore, try to apply green practices
in their supply chain (SC)-related operations to improve their social and environmental
performances [5–7]. In fact, organizations seek to achieve a competitive position in to-
day’s market by simultaneously focusing on increasing internal efficiency and integrating
the sustainability concept into SC operations [8–10]. In this regard, sustainable supply
chain management (SSCM) is considered as the integration of traditional SC and green
practices to improve environmental, social, and economic performance [11,12]. SSCM
aims to manage the flow of materials, information, and capital in addition to cooperation
between stakeholders throughout the SC. SSCM sets sustainability-based goals based on
the needs of the customers and stakeholders [11]. Thus, the effective implementation of this
type of management requires applying the economic, social, and environmental aspects in
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making sustainable decisions about the SC design [13,14]. The impact of each decision and
design-related strategy can be investigated by evaluating the performance of the designed
sustainable supply chain (SSC). Performance evaluation for effective SSCM and designing
an efficient network is of cardinal importance [15].

To evaluate the performance or efficiency of SCs, decision makers (DMs) can use vari-
ous approaches. In the meantime, the data envelopment analysis (DEA) is a mathematical
modeling-based technique for calculating the relative efficiency of a set of decision-making
units (DMUs) used in addressing the problems related to SCM [16,17]. DEA is a nonpara-
metric method that uses multiple inputs to produce multiple outputs for determining the
relative efficiencies within a group of DMUs [1,18,19]. As stated, one of the important
aspects of SCM is evaluating the performance and efficiency scores of each member and the
entire network. Focusing on the recent applications of DEA models in SSCM, Yu and Su [20]
developed a fuzzy DEA model to address the green supplier selection problem by consid-
ering SC carbon footprints as an input of the model. He and Zhang [21] presented a novel
hybrid approach based on factor analysis, DEA, and AHP, to solve the supplier selection
problem under the respective low-carbon SC. Su and Sun [22] developed a network DEA
model to consider the undesired outputs and dual-role factors to calculate the efficiency
of DMUs with multiple stages. Additionally, Badiezadeh et al. [23] proposed a network
DEA model for calculating optimistic and pessimistic efficiency to rank SSCs considering
undesirable outputs. Zarbakhshnia and Jaghdani [24] introduced a novel two-stage DEA
network model considering uncontrollable inputs and undesirable outputs and the set of
intermediate elements between stages to evaluate the sustainable suppliers. In another
study, Izadikhah and Saen [25] proposed a novel stochastic two-stage DEA model in the
presence of undesirable data to evaluate the sustainability of SCs. Kalantary and Saen [26]
developed a network dynamic DEA model and its inverse model to assess the sustainability
of SCs in multiple periods. Zhou et al. [27] introduced a novel dynamic network DEA
model with desirable and undesirable indicators based on the interval type-2 fuzzy sets
to calculate the detailed efficiencies based on effective and invalid production frontiers
in SSCs.

Krmac and Djordjević [28] used a nonradial DEA model for evaluating different
components of SSCM. This model assesses the environmental efficiency of suppliers con-
sidering undesirable inputs and outputs. Lin et al. [29] proposed an inverse DEA model to
evaluate the container ports’ efficiency and analyze their resource consumption according
to undesirable outputs. Tavassoli et al. [30] introduced four types of supplier selection
models and proposed a stochastic-fuzzy DEA model to evaluate supplier’s sustainability.
Pachar et al. [31] presented a performance measurement approach based on a two-stage net-
work DEA model to assess the impact of sustainable operations and operational activities
on the retail industry performance. Dobos and Vörösmarty [32] used a common weights
DEA model to determine a set of capable suppliers by considering the management and
green criteria in the evaluation process. Vaez-Ghasemi et al. [33] used a DEA model, in
which the weight restrictions on criteria are incorporated for cost efficiency evaluation in
SSCs with marginal surcharge values for environmental factors. Shadab et al. [34] used
the network DEA models by considering the role of intermediate products to measure the
congestion in SSCs. Tavassoli et al. [35] developed a double frontier fuzzy DEA model
for evaluating the optimistic and pessimistic sustainability of SCs of tomato paste. Rajak
et al. [36] proposed an integrated DEA enhanced Russell measure model to evaluate the
performance of transportation systems to minimize sustainability-related costs (e.g., cost of
energy consumption and CO2 emission). Jomthanachai et al. [37] introduced an alternative
coherent DEA with a representation of the intramural structure for measuring the efficiency
of an SSC. This model can avoid the intermediate measures among different nodes in the
SC. Moghaddas et al. [38] developed a DEA model to consider the dependencies between
the production of desirable and undesirable outputs and used this model to evaluate the
SSC. Fathi and Saen [39] developed a double frontier network DEA model with a com-
mon set of weights and fuzzy data to determine the optimistic, pessimistic, and double
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frontier sustainability of SCs. Zhao et al. [15] presented a DEA model-based approach to
measuring the coordination effect of SC systems in a supplier–manufacturer sustainable
SC. Song et al. [40] used a fuzzy DEA model and a characteristic function to modify the
Shapley value model to distribute cooperative profit fairly in reverse logistics.

In practical applications of DEA in network design, nondiscretionary inputs, un-
desirable outputs, and negative outputs have been considered in the previous studies.
Nevertheless, the issue of feedback has not been addressed as much as the mentioned
issues in a network. Feedback is an output of one of the network stages that returned to
previous stages as input. Notably, the outputs are either desirable or undesirable. The
desirable feedbacks are outputs of a stage that are used as desirable inputs for previous
stages for reducing costs, and undesirable feedbacks are the defective output of a stage.
These outputs are returned to previous stages as inputs to be repaired. In this case, wastes
are undesirable feedbacks that returned to previous stages for disposal. As can be seen
from the examples given, considering feedback can include a variety of modes and affect
SC performance. The strategy selection helps managers and DMs address the SSC network
design due to organizational limitations. By implementing each strategy, a different ef-
ficiency score results for that system. Therefore, the issue of strategy selection concerns
maximizing the efficiency score, which is a significant issue for DMs. What has not been
studied in the DEA literature for strategy selection is maximizing the aggregate efficiency
of the network. That is among the possible strategies for each of the network stages, the
selected strategies ultimately maximize the aggregate efficiency score of the network.

In this study, we address the issue of strategy selection for different stages of a network.
The key feature of this study is that each stage of the network selects its appropriate strategy
to maximize the cumulative performance of the entire network. It is an issue that has not
been considered in the DEA literature of the selection method using mathematical model-
ing. To this end, we propose a network DEA-based approach to select efficient strategies
to design an SSC network. This approach employs sustainability concept-related inputs
and outputs to choose the most efficient strategy for SSC design in a competitive environ-
ment. Additionally, the proposed model considers undesirable outputs and feedbacks and
independent inputs and outputs for intermediate stages in the network system to increase
compatibility with the real world. To put it precisely, the developed network DEA model
considers the feedback of intermediate product in a network, which is the optimal output
of a stage and used as the desirable input of previous stages. Furthermore, this study
designs an SSC network, in which each stage tries to maximize the aggregate efficiency
of the network. In this regard, we define various strategies for SSC network design and
evaluate the efficiency of each stage and aggregate efficiency of the network. The output
of the proposed approach determines the effective strategies for SSC network design to
improve the SC performance based on the sustainability concept. The contributions of this
research can be summarized as follows:

• Proposing a DEA-based mixed-integer linear programming (MILP) model to design
an SSC network to maximize the aggregate efficiency of the network;

• Measuring the stage efficiency scores and the aggregate efficiency of the SC network
simultaneously;

• Considering sustainability-related inputs and outputs in the strategy selection process;
• Considering the undesirable outputs, intermediate products, and feedbacks for de-

signing an SSC network.

The rest of this research is organized as follows: Section 2 introduces the proposed
DEA model. In Section 3, the outputs of the implementation of the developed model in a
case study are provided. Finally, the conclusion and future research directions are discussed
in Section 4.

2. Methodology and Proposed Model

In this section, a DEA model is developed for evaluating the strategies of SSC network
design. Focusing on problem definition, it is significant to set the stages for each SSC so
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that each stage and the entire SC perform efficiently. Therefore, choosing possible efficient
scenarios among various competitive alternatives is of cardinal importance. In this regard,
we sought to select the best scenario for each stage based on the efficiency score. The
implementation of the best strategy in each stage in a competitive environment can affect
the quality and quantity, financial and stability, and the general conditions of the SSC.
In this study, a MILP model based on the DEA technique is introduced to select the best
scenario for each of the stages in the SSC to maximize aggregate efficiency. Notably, a list
of possible scenarios and the appropriate weight for each stage efficiency score should
be defined and determined by managers and DMs. An outline of the developed model
is drawn in Figure 1. Additionally, the parameters and variables used in mathematical
modeling are introduced in Table 1.

Figure 1. The SSC network based on DEA model.

Table 1. The indices, parameters, and variables used in developing the DEA model.

Indices

i Index corresponds to x l Index corresponds to w
g Index corresponds to z j Index corresponds to DMUs
r Index corresponds to y1 and y2

Parameters

xij The ith input of stage 1 for DMUj zgj
The gth output of stage 1 and input of stage 2

(Intermediate product) for DMUj

wl j
The lth output of stage 2 and input of stage 3 (Intermediate

product) for DMUj
yrj The rth output of stage 3 for DMUj

xij The ith input of supplier for DMUj adj The dth output of supplier for DMUj

zgj
The gth output of supplier and input of manufacturer for

DMUj
dtj

The tth input of manufacturer and output of
distributor for DMUj

lkj The kth input of manufacturer for DMUj wl j
The lth output of manufacturer and input of

distributor for DMUj
pl j The lth input of distributor for DMUj y1

rj, y2
rj The rth output of distributor for DMUj

qcj The cth output of supplier for DMUj xo
ij The ith input of supplier for DMUo

ao
dj The dth output of supplier for DMUo zo

gj
The gth output of supplier and input of

manufacturer for DMUo

do
tj

The tth input of manufacturer and output of distributor for
DMUo

lo
kj The kth input of manufacturer for DMUo

wo
lj

The lth output of manufacturer and input of distributor for
DMUo

po
lj The lth input of distributor for DMUo

y1o
rj , y2o

rj The rth output of distributor for DMUo qo
cj The cth output of supplier for DMUo

N Number of DMUs m Number of elements for X
b Number of elements for Z a Number of elements for W
s Number of elements for Y m1 Number of elements for x

m2 Number of elements for l m3 Number of elements for p
s1 Number of elements for y1 s2 Number of elements for y2

s3 Number of elements for w s4 Number of elements for q
s5 Number of elements for a ω Positive weights
M A big positive scalar a Number of elements for w
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Table 1. Cont.

Variables

vij The weight of ith input of stage 1 for DMUj k
The weight of gth output of stage 1 and input of

stage 2 for DMUj

f l j
The weight of lth output of stage 2 and input of stage 3 for

DMUj
urj The weight of rth output of stage 3 for DMUj

vij The weight of ith input of supplier for DMUj gdj The weight of dth output of supplier for DMUj

kgj
The weight of gth output of supplier and input of

manufacturer for DMUj
etj

The weight of tth input of manufacturer and
output of distributor for DMUj

hkj The weight of kth input of manufacturer for DMUj fl j
The weight of lth output of manufacturer and

input of distributor for DMUj
cl j The weight of lth input of distributor for DMUj u1

rj The weight of rth output of distributor for DMUj

u2
rj The weight of rth output of distributor for DMUj bcj The weight of cth output of supplier for DMUj

t1
j , t2

j , t3
j Binary variables for each stage and DMUj

Based on Figure 1, an SSC is depicted with three stages connected in series. ‘x’ is the
independent input of the first stage. ‘z’ is the intermediate product, which is the output of
stage one and input of stage 2. ‘w’ is the intermediate product between stage 2 and stage 3.
It is the output of stage 2 and the input of stage 3. Finally, ‘y’ is the output of stage 3 which
is the final product of the SSC.

To develop a DEA model, we first developed Model (1). This model examines all
possible strategies. Therefore, a strategy is selected to maximize the value of the objective
function. In other words, by choosing that strategy, the efficiency of that stage is maximized.
Model (1) was formulated to select the scenario for the first stage with the aim of maximizing
its efficiency.

Max ∑n
j=1(∑

b
g=1 kgjzo

gj(1− t1
j ))

s.t.
∑m

i=1 vijxij = 1, j = 1, . . . , n, (1a)
∑b

g=1 kgjzgj −∑m
i=1 vijxij ≤ M t1

j , j = 1, . . . , n, (1b)
∑n

j=1 t1
j = n− 1, (1c)

t1
j ∈ {0, 1}, j = 1, . . . , n, (1d)

k ≥ 1ε, (1e)
v ≥ 1ε. (1f)

Constraint (1a) represents that the sum of weighted inputs for stage 1 for all DMUs
is equal to 1. The left side of constraint (1b) calculates the efficiency of the first stage of
the network. In constraint (1c), the sum of variable t1

j over j is considered equal to n-1. To

address this inequality, big positive scalar (M) is multiplied by the binary variable t1
j for

all j in the second constraint. According to the second and third constraints, the binary
variable corresponding to DMUj is set to be equal to zero for the DMU that has the highest
efficiency in stage 1. In this way, the maximum value of stage 1 efficiency among all DMUs
is determined, which is the optimal value of the objective function of Model (1). Constraints
(1d) to (1f) represent the type of used variables.

Theorem 1. According to the optimal value of the objective function in Model (1), only one DMU
with the highest efficiency score is selected for the first stage.

Proof of Theorem 1. As can be seen in Model (1), constraint (1c) assumes the sum of the
variable t1

j (j = 1, . . . , n) to be equal to n− 1. Therefore, out of a total of n binary variables

t1
j (j = 1, . . . , n,)n − 1 binary variables have a value of 1, and only one of them has a value

of 0. When t1
j , ( j = 1, . . . , n), takes a value of 1, its corresponding constraint is redundant
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in constraint (1b). When t1
j ( j = 1, . . . , n), takes a value of 0, its corresponding constraint

is established in constraint (1b), for example, for j = p; ∑b
g=1 kgpzgp − ∑m

i=1 vipxip ≤ 0.
According to constraint (1a), the efficiency value of each DMUj( j = 1, . . . , n), is less than
one, thus ∑b

g=1 kgjzgj ≤ 1 (j = 1, . . . , n). Binary variables t1
j ( j = 1, . . . , n) that have a

value of 1 in the objective function reset their corresponding term to zero, leaving only one
term in the objective function that has the maximum value of efficiency. �

As shown in the following equations, Model (2) was formulated for selecting the strategy
with the highest efficiency score for the second stage. According to the optimal value of the
objective function in Model (2), only one DMU was selected for the second stage.

Max ∑n
j=1(∑

a
l=1 f l jw

o
lj(1− t2

j ))

s.t.
∑b

g=1 kgjzgj = 1, j = 1, . . . , n, (2a)

∑a
l=1 f l jwl j −∑b

g=1 kgjzgj ≤ M t2
j , j = 1, . . . , n, (2b)

∑n
j=1 t2

j = n− 1, (2c)
t2

j ∈ {0, 1}, j = 1, . . . , n, (2d)
k ≥ 1ε, (2e)
f ≥ 1ε. (2f)

Constraints (2a) to (2f) can be explained similarly to constraints (1a) to (1f). The
difference between these two models is focusing on two different stages. The maximum
value of stage 2 efficiency among all DMUs is determined, which is the optimal value of
the objective function of Model (2). Model (3) was formulated for selecting a strategy with
the highest efficiency score for the third stage. Based on the optimal value of the objective
function in Model (3), only one DMU was chosen for this stage.

Max ∑n
j=1(∑

s
l=1 urjyo

rj(1− t3
j ))

s.t.
∑a

l=1 f l jwl j = 1, j = 1, . . . , n, (3a)
∑s

r=1 urjyrj −∑a
l=1 f l jwl j ≤ M t3

j , j = 1, . . . , n, (3b)
∑n

j=1 t3
j = n− 1, (3c)

t3
j ∈ {0, 1}, j = 1, . . . , n, (3d)

f ≥ 1ε, (3e)
u ≥ 1ε. (3f)

Similar to previous models, constraints (3a) to (3f) can be discussed. However, this
model seeks to determine the maximum value of stage 3 efficiency among all DMUs. The
main aim of Models (1), (2), and (3) was to choose the best strategy from the existing ones
for the network defined in Figure 1. The criterion for this selection is the efficiency score
with the highest value. In these three models, the maximum efficiency of the first, second,
and third stages was considered, respectively. Additionally, a binary variable and a big
M value were utilized, which empowered these models to choose the strategy with the
maximum efficiency score.

The above-introduced models are MILP because the binary variable exists in the
objective function and constraints. Thus, these models may have significant complexity
due to having binary variables, so we attempted to introduce the linear equivalent of this
model. The introduction of this linear model reduces the complexity of the nonlinear model
and is one of the innovations of this modeling. The linear counterpart of Model (1) was
formulated as Model (4). This model, similar to Model (1), seeks to select a strategy for the
first stage with the highest efficiency score.
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Max (∑n
j=1(∑

b
g=1 kgjzo

gj))− (n− 1)
s.t.
∑b

g=1 kgjzgj ≤ 1, j = 1, . . . , n, (4a)

∑b
g=1 kgjzgj −∑m

i=1 vijxij ≤ M t1
j , j = 1, . . . , n, (4b)

∑n
j=1 ∑m

i=1 vijxij = 1, (4c)
∑n

j=1 t1
j = n− 1, (4d)

t1
j ∈ {0, 1}, j = 1, . . . , n, (4e)

k ≥ 1ε, (4f)
v ≥ 1ε. (4g)

Constraint (4a) indicates the sum weighted outputs of stage 1 for all DMUs, which is
set to be less than or equal to 1. The left side of constraint (4b) represents the efficiency of the
first stage of the network. Constraint (4c) represents the sum weighted inputs of stage 1 for
all DMUs is equal to 1. Constraint (4d) guarantees the sum of variable t1

j over j is equal to

n − 1. A big M value is multiplied by the binary variable t1
j for all j in the second constraint

to address the created inequality. According to the second to fourth constraints, the binary
variable corresponding to DMUj is set to be equal to zero for the DMU that has the highest
efficiency in stage 1. In this way, the maximum value of stage 1 efficiency among all DMUs
is determined, which is the optimal value of the objective function of Model (4). The rest of
the constraints (4e to 4g) defines the type of used variables in developing this model.

Remark 1. The constraints (1a) and (1b) eliminate the nonlinear term in the objective function of
Model (1). Due to the fourth constraint, not all of these binary variables can take a positive value, that
is, a value of 1. According to this condition, one of the indices is established in constraint (1b), for
example, for j = p; ∑b

g=1 kgpzgp −∑m
i=1 vipxip ≤ 0. Then, the rest of constraint (1b) is redundant.

it is worth noting that the goal of this model is to maximize the objective function. Therefore, with
the help of binary variables n− 1, inequalities in constraint (1b) are redundant. The efficiency score
of DMUj corresponds to the redundant inequalities are bounded above by 1 in constraint (1a). The
sum of these bounds is n− 1, which is subtracted from the objective function. Thus, only one term
in objective function remains, for instance, ∑b

g=1 kgpzgp for which we have t1
p = 0. Therefore, in

this model, there is no need for binary variables in the objective function.

The proposed MILP model was based on the principles of the CCR model and can
find the most efficient scenario for the first stage of the chain. As shown in the following
equations, the linear counterpart of Models (2) and (3) were formulated as Models (5) and (6),
respectively. The main aim of Models (5) and (6) was to select a strategy with the highest
efficiency score for the second and third stages independently. A similar note to Remark 1
was considered for these models.
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Max (∑n
j=1(∑

a
l=1 f l jw

o
lj))− (n− 1)

s.t.
∑a

l=1 f l jwl j ≤ 1, j = 1, . . . , n, (5a)

∑a
l=1 f l jwl j −∑b

g=1 kgjzgj ≤ M t2
j , j = 1, . . . , n, (5b)

∑b
g=1 kgjzgj = 1, (5c)

∑n
j=1 t2

j = n− 1, (5d)
t2

j ∈ {0, 1}, j = 1, . . . , n, (5e)
k ≥ 1ε, (5f)
f ≥ 1ε. (5g)
Max

(
∑n

j=1(∑
s
r=1 urjyo

rj)
)
− (n− 1)

s.t.
∑s

r=1 urjyrj ≤ 1, j = 1, . . . , n, (6a)
∑s

r=1 urjyrj −∑a
l=1 f l jwl j ≤ M t3

j , j = 1, . . . , n, (6b)

∑a
l=1 f l jwl j = 1, (6c)

∑n
j=1 t3

j = n− 1, (6d)
t3

j ∈ {0, 1}, j = 1, . . . , n, (6e)
f ≥ 1ε, (6f)
u ≥ 1ε. (6g)

All constraints of the above-mentioned models, constraints (5a) to (5g) and constraints
(6a) to (6g), can be defined similarly to Model (4). The difference between these models is
focusing on a specific stage of the network. Models (4) to (6) were developed for choosing
the optimal strategy for each stage of an SSC. Now, if DMs want to choose three stages in an
SSC network at the same time, the goal is to maximize the efficiency of the whole network.
In fact, selecting all three strategies for all three stages affects the performance of the entire
chain. Accordingly, we introduced the following model to measure aggregate efficiency.
It should be noted that ω1, ω2, and ω3 are weights that are set by DMs as a numerical
coefficient for the performance of each stage. These weights show the importance of the
efficiency values of each stage in the cumulative performance value of the whole network.
The characteristic of these nonnegative numerical coefficients is that their sum must be
one, i.e., ω1, ω2, ω3 ≥ 0, ω1 + ω2 + ω3 = 1. Model (7) was developed to select strategies
with the highest aggregated efficiency for the first, second, and third stages of the SSC for
DMUo.
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Max 1
3 [ ω1

(
∑n

j=1(∑
b
g=1 kgjzo

gj)− (n− 1)
)
+ ω2

(
∑n

j=1

(
∑a

l=1 f l jw
o
lj

)
− (n− 1)

)
+

ω3

(
∑n

j=1

(
∑s

r=1 urjyo
rj

)
− (n− 1)

)
]

s.t.
∑b

g=1 kgjzgj ≤ 1, j = 1, . . . , n, (7a)

∑b
g=1 kgjzgj −∑m

i=1 vijxij ≤ M t1
j , j = 1, . . . , n, (7b)

∑m
i=1 vijxij = 1, (7c)

∑a
l=1 f l jwl j ≤ 1, j = 1, . . . , n, (7d)

∑a
l=1 f l jwl j −∑b

g=1 kgjzgj ≤ M t2
j , j = 1, . . . , n, (7e)

∑b
g=1 kgjzgj = 1, (7f)

∑s
r=1 urjyrj ≤ 1, j = 1, . . . , n, (7g)

∑s
r=1 urjyrj −∑a

l=1 f l jwl j ≤ M t3
j , j = 1, . . . , n, (7h)

∑a
l=1 f l jwl j = 1, (7i)

∑n
j=1 t1

j = ∑n
j=1 t2

j = ∑n
j=1 t2

j = n− 1, (7j)
t1

j , t2
j , t3

j ∈ {0, 1}, j = 1, . . . , n, (7k)
k ≥ 1ε, f ≥ 1ε, (7l)
v ≥ 1ε, u ≥ 1ε. (7m)

The objective function of Model (7) is the average of weighted efficiency scores of each
stage of the studied network. Therefore, Model (7) seeks the maximum aggregate efficiency
score of the entire network. Constraints (7a), (7d), and (7g) represent the sum weighted
outputs of stages 1, 2, and 3 for all DMUs are set to be less than or equal to 1. The sum
weighted inputs of stages 1, 2, and 3 for all DMUs are equal to 1 based on constraints (7c),
(7f), and (7i). In constraint (7j), the sum of variables t1

j , t2
j , and t3

j over j is considered equal
to n − 1. The left side of constraints (7b), (7e), and (7h) indicates the efficiency of stages
1, 2, and 3 in the network. To address the inequality of these constraints, a big M value is
multiplied by the binary variable t1

j , t2
j , and t3

j for all j. According to constraints (7a), (7b),
and (7c), the binary variable corresponding to DMUj is set to be equal to zero for the DMU
that has the highest efficiency in stage 1. Similarly, based on (7d), (7e), and (7f), the binary
variable associated with DMUj is set to be equal to zero for the DMU that has the highest
efficiency in stage 2. According to (7g), (7h), and (7i), the binary variable corresponding
to DMUj is set to be equal to zero for the DMU that has the highest efficiency in stage 3.
Constraints (7k) to (7m) define the type of variables used in Model (7).

Remark 2. Consider the objective function of Model (7). ω1, ω2, and ω3 are positive numeric
weights introduced by DMs or managers to indicate the importance of each stage in calculating
the aggregate efficiency of the entire network. As noted, the sum of the defined weights ω1, ω2,
and ω3 must be equal to 1. Different choices of these weights may result in different outputs. For
example, if in the calculating process of the aggregate efficiency of the entire chain, the supplier is
more important than the manufacturer, and the manufacturer is more important than the distributor,
the numbers 3

6 , 2
6 , and 1

6 can be considered for the corresponding coefficients of stages 1, 2, and 3.
As evident in Model (7), the introduced objective function consists of three parts, each of which is
the product of the factor multiplied by the expression of the efficiency of each stage. Notably, both of
these numbers are less than one. Therefore, the sum of numbers after dividing by three is always
less than or equal to 1. This value is the aggregate efficiency of the network. In other words, the
objective function of Model (7) introduces the average of weighted efficiency scores of all stages as
the aggregate efficiency of the network. The reason behind using 1

3 in the objective function is that
the aggregate efficiency score eventually becomes a value between zero and one.

Considering the network depicted in Figure 2 with three stages, x indicates the input
of the supplier with m1 component. q and z are desirable outputs of this stage with s4 and
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b components, and a is the undesirable output with s5 components. The manufacturer
uses d, z, and l as its inputs, and produces w as the output. l, d, and w have m2, s3, and t
components, respectively. p enters distributor as inputs with m3 components, and d leaves
this stage as feedback to the manufacturer. Finally, y is the output the of distributor that is
the output of the system. Notably, Figure 2 shows a three echelon SC, including supplier,
manufacturer, and distributor. Since SCM includes the processes of supplying the materials,
producing the products, until delivering that product to the customer, the SC network can
also have a fourth component called the retailer. According to the case study investigated
in this research, the distributor and the retailer are considered as one component at the end
of the chain. Therefore, modeling was performed based on a three echelon SC.

Figure 2. A general view of the studied SSC network.

As shown in the following, Model (8) was proposed to select the supplier with the
highest efficiency score. It should be noted that a is the undesirable output of the first stage,
and the less amount of it is desired. Therefore, a is considered as the input of the supplier.
In Model (8), the second constraint examines all possible strategies. In the right of this
constraint, there is a big M value, which, along with the binary variable, helps to choose the
optimal strategy. Binary variables are also present in the objective function, in addition to
the values. Therefore, the strategy is selected to maximize the value of the corresponding
objective function. In other words, the efficiency of the stage under investigation will be
maximized by choosing that strategy.

Max (∑n
j=1(∑

b
g=1 kgjzo

gj + ∑r4
c=1 bcjqo

cj))− (n− 1)
s.t.
∑b

g=1 kgjzgj + ∑r4
c=1 bcjqcj ≤ 1, j = 1, . . . , n, (8a)

∑b
g=1 kgjzgj + ∑r4

c=1 bcjqcj− (8b)
∑m

i=1 vijxij −∑r5
d=1 gdjadj ≤ M t1

j , j = 1, . . . , n,
∑m

i=1 vijxij + ∑r5
d=1 gdjadj = 1, (8c)

∑n
j=1 t1

j = n− 1, (8d)
t1

j ∈ {0, 1}, j = 1, . . . , n, (8e)
k ≥ 1ε, b ≥ 1ε, (8f)
v ≥ 1ε, g ≥ 1ε. (8g)

Constraint (8a) indicates the sum weighted desirable outputs of stage 1,“z” and “q”,
for all DMUs, which is set to be less than or equal to 1. Constraint (8c) ensures that the
sum weighted inputs of stage 1, “x” and “a”, for all DMUs is equal to 1. An undesirable
output of stage 1 is considered as an input. The sum of variable t1

j over j is considered
equal to n − 1 in constraint (8d). The left side of constraint (8b) represents the efficiency
of the first stage of the network. To address the existing inequality in this constraint, big
M is multiplied by the binary variable t1

j for all j. Based on constraints (8b) to (8d), the
binary variable corresponding to DMUj is set to be equal to zero for the DMU that has
the highest efficiency in stage 1. In this way, the maximum value of the efficiency score of
stage 1 among all DMUs is determined, which is the optimal value of the objective function
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of Model (8). Constraints (8e) to (8g) represent the type of used decision variables for
developing this model.

Theorem 2. Using Model (8), only one strategy with the highest efficiency score is selected for the supplier.

Proof of Theorem 2. The binary variable t1
j is introduced in constraint (8e). This variable

is used on the right side of constraint (8b). As the sum of t1
j is equal to n− 1; thus, the

n− 1 binary variable takes a positive value, and the rest of them take a zero value. Thus,
n − 1 inequalities in constraint (8b) are redundant. Let the second constraint for some
j = p hold; ∑b

g=1 kgpzgp + ∑r4
c=1 bcpqcp −∑m

i=1 vipxip −∑r5
d=1 gdpadp ≤ 0. It is concluded that

these n− 1 terms in the objective function are equal to 1 according to constraint (8a) that
is bounded above by 1. Therefore, the only term that remains in the objective function
is ∑b

g=1 kgpzgp + ∑r4
c=1 bcpqcp. It is worth noting that ∑b

g=1 kgpzgp + ∑r4
c=1 bcpqcp has the

maximum value for objective function otherwise another DMUj j 6= p should remain in the
objective function. As we know ∑b

g=1 kgpzgp + ∑r4
c=1 bcpqcp represents the relative efficiency

score related to DMUp which is confined to be less than 1. �

Due to constraint (8d) presented in linear Model (8), not all of the binary variables can
take a positive value, that is, a value of one. According to this condition, one of the indices
is established in constraints (8b) and (8c) is redundant for the rest of the indices. Notably,
the goal of Model (8) is to maximize the objective function, which is the efficiency score of
the supplier. With the help of binary variables in constraints, a part remains in the objective
function of this model that in constraint (8a) is bound to the values of less than 1. Thus, in
this model, there is no need for binary variables in the objective function. This MILP model
is based on the principles of the CCR model and can find the most efficient scenario for
each of the stages of the SSC network.

As shown in the following equations, Model (9) was formulated to select the manu-
facturer with the highest efficiency score. In this model, d is the input of the manufacturer
and the output of the distributor. In other words, d is the feedback of the distributor to the
manufacturer and can be desirable or undesirable. For example, we considered the output
of the distributor as one of the raw materials required for the manufacturer. In this case,
DMs can obtain d from the distributor instead of buying d from outside the system to mini-
mize the cost of the system. In another example, the product transported to the distributor,
which was considered defective, can be referred to the manufacturer for inspection and
troubleshooting. In this case, the output is undesirable, and its reduction is in favor of the
system. In the mathematical modeling of the second and third stages, the output of the
third stage, which goes back to the manufacturer, is considered a desirable factor. Finally,
Model (10) was developed to select the distributor with the highest efficiency score.
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Max (∑n
j=1(∑

t
l=1 fl jwo

lj))− (n− 1)
s.t.
∑t

l=1 fl jwl j ≤ 1, j = 1, . . . , n, (9a)
∑t

l=1 fl jwl j −∑b
g=1 kgjzgj− (9b)

∑m3
k=1 hkjlj ∑n

j=1 ∑r3
t=1 etjdtj ≤ M t2

j , j = 1, . . . , n, (9c)

∑b
g=1 kgjzgj + ∑m3

k=1 hkjlj + ∑r3
t=1 etjdtj = 1,

∑n
j=1 t2

j = n− 1, (9d)
t2

j ∈ {0, 1}, j = 1, . . . , n, (9e)
k ≥ 1ε, ≥ 1ε, (9f)
f ≥ 1ε, d ≥ 1ε. (9g)

Max (∑n
j=1(∑

s1
r=1 u1

rjy
1o
rj + ∑r3

t=1 dtjeo
rt))− (n− 1)

s.t.
∑s1

r=1 u1
rjy

1
rj + ∑s3

t=1 etjdtj ≤ 1, j = 1, . . . , n, (10a)
∑s1

r=1 u1
rjy

1
rj + ∑s3

t=1 etjdtj− (10b)
∑t

l=1 fl jwl j −∑s2
r=1 u2

rjy
2
rj−

∑m3
l=1 cl j pl j ≤ M t3

j , j = 1, . . . , n,

∑t
l=1 fl jwl j + ∑s2

r=1 u2
rjy

2
rj + ∑m3

l=1 cl j pl j = 1, (10c)
∑n

j=1 t3
j = n− 1, j = 1, . . . , n, (10d)

t3
j ∈ {0, 1}, j = 1, . . . , n, (10e)

f ≥ 1ε, d ≥ 1ε, (10f)
u1 ≥ 1ε, u2 ≥ 1ε, c ≥ 1ε. (10g)

Constraints of Models (9) and (10) can be defined similarly to Model (8). Constraint
(9a) represents the sum weighted outputs of stage 2, “w”, for all DMUs is less than or equal
to 1. Constraint (9c) guarantees the sum weighted inputs of stage 2, “z”, “l”, and “d”, for
all DMUs are equal to 1. Notably, “d” is the output of stage 3 that is returned to stage 2.
Focusing on Model (10), constraint (10a) represents that the sum weighted outputs of stage 3,
“d” and “y1”, for all DMUs is less than or equal to 1. Constraint (10c) indicates that the sum
weighted inputs of stage 3, “w”, “y2”, and “p”, for all DMUs is equal to 1 similar to previous
models. “y1” and “y2” is the undesirable and desirable outputs of stage 3, respectively. The
main aim of Models (8), (9), and (10) is to select the efficient strategy for SSC network design
(see Figure 2). The efficient strategy is a strategy with the highest efficiency score. The
mentioned three models sought the maximum efficiency of stages 1 to 3, respectively. It
can be said that the modification of the DEA model resulted in a linear model for efficiency
evaluation, while the issue of selection was also considered. These models were formulated
with the help of binary variables and introduced inequalities.

Lemma 1. Only one strategy with the highest efficiency score is selected for the manufacturer using
Model (9).

Lemma 2. Based on Model (10), only one strategy with the highest efficiency score is selected for
the distributor.

Models (8) to (10) were proposed for choosing the optimal strategy for each stage
of an SSC. Now, to consider all three stages in an SSC at the same time, the efficiency of
the whole network should be maximized. Since selecting all three strategies for all three
stages affects the performance of the whole chain, we proposed Model (11) to address this
issue. This network DEA model was formulated to select the supplier, manufacturer, and
distributor in the SSC with the highest aggregated efficiency score. In this model, ω1, ω2,
and ω3 are weights that are set by the DMs to define different importance for the efficiency
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score of each stage in the aggregate efficiency score of the whole chain. The sum of these
nonnegative numerical coefficients must be one, i.e., ω1, ω2, ω3 ≥ 0, ω1 + ω2 + ω3 = 1.

Max 1
3 [ω1

(
(∑n

j=1(∑
b
g=1 kgjzo

gj + ∑s4
c=1 bcjqo

cj))− (n− 1)
)
+

ω2

(
(∑n

j=1(∑
t
l=1 fl jwo

lj))− (n− 1)
)
+

ω3

(
(∑n

j=1(∑
s1
r=1 u1

rjy
1o
rj + ∑s3

t=1 etjdo
tj))− (n− 1)

)
]

s.t.
∑b

g=1 kgjzgj + ∑s4
c=1 bcjqcj ≤ 1, j = 1, . . . , n, (11a)

∑b
g=1 kgjzgj + ∑s4

c=1 bcjqcj −∑m1
i=1 vijxij− (11b)

∑s5
d=1 gdjadj ≤ M t1

j , j = 1, . . . , n,
∑m1

i=1 vijxij + ∑s5
d=1 gdjadj = 1, (11c)

∑t
l=1 fl jwl j ≤ 1, j = 1, . . . , n, (11d)

∑t
l=1 fl jwl j −∑b

g=1 kgjzgj− (11e)
∑m2

k=1 hkjlj −∑r3
t=1 etjdtj ≤ M t2

j , j = 1, . . . , n,

∑b
g=1 kgjzgj + ∑m2

k=1 hkjlj + ∑s3
t=1 etjdtj = 1, (11f)

∑s1
r=1 u1

rjy
1
rj + ∑s3

t=1 etjdtj ≤ 1, j = 1, . . . , n, (11g)
∑s

r=1 u1
rjy

1
rj + ∑s3

t=1 etjdtj− (11h)
∑t

l=1 fl jwl j −∑s2
r=1 u2

rjy
2
rj − j = 1, . . . , n,

∑m3
l=1 cl j pl j ≤ M t3

j ,

∑t
l=1 fl jwl j + ∑s2

r=1 u2
rjy

2
rj+ (11i)

∑m3
l=1 cl j pl j = 1,

∑n
j=1 t1

j = n− 1, ∑n
j=1 t2

j = n− 1, ∑n
j=1 t3

j = n− 1 (11j)
t1

j , t2
j , t3

j ∈ {0, 1}, j = 1, . . . , n, (11k)
v ≥ 1ε, f ≥ 1ε, k ≥ 1ε, (11l)
h ≥ 1ε, ≥ 1ε, g ≥ 1ε, (11m)
b ≥ 1ε, u1 ≥ 1ε, u2 ≥ 1ε, c ≥ 1ε. (11n)

Model (11) searches for the maximum aggregate efficiency score of the entire network.
Constraints (11a), (11d), and (11g) guarantee the sum weighted outputs of stages 1, 2, and 3
for all DMUs to be less than or equal to 1. To ensure the sum weighted inputs of stages 1, 2,
and 3 for all DMUs are equal to 1, we defined constraints (11c), (11f), and (11i). In constraint
(11j), the sum of variables t1

j , t2
j , and t3

j over j is considered equal to n − 1. The left side of
constraints (11b), (11e), and (11h) represents the efficiency of the first, second, and third
stages of the network. In these constraints, a big M value is multiplied by the binary variable
t1

j , t2
j , and t3

j for all j. Based on constraints (11a) to (11i), the binary variable corresponding
to DMUj is set to be equal to zero for the DMU that has the highest efficiency in stags 1
to 3. Model (11) is an optimization model based on the DEA technique, considering the
improvements applied to the classical DEA model. Model 11 as a network DEA model was
developed for a three echelon SC. The improvement made in the classical DEA model is
the consideration of all three stages in one model, which aims to select the best strategy
for each stage in a way that maximizes the efficiency of the entire chain. Additionally, we
considered undesirable outputs and returned outputs in the efficiency calculation process.
It should be noted that the efficiency of the entire network is averaged over the weighted
efficiency score of each stage. After solving Model (11), strategies were selected for each
stage that maximized the aggregate efficiency of the network. In fact, this research used the
efficiency score to address the problem of strategy selection to design SSCs.

Theorem 3. Using Model (11), strategies for the supplier, manufacturer, and distributor are selected
with the aim of obtaining the highest aggregate efficiency score for the whole network.
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Proof of Theorem 3. According to Theorem 2 and Lemmas 1 and 2, strategies for each
stage (supply, manufacturing, and distribution) are selected to maximize the aggregate
efficiency score of the network. �

3. Application and Analysis of the Results

In this section, the proposed DEA model is implemented in a practical case study to
demonstrate its performance. To this end, this study aimed to assess 20 SSCs with similar
structures active in the tomato paste production industry. For each SSC, three stages were
considered in the studied network based on Figure 2. The list of 19 SSCs was derived from
Tehran Stock Exchange and Iran Fara Bourse. In the first phase of the research methodology,
an interview with experts was conducted to select the criteria for each stage of the studied
network (Table 2). In the second phase, focusing on the sustainability concept, the values
of the criteria, including inputs and outputs of the proposed model, were extracted from
the Codal website. The values of the determined inputs and outputs for each stage are
presented in Tables A1–A3. In the third phase, based on the case study definition, three
strategies were assumed for each SSC based on the values of the inputs and outputs related
to the supplier, manufacturer, and distributor. After defining strategies for 19 SSCs, the
proposed model was used to select the best sustainable design strategy for each SSC in the
fourth phase. The main aim of the implementation of Model (11) was to choose a specific
design strategy for each SSC network to increase the aggregate sustainable efficiency of
the entire network to the maximum possible level. Accordingly, the proposed network
DEA model was introduced based on Models (8), (9), and (10) to consider three stages
simultaneously to determine the efficient strategies for SSC design (Model 11). These
strategies guarantee to maximize the efficiency of the whole chain. Notably, the efficiency
of the whole chain was considered as the weighted average performance. In this study,
ω1, ω2, and ω3 were considered to be equal to 0.4, 0.2, and 0.4 based on DM’s opinions.

Table 2. The inputs and outputs of the network DEA model.

Factors Notation Definitions Status

Independent input of supplier
x1 Raw materials Desirable
x2 Staff (personnel) Desirable
x3 Water usage Desirable

Output of supplier q CO2 emission Undesirable
a Revenue Desirable

Output of supplier and input of
manufacturer (intermediate product)

z1 Inter-products Desirable
z2 Supplied materials Desirable

Independent input of manufacturer L Equipment costs Desirable

Input of manufacturer (feedback) D Supplied materials Desirable

Output of manufacturer and input of
stage 3 (intermediate product)

w1 Products Desirable
w2 Green products Desirable

Independent input of distributer P Packaging costs Desirable

Output of distributer
y1 Wastes Undesirable
y2 Revenue Desirable
d1 Supplied materials Desirable

Next, the developed DEA (Model 11) was implemented according to the determined
inputs and outputs to select the efficient strategy for SSC design. The results of the imple-
mentation of this model are presented in Table 3. According to the binary variables used in
the developed models, one strategy was selected from all three strategies for designing each
SSC network. This strategy selection process resulted in choosing 19 strategies with the
highest aggregate efficiency values for their respective SSCs from the 57 existing strategies.
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Using SSC3 as an example, the calculated efficiency of supplier and manufacturer when we
chose the first strategy was more than the second one. However, the second strategy was
selected based on its highest aggregate efficiency resulting from the best performance of the
distributor compared to the other two strategies. Among the studied SSC, the first strategy
proposed for network design (S5,1) had the greatest aggregate efficiency score considering
the network members’ efficiency in comparison with other ones. To put it precisely, if this
strategy was used for designing SSC5, the designed network could outperform other SSCs
in terms of factors related to the sustainability concept.

Table 3. The obtained efficiency scores for each strategy for the SSC network design.

Sustainable
Supply Chain

Strategy
Scores

Selection
Supplier Manufacturer Distributor Aggregate

SSC1

S1,1 0.98 0.63 0.84 0.28 0
S1,2 0.99 * 0.71 0.79 0.29 1
S1,3 0.9 0.6 0.93 0.28 0

SSC2

S2,1 0.98 0.82 0.73 0.28 0
S2,2 0.74 0.88 0.77 0.26 0
S2,3 0.92 0.63 0.97 0.29 1

SSC3

S3,1 1 1 0.66 0.29 0
S3,2 0.91 0.72 0.98 0.3 1
S3,3 0.96 0.61 0.88 0.29 0

SSC4

S4,1 1 0.68 0.75 0.28 0
S4,2 0.92 0.67 1 0.3 1
S4,3 0.86 0.67 1 0.29 0

SSC5

S5,1 0.95 0.79 1 0.31 1
S5,2 0.95 0.81 0.69 0.27 0
S5,3 0.91 0.72 0.95 0.3 0

SSC6

S6,1 0.93 0.75 0.76 0.27 0
S6,2 0.94 0.6 0.79 0.27 0
S6,3 0.92 0.7 0.96 0.3 1

SSC7

S7,1 1 0.71 0.89 0.3 1
S7,2 0.95 0.6 0.82 0.28 0
S7,3 1 0.9 0.67 0.28 0

SSC8

S8,1 0.96 0.87 0.77 0.29 1
S8,2 0.95 0.61 0.93 0.29 0
S8,3 0.84 0.7 0.97 0.29 0

SSC9

S9,1 0.93 0.75 0.76 0.27 0
S9,2 1 0.63 0.88 0.29 0
S9,3 0.96 0.75 0.92 0.3 1

SSC10

S10,1 0.94 0.74 0.83 0.29 1
S10,2 0.72 0.76 0.88 0.26 0
S10,3 0.87 0.66 0.79 0.27 0

SSC11

S11,1 0.74 0.85 0.86 0.27 0
S11,2 1 0.68 0.72 0.27 1
S11,3 0.91 0.93 0.67 0.27 0

SSC12

S12,1 1 0.82 0.7 0.28 0
S12,2 0.73 0.76 0.92 0.27 0
S12,3 0.92 0.69 0.92 0.29 1

SSC13

S13,1 0.76 0.83 0.91 0.28 0
S13,2 1 0.8 0.76 0.29 0
S13,3 1 0.64 0.83 0.29 1
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Table 3. Cont.

Sustainable
Supply Chain

Strategy
Scores

Selection
Supplier Manufacturer Distributor Aggregate

SSC14

S14,1 0.95 1 0.62 0.28 0
S14,2 1 0.76 0.8 0.29 0
S14,3 0.91 0.62 1 0.3 1

SSC15

S15,1 1 0.7 1 0.31 1
S15,2 1 0.71 0.93 0.3 0
S15,3 0.81 0.83 0.72 0.26 0

SSC16

S16,1 0.84 0.76 0.78 0.27 0
S16,2 0.95 0.6 0.97 0.3 1
S16,3 1 0.83 0.69 0.28 0

SSC17

S17,1 0.94 0.74 0.81 0.28 0
S17,2 0.98 0.62 1 0.31 1
S17,3 1 0.77 0.8 0.29 0

SSC18

S18,1 0.83 0.71 0.89 0.28 0
S18,2 1 0.62 0.8 0.28 1
S18,3 0.77 0.71 0.88 0.27 0

SSC19

S19,1 0.98 0.86 0.79 0.29 0
S19,2 0.95 0.6 0.84 0.28 0
S19,3 0.97 0.7 0.98 0.31 1

* The bold values indicate the selected strategy for each SSC design.

Figure 3 illustrates the efficiency scores obtained for each stage with respect to the
selected strategy for deigning each SSC. Based on this figure, suppliers in SSC7, SSC11,
SSC15, and SSC18 had the maximum efficiency score (the value of 1). Regarding the
manufacturers active in the studied SSCs, the manufacture of SSC8 with an efficiency
score of 0.87 outperformed other manufactures. As shown in Figure 3, for most SCs,
the efficiency of the manufacturer was lower than the efficiency scores of supplier and
distributor. Notably, the values of efficiency scores obtained for the supplier and distributor
were approximately equal in the studied SSCs. Distributers of SSC4, SSC5, SSC14, SSC15,
and SSC18 showed the highest possible efficiency score in comparison with other ones.

Figure 3. Efficiency scores of the supplier, manufacturer, and distributor.
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Based on Figure 4, it can be seen that four SSCs had an aggregate efficiency score
more than the average score after performing their respective best strategies. Conversely,
17 SSCs showed the aggregate efficiency equal to the average value. However, these SSCs
should follow the strategies proposed to design SSCs with an efficiency more than average
to achieve maximum sustainability.

Figure 4. The comparison of the aggregate efficiency scores with respect to the average level.

SSCM seeks to balance economic, environmental, and social performance in SC net-
works. Achieving an SSC by simultaneously considering these three aspects can provide a
competitive position in today’s market. In fact, a significant problem in this market is the
competition between companies for obtaining the best performance. In this competitive
environment, to reach the best performance, reducing risks in network design is one of
the key factors DMs and managers should particularly consider. A crucial feature of the
model presented in this study is that it considers the issue of competition to choose the
best strategy. Another one is to reduce the risk in the selection, and the introduced model
considers the maximum aggregate efficiency of the chain.

4. Conclusions

In this era, the goal of organizations and companies is to increase profits, as well as
survive in the existing competitive market. In fact, the rapid growth of technology and lim-
ited resources has put companies in close competition. One of the competitive advantages
for companies is to make their supply chain activities more efficient. On the other hand,
due to government laws, environmental issues, and the expansion of social responsibility,
SSC design by integrating environmental considerations in the traditional SC networks has
become more important. Accordingly, this study proposed a novel network DEA model for
selecting the best sustainable strategy for SC network design. An advantage of the model
is that it considers both efficiency of each stage as well as the aggregate efficiency of the
entire network. In fact, the developed model was used to select the best strategy with the
highest aggregate efficiency among different strategies in an SSC network considering the
sustainability-related factors. Furthermore, the best strategy was chosen for each stage of
the studied networks with the maximum efficiency, compared with other possible ones.
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To consider a network structure suitable for real-world applications, undesirable output,
feedbacks, independent inputs for intermediate stages, and independent outputs of inter-
mediate stages in the network were considered in this model. The outputs of this study can
provide a decision-making system for managers and DMs to select the efficient strategies
to design an SSC. This system aimed to maximize the aggregate efficiency of the network
after implementing an SSC design strategy. Developing the proposed model by considering
the concept of shared resources can be a future development suggestion to cover more
applications in real-world problems. Furthermore, weight restrictions or leader–follower
methods can be considered in the proposed models to apply importance between stages.
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Appendix A

Table A1. The values of the inputs and outputs related to the supplier.

Sustainable
Supply Chain

Strategy
Input Output

x1 x2 x3 q a z1 z2

SSC1

S1,1 630 57 34,000 191 500 320 2500
S1,2 450 90 20,000 160 530 290 1700
S1,3 540 70 34,000 152 454 310 3000

SSC2

S2,1 630 57 24,000 191 500 290 2800
S2,2 450 80 30,000 152 400 210 1700
S2,3 540 70 32,000 160 415 290 2500

SSC3

S3,1 630 57 20,000 191 500 300 1700
S3,2 630 70 30,000 152 415 290 2500
S3,3 450 70 24,000 191 534 210 2800

SSC4

S4,1 540 80 24,000 160 415 320 3000
S4,2 500 90 40,000 200 467 310 3000
S4,3 630 57 34,000 152 500 210 2500

SSC5

S5,1 500 90 30,000 160 400 290 1700
S5,2 450 70 24,000 160 415 300 2800
S5,3 540 90 24,000 200 521 290 2500

SSC6

S6,1 500 90 30,000 160 400 290 1700
S6,2 450 70 24,000 152 415 300 3000
S6,3 540 90 24,000 200 521 290 2500

SSC7

S7,1 500 90 30,000 200 400 290 2800
S7,2 450 70 24,000 160 415 300 3000
S7,3 540 57 24,000 200 521 320 2500



Sustainability 2022, 14, 262 19 of 23

Table A1. Cont.

Sustainable
Supply Chain

Strategy
Input Output

x1 x2 x3 q a z1 z2

SSC8

S8,1 500 90 30,000 160 400 290 2800
S8,2 450 70 24,000 160 415 300 2800
S8,3 540 90 32,000 200 521 310 2500

SSC9

S9,1 500 90 30,000 160 400 290 2800
S9,2 450 70 24,000 200 415 300 2800
S9,3 540 90 24,000 200 521 320 2500

SSC10

S10,1 500 90 30,000 152 400 290 1700
S10,2 450 70 24,000 152 415 210 3000
S10,3 540 90 34,000 200 521 320 2800

SSC11

S11,1 500 90 30,000 160 400 210 1700
S11,2 450 70 24,000 160 415 320 3000
S11,3 540 90 24,000 200 521 290 2500

SSC12

S12,1 500 90 30000 160 400 310 1700
S12,2 450 80 24,000 160 415 210 3000
S12,3 540 90 24,000 200 521 320 2500

SSC13

S13,1 500 90 30,000 160 400 210 1700
S13,2 450 57 24,000 160 454 310 2800
S13,3 540 57 34,000 152 530 320 2500

SSC14

S14,1 500 90 2,0000 160 467 290 1700
S14,2 500 57 24,000 160 415 300 3000
S14,3 540 90 24,000 200 521 290 2500

SSC15

S15,1 500 57 34,000 160 400 290 2800
S15,2 450 70 2,0000 152 415 300 3000
S15,3 540 90 24,000 152 521 290 2500

SSC16

S16,1 500 90 3,0000 160 454 290 2800
S16,2 450 80 32,000 160 467 300 3000
S16,3 540 90 2,0000 200 521 290 2800

SSC17

S17,1 500 57 3,0000 160 454 290 1700
S17,2 450 70 24,000 191 530 300 3000
S17,3 540 90 2,0000 200 521 290 2500

SSC18

S18,1 500 90 3,0000 160 467 290 2800
S18,2 450 57 24,000 152 415 300 3000
S18,3 540 80 34,000 152 500 290 2800

SSC19

S19,1 500 90 3,0000 191 400 290 1700
S19,2 450 70 24,000 160 415 300 3000
S19,3 540 90 24,000 200 467 310 2500
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Table A2. The values of the inputs and outputs related to the manufacturer.

Sustainable
Supply Chain

Strategy
Input Output

z1 z2 l d w1 w2

SSC1

S1,1 320 2500 1200 80 4000 600
S1,2 290 1700 2000 70 3500 450
S1,3 310 3000 3200 85 4000 400

SSC2

S2,1 290 2800 1200 70 5200 450
S2,2 210 1700 3500 60 5600 350
S2,3 290 2500 2000 85 4000 400

SSC3

S3,1 300 1700 1200 80 6300 600
S3,2 290 2500 3200 85 5200 400
S3,3 210 2800 2000 75 4000 350

SSC4

S4,1 320 3000 1200 80 5200 400
S4,2 310 3000 3200 85 5000 400
S4,3 210 2500 1200 70 5200 450

SSC5

S5,1 290 1700 1200 80 6300 350
S5,2 300 2800 3500 70 4000 600
S5,3 290 2500 3200 85 5200 400

SSC6

S6,1 290 1700 1200 80 6300 350
S6,2 300 3000 2000 70 4000 350
S6,3 290 2500 3200 85 5200 400

SSC7

S7,1 290 2800 1200 80 6300 350
S7,2 300 3000 2000 70 4000 350
S7,3 320 2500 3200 85 5200 600

SSC8

S8,1 290 2800 1200 80 6300 500
S8,2 300 2800 3500 70 4000 350
S8,3 310 2500 3200 85 5200 400

SSC9

S9,1 290 2800 1200 80 6300 350
S9,2 300 2800 3500 70 4000 350
S9,3 320 2500 3200 85 5200 500

SSC10

S10,1 290> 1700> 1200 80 6300 350
S10,2 210 3000 2000 70 4000 350
S10,3 320 2800 3200 85 5200 400

SSC11

S11,1 210 1700 1200 80 6300 350
S11,2 320 3000 3500 70 4000 500
S11,3 290 2500 3200 85 5200 600

SSC12

S12,1 310 1700 1200 80 6300 500
S12,2 210 3000 2000 70 4000 350
S12,3 320 2500 3200 85 5200 400

SSC13

S13,1 210 1700 1200 80 6300 350
S13,2 310 2800 3500 70 4000 600
S13,3 320 2500 3000 85 5200 400

SSC14

S14,1 290 1700 1200 80 6300 600
S14,2 300 3000 2000 60 5600 350
S14,3 290 2500 3000 85 4000 400

SSC15

S15,1 290 2800 1200 80 6300 350
S15,2 300 3000 3000 70 5000 350
S15,3 290 2500 3200 60 5600 400
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Table A2. Cont.

Sustainable
Supply Chain

Strategy
Input Output

z1 z2 l d w1 w2

SSC16

S16,1 290 2800 1200 80 6300 350
S16,2 300 3000 3000 70 4000 350
S16,3 290 2800 3200 60 5600 400

SSC17

S17,1 290 1700 1200 70 5600 350
S17,2 300 3000 3500 70 4000 350
S17,3 290 2500 3000 70 5000 400

SSC18

S18,1 290 2800 1200 80 6300 350
S18,2 300 3000 2000 70 4000 350
S18,3 290 2800 3200 85 3500 600

SSC19

S19,1 290 1700 3000 85 6300 500
S19,2 300 3000 2000 70 4000 350
S19,3 310 2500 3200 85 5200 400

Table A3. The values of the inputs and outputs related to the distributor.

Sustainable
Supply Chain

Strategy
Input Output

w1 w2 p d o1 o2

SSC1

S1,1 4000 600 700 80 1800 4500
S1,2 3500 450 900 70 2500 4700
S1,3 4000 400 700 85 1500 5500

SSC2

S2,1 5200 450 700 70 2000 4500
S2,2 5600 350 800 60 1800 4700
S2,3 4000 400 500 85 1500 5000

SSC3

S3,1 6300 600 900 80 2500 5000
S3,2 5200 400 440 85 1800 5500
S3,3 4000 350 581 75 1500 4500

SSC4

S4,1 5200 400 900 80 2500 4700
S4,2 5000 400 440 85 1800 5500
S4,3 5200 450 328 70 2000 5000

SSC5

S5,1 6300 350 253 80 2500 4700
S5,2 4000 600 900 70 2000 4700
S5,3 5200 400 500 85 1500 5500

SSC6

S6,1 6300 350 900 80 1800 4700
S6,2 4000 350 900 70 2000 4700
S6,3 5200 400 440 85 2500 4500

SSC7

S7,1 6300 350 700 80 1800 5500
S7,2 4000 350 800 70 2000 4700
S7,3 5200 600 900 85 1500 4500

SSC8

S8,1 6300 500 440 80 2500 4700
S8,2 4000 350 700 70 2000 5500
S8,3 5200 400 415 85 1500 4500

SSC9

S9,1 6300 350 900 80 1800 4700
S9,2 4000 350 700 70 2500 4700
S9,3 5200 500 440 85 1500 5500

SSC10

S10,1 6300 350 500 80 1800 4700
S10,2 4000 350 800 70 2000 4700
S10,3 5200 400 900 85 2500 4500
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Table A3. Cont.

Sustainable
Supply Chain

Strategy
Input Output

w1 w2 p d o1 o2

SSC11

S11,1 6300 350 700 80 1800 4700
S11,2 4000 500 900 70 2000 4700
S11,3 5200 600 900 85 1500 4500

SSC12

S12,1 6300 500 800 80 2500 4700
S12,2 4000 350 900 70 2000 5500
S12,3 5200 400 500 85 1500 4500

SSC13

S13,1 6300 350 440 80 1800 4700
S13,2 4000 600 700 70 2500 5000
S13,3 5200 400 415 85 1500 4500

SSC14

S14,1 6300 600 800 80 1800 4700
S14,2 5600 350 522 60 2000 4700
S14,3 4000 400 500 85 2500 4500

SSC15

S15,1 6300 350 440 60 1800 5500
S15,2 5000 350 440 70 2000 5000
S15,3 5600 400 500 85 1500 4500

SSC16

S16,1 6300 350 900 85 2500 4700
S16,2 4000 350 500 70 2000 5000
S16,3 5600 400 800 60 2000 4500

SSC17

S17,1 5600 350 700 80 2500 4700
S17,2 4000 350 440 70 2500 4500
S17,3 5000 400 500 70 1500 4500

SSC18

S18,1 6300 350 700 80 1800 5500
S18,2 4000 350 900 70 2000 4700
S18,3 3500 600 700 60 1800 5500

SSC19

S19,1 6300 500 440 70 1800 4700
S19,2 4000 350 800 60 2500 4700
S19,3 5200 400 415 85 1500 5000
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