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Abstract 1 
The first generation of immune checkpoint inhibitors (anti-CTLA-4 and anti-PD-1/PD-L1) 2 
targeted natural immune homeostasis pathways, co-opted by cancers, to drive anti-tumor immune 3 
responses. These agents led to unprecedented results in patients with previously incurable 4 
metastatic disease and may become first-line therapies for some advanced cancers. However, 5 
these agents are efficacious in only a minority of patients. Newer strategies are becoming 6 
available that target additional immunomodulatory mechanisms to activate patients’ own anti-7 
tumor immune responses. Herein, we present a succinct summary of emerging immune targets 8 
with reported pre-clinical efficacy that have progressed to active investigation in clinical trials. 9 
These emerging targets include co-inhibitory and co-stimulatory markers of the innate and 10 
adaptive immune system. In this review, we discuss: 1) T lymphocyte markers: Lymphocyte 11 
Activation Gene 3 [LAG-3], T-cell Immunoglobulinand Mucin-domain-containing molecule 3 12 
[TIM-3], V-domain containing Ig Suppressor of T cell Activation [VISTA], T cell 13 
ImmunoGlobulin and ITIM domain [TIGIT], B7-H3, Inducible T-cell Co-stimulator 14 
[ICOS/ICOSL], CD27/CD70, and Glucocorticoid-Induced TNF Receptor [GITR]; 2) macrophage 15 
markers: CD47/Signal-Regulatory Protein alpha [SIRPα] and Indoleamine-2,3-Dioxygenase 16 
[IDO]; and 3) natural killer cell markers: CD94/NKG2A and the Killer Immunoglobulin-like 17 
receptor [KIR] family. Finally, we briefly highlight combination strategies and potential 18 
biomarkers of response and resistance to these cancer immunotherapies.  19 
 20 
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 32 
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1. Introduction 1 

Cancer immunotherapy is now considered a pillar of cancer treatment, alongside surgery, 2 
chemotherapy, and radiation. Ipilimumab and nivolumab/pembrolizumab are among the earliest 3 
immune checkpoint inhibitors (targeting CTLA-4 and PD-1, respectively) and are now moving 4 
from second-line to become first-line therapies of choice in advanced non-small cell lung cancer 5 
and melanoma [1,2]. Treatment with these agents can induce resistance through upregulation of 6 
additional immune checkpoints, highlighting a need for new antitumor immune activating agents 7 
[3]. Emerging drugs target not only lymphocytes associated with adaptive immunity − via 8 
blockade of immune-inhibitory checkpoints or as agonists of immunostimulatory pathways − but 9 
also innate immune processes mediated by macrophages and natural killer (NK) cells, pathways 10 
of broad relevance across many types of solid and hematopoietic cancers (markers summarized in 11 
Fig. 1). The following emerging immune targets in cancer immunotherapy were selected based on 12 
their advanced stage of development in preclinical/clinical studies and on the limited number of 13 
review articles available describing some of these targets.  14 
 15 
2. Adaptive Immunity 16 

2.1. Inhibitory lymphocyte receptors 17 

2.1.1. LAG-3  18 
Lymphocyte Activation Gene 3 (LAG-3) is a surface receptor expressed on activated T cells, an 19 
exhaustion marker with immunosuppressive activity. Major histocompatibility complex class II 20 
(MHC-II) is a ligand for LAG-3; additional ligands (e.g., L-selectin and galectin-3) have also 21 
been identified [4]. Regulatory T cells (Tregs) expressing LAG-3 have enhanced suppressive 22 
activity, whereas cytotoxic CD8+ T cells expressing LAG-3 have reduced proliferation rates and 23 
effector cytokine production in cancer and autoimmune diabetes [5–7]. A splice variant of LAG-3 24 
cleaved by metalloproteinases and secreted in the cellular microenvironment has immune-25 
activating properties when bound to MHC-II on antigen presenting cells [8]. 26 
 27 
LAG-3+ tumor-infiltrating lymphocytes (TILs) have been reported in melanoma, colon, 28 
pancreatic, breast, lung, hematopoietic, and head and neck cancer patients [9–15], in association 29 
with aggressive clinical features. Antibody-based LAG-3 blockade in multiple cancer mouse 30 
models restores CD8+ effector T cells and diminishes Treg populations, an effect enhanced when 31 
combined with anti-PD-1 [16,17]. A recent study in a metastatic ovarian cancer mouse model 32 
showed that LAG-3 blockade leads to upregulation of other immune checkpoints (PD-1, CTLA-4, 33 
and TIM-3), and combination therapy targeting LAG-3, PD-1, and CTLA-4 increases functional 34 
cytotoxic T cell levels while reducing Tregs and myeloid-derived suppressor cells [18].  35 
 36 
Multiple early phase clinical trials are testing antagonistic LAG-3 agents in combination with 37 
anti-PD-1 and/or anti-CTLA-4 therapy (Table 1). In view of the activating properties of soluble 38 
secreted LAG-3, a soluble agonist LAG-3 antibody (IMP321) was tested in advanced solid 39 
malignancies as a single agent [19], and demonstrated sufficient tolerability and efficacy to 40 
warrant advancement to phase II.  41 

2.1.2. TIM-3 42 
T-cell Immunoglobulin- and Mucin-domain-containing molecule 3 (TIM-3) is an immune-43 
inhibitory molecule first identified on CD4+ Th1 (helper) T-cells and CD8+ Tc1 (cytotoxic) T-44 
cells [20], then later on Th17 T-cells [21], regulatory T-cells [22,23], and innate immune cells 45 
[24–26]. TIM-3 is activated primarily by its widely-expressed ligand, galectin-9 [27], leading to 46 
effector T-cell death through calcium influx, cellular aggregation, and apoptosis [28]. When TIM-47 
3 signalling is active, interferon-producing T-cells become exhausted, resulting in Th1 48 
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suppression and immune tolerance [28–30]. TIM-3 expression is commonly observed during 1 
chronic infection, as a characteristic marker of exhausted T cells [31–35].  2 
 3 
In cancer, tumor-infiltrating lymphocytes expressing TIM-3 have been observed in melanoma 4 
[36,37], non-Hodgkin lymphoma [38], lung, [22], gastric [39,40], and other cancers [41–44]. In 5 
these studies, Tim-3 is co-expressed with PD-1 and associated with effector T-cell exhaustion and 6 
dysfunction. This phenomenon is also observed in mouse models of solid [45] and hematologic 7 
[46] cancers, where Tim3 + PD1 + CD8+ T-cells exhibit an exhausted phenotype characterized 8 
by reduced proliferation and defective production of IL-2, TNFα, and IFN-γ. In contrast, TIM-3 9 
positive Treg display increased expression of effector molecules and are more 10 
immunosuppressive than their TIM-3 negative counterparts [47,48]. 11 

Inhibition of TIM-3 alone tends to have little effect on tumor growth in pre-clinical mouse 12 
models, despite some evidence supporting a reversal of immune cell exhaustion [36,45,49–51]. 13 
However, combined targeting of PD-1 and TIM-3 leads to a substantial reduction in tumor 14 
growth − better than either pathway alone − in numerous preclinical in vivo models 15 
[36,45,46,51], supporting the concept that malignant cells become resistant to PD-1 checkpoint 16 
blockade by activating another immune checkpoint. Indeed, mouse models partially responsive to 17 
PD-L1 inhibition upregulated TIM-3 expression in resistant tumors [43,52], and addition of TIM-18 
3 blockade was successful in overcoming that resistance. Upregulation of TIM-3 has also been 19 
observed in patients receiving PD-L1 monotherapy, suggesting it may represent a form of 20 
adaptive resistance to this therapy [52]. Four early phase clinical trials are underway that attempt 21 
to combine anti PD-L1 therapy with agents targeting TIM-3 (Table 1).  22 

2.1.3. TIGIT 23 
TIGIT (T cell Immunoglobulin and ITIM domain) is a transmembrane protein receptor that acts 24 
as an immune checkpoint on T and NK cells by way of two immunoreceptor tyrosine-based 25 
inhibitory motifs (ITIM) in its cytoplasmic tail [53]. There are two prominent TIGIT ligands 26 
(CD155 and CD112), mostly expressed on antigen presenting cells, and one recently-discovered 27 
ligand called nectin-2 [54]. TIGIT immunosuppressive actions appear to mimic CTLA-4 28 
interactions with the B7 cell surface receptor. Binding of CD155 to CD226 (a receptor on T and 29 
NK cells) leads to activation of effector functions which are inhibited when CD155 binds to 30 
TIGIT instead [53].  31 
 32 
Mice with TIGIT deficiency are sensitive to autoimmune arthritis [55]. In cancer, TIGIT 33 
blockade leads to tumor regression, increased survival, and resistance to tumor re-challenge in 34 
melanoma and colon cancer mouse models [56,57]. High expression of TIGIT mRNA and 35 
increased levels of TIGIT+ lymphocytes by flow cytometry have been reported in human renal 36 
cell carcinoma, melanoma, lung, breast, and esophageal cancers. [10,56,58–62]  37 
 38 
In melanoma, NY-ESO-1-specific TIGIT+ CD8+ T cells co-express other immune checkpoint 39 
markers, such as PD-1 and TIM-3 [59]. Blockade of TIGIT and PD-1 in vitro increased IFN-γ 40 
and TNF-α production from tumor-specific CD8+ T cells. A population of early effector TILs 41 
that express TIGIT and other inhibitory receptors (LAG-3, TIM-3, and PD-1) but retain their 42 
functional phenotype has been reported in lung cancer patients [10]. TIGIT gene expression is 43 
demonstrable among a subset of basal-like breast cancers where, like other biomarkers of immune 44 
recognition, it is associated with improved survival in what is otherwise an aggressive disease 45 
[62]. TIGIT inhibitors are still in early phase development, but at least two agents (MTIG7192A, 46 
OMP-313M32) are being investigated in human trials (Table 1).  47 
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2.1.4. B7-H3  1 
B7-H3 (CD276) is a member of the B7 superfamily of immune modulatory ligands, closely 2 
related to B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2 (ICOS-L), and CTLA-4 ligands B7-1/B7-2 3 
(CD80/CD86) [63]. The role of B7-H3 in immune regulation is controversial [64], as early 4 
studies described it as immune co-stimulator [63,65–72], but subsequent studies have shown a co-5 
inhibitory role [73–81].  6 
 7 
B7-H3 is highly expressed in normal tissues, [63]. and has been shown to be overexpressed in 8 
melanoma [82] and numerous carcinomas [83–88]; in most cases, expression is associated with 9 
worse outcomes. Enoblituzumab (MGA271), a monoclonal antibody targeting B7-H3, inhibits 10 
tumor growth in renal and bladder carcinoma xenografts [89] and is currently being investigated 11 
in at least four phase 1 clinical trials, including in combinations with pembrolizumab or 12 
ipilimumab. Preliminary single agent results (NCT01391143) report good tolerability and tumor 13 
shrinkage (2–69% at 12 weeks) across several tumor types [90]. A monoclonal antibody against 14 
B7-H3 labeled with iodine-131 for intratumoral delivery of radiation has shown promise in 15 
preclinical studies [91,92] and is being investigated in phase 1 trials. MGD009, a dual-affinity re-16 
targeting protein bispecific for B7-H3 and CD3 [93] is at a similar stage of development (Table 17 
1).  18 

2.1.5. VISTA 19 
V-domain containing Ig Suppressor of T cell Activation (VISTA, aka PD-1H, DD1α; gene name 20 
DIES1) is a recently-discovered immune regulator protein with a similar structure to the B7 Ig 21 
superfamily that includes PD-L1, [94,95] expressed in lymphoid organs and on myeloid cells 22 
[96–98]. VISTA functions as an immunosuppressive receptor and ligand on T-cells by decreasing 23 
IFN-γ and TNFα, blocking T-cell proliferation, and increasing the conversion of naïve T-cells 24 
into regulatory T-cells [98]. 25 
 26 
In mouse models, blocking VISTA increases immune infiltration in tumors while preferentially 27 
decreasing myeloid-derived suppressor cells [96]. Combining anti-VISTA and anti-PDL1 agents 28 
decreases tumor size and increases survival [99]. In humans, VISTA+ TILs were reported in 46% 29 
of gastric cancer patients, with a small percentage of tumor cells also expressing VISTA [100]. 30 
Recently, Oliveira P et al. showed that epigenetic factors can regulate VISTA expression in 31 
gastric cancer cell lines and that VISTA is associated with the epithelial-mesenchymal transition 32 
phenotype [101]. In oral squamous cell carcinoma patients, VISTA expression associates with 33 
poor overall survival in patients with low CD8+ TILS [102]. VISTA+ TILs and macrophages are 34 
upregulated in prostate cancer and melanoma patients following ipilimumab (anti-CTLA-4) 35 
treatment, with a greater percentage of VISTA+ macrophages being of the immunosuppressive 36 
M2 phenotype [103], suggesting that VISTA may represent a compensatory resistance 37 
mechanism. As of this writing, only phase 1 clinical trials of anti-VISTA agents are open (Table 38 
1), with combination strategies anticipated once safety is established.  39 
  40 
 41 
2.2. Costimulatory lymphocyte receptors 42 

2.2.1. ICOS and ICOS-L 43 
Inducible T-cell Costimulator (ICOS, CD278, H4, AILIM) is a receptor in the CD28 family of 44 
B7-binding proteins [104–106], expressed primarily by activated T cells [107–110]. Upon 45 
binding of ligand ICOS-L (B7-H2, B7 h, GL50, B7RP-1, LICOS, KIAA0653) − expressed 46 
mainly on antigen presenting cells [111–118] − ICOS enhances Th1 and Th2 function largely 47 
through augmented production of effector cytokines (IL-4, IL-5, IL-10, IL-21, IFNγ, TNFα) 48 
[104,108,110,119,120]. 49 
 50 
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Expression of ICOS and ICOS-L has been observed in human cancers, with variable prognostic 1 
implications [121–128]. Mice and human clinical trial patients treated with anti-CTLA-4 or anti-2 
PD-1 agents exhibit an increased treatment response in the presence of ICOS-hi T cells [129–3 
135], suggesting the latter may be a marker of clinical benefit [131,136]. ICOS knockout mice do 4 
not respond well to anti-CTLA-4 therapy [137], whereas concomitant CTLA-4 blockade and 5 
ICOS stimulation has a superior anti-tumor effect [129]. Together, these results suggest that the 6 
ICOS pathway is critical for effective response to CTLA-4 (and perhaps other immune 7 
checkpoint) inhibition. Similar to TIM-3, it is unlikely that ICOS-agonists will be pursued as a 8 
monotherapy, as they do not independently induce a cytotoxic immune response [138]. Based on 9 
encouraging results in preclinical animal models [139], an ICOS agonist antibody JTX-2011 is 10 
being investigated in the phase 1 ICONIC clinical trial in combination with nivolumab 11 
(NCT02904226), and has so far been well-tolerated [140]; ICOS agonist GSK3359609 is also 12 
being evaluated in phase I trials (INDUCE-1, NCT02723955) in combination with 13 
pembrolizumab (Table 1).  14 

2.2.2. CD27 and CD70 15 
Members of the tumor necrosis factor (TNF) receptor superfamily contribute to immune 16 
upregulation by a mechanism of action different from B7/CD28 co-stimulatory interactions. One 17 
well-known member, CD27, is expressed exclusively on lymphocytes [141–144]. Even naïve 18 
CD4+ and CD8+ T-cells express low levels CD27; upon activation, CD27 is strongly upregulated 19 
on cell surfaces [145] and shed in a soluble form [146,147]. CD27 signalling is limited by the 20 
degree of expression of its ligand CD70, which is restricted to T cells, B cells, and dendritic cells 21 
following activation of an antigen receptor [148–151]. CD27/CD70 signalling boosts T-cell 22 
clonal expansion and survival [152–158], promotes effector and memory T-cell differentiation 23 
[152,154,157,159–166], and enhances activation and function of B and NK cells [151,167–172]. 24 
 25 
In a transgenic mouse model, forced expression of CD70 constitutively activates the CD27/CD70 26 
axis, upregulating effector T cells [173] and protecting against tumor development [174]. CD27 27 
agonist therapy also prevents tumor formation or progression in immunocompetent preclinical 28 
mouse models [171,175–179]. Varlilumab, a CD27 agonist, is being investigated in multiple early 29 
phase clinical trials alone and in combination with anti-PD-1 (Table 1). Preliminary results report 30 
that varlilumab treatment upregulates chemokine production, T-cell stimulation, and Treg 31 
depletion; 8/31 melanoma/renal cell carcinoma patients had stable disease (SD) at 3 months 32 
[180], and of 15 lymphoma patients in a different study, there was 1 partial response (77% 33 
reduction) and 3 SD [181]. The related strategy of targeting CD70 is the subject of three 34 
antibody-drug conjugates and one monoclonal antibody undergoing clinical trials (Table 1). 35 
MDX-1203 (NCT00944905) was well-tolerated and achieved SD in 16/23 (69%) of patients. 36 
[182]. SGN-75, an antibody-drug conjugate linking an anti-CD70 antibody with cytotoxic agent 37 
monomethyl auristatin F (NCT01015911), was also well-tolerated and elicited responses in renal 38 
cell carcinomas and lymphomas; however, development was discontinued in favour of a new 39 
antibody drug conjugate, SGNeCD70A, in which an anti-CD70 antibody is conjugated to 40 
pyrrolobenzodiazepine (NCT02216890).  41 
 42 

2.2.3. GITR 43 
Glucocorticoid-Induced TNF Receptor (GITR) is a type II transmembrane receptor, a member of 44 
the TNFR superfamily, constitutively expressed on regulatory T cells and induced on activated 45 
CD8+ and CD4+ T cells. GITR binding to GITR-L (expressed on antigen presenting cells) 46 
inhibits Treg activity [183,184] while stimulating effector T cells [185], making GITR activation 47 
an attractive strategy for cancer immunotherapy.  48 
 49 
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Many preclinical reports on GITR anti-tumor in vivo activity have used a murine GITR agonist 1 
IgG1 monoclonal antibody (DTA-1) in solid cancer mouse models [186–193]. GITR agonism, in 2 
addition to depleting and inhibiting Tregs (similar to CTLA-4 antagonists and OX40 agonists), 3 
suppresses myeloid derived suppressor cells and IL-10 production [191]. Combining of GITR 4 
agonists with other immune modulating agents leads to additive antitumor effects 5 
[187,188,192,193]. One of the most interesting finding from these studies is that GITR agonists 6 
suppress tumor growth and increase survival not only in immunogenic tumor models (colon, 7 
bladder, lung, melanoma) but also in poorly immunogenic tumors (breast, B16 melanoma mouse 8 
model, ovarian), putting GITR agonists in a unique position in comparison to other immune 9 
checkpoint inhibitors for which pre-existing immunity appears a prerequisite for the agents to 10 
work. By immunohistochemistry or flow cytometry, GITR expression has been reported in many 11 
human solid cancers [194–199]. In breast and endometrial cancer patients, GITR expression on 12 
Tregs is higher in TILs than in the peripheral blood [195,197]. The prognostic value of GITR+ 13 
TILs has yet to be investigated in detail. At least four GITR agonists are being investigated alone 14 
and in combinations with other checkpoint inhibitors in early phase clinical trials (Table 1).  15 
 16 
 17 
3. Innate Immunity 18 

3.1. Macrophage Checkpoints 19 

3.1.1. CD47 and SIRPα 20 
CD47, first identified as Integrin-Associated Protein (IAP)  21 
[200–203], is a cell-surface immunoglobulin that negatively regulates anti-tumor immunity 22 
through suppression of phagocytosis. Expressed ubiquitously in normal tissues [204], CD47 23 
functions in part to protect viable erythrocytes from phagocytosis [205–210]. Signalling occurs 24 
by interaction with its ligand SIRPα (signal-regulatory protein alpha), a cell-surface 25 
immunoglobulin mainly expressed by macrophages and dendritic cells [211]. Activation of 26 
SIRPα by CD47 suppresses phagocytosis by preventing myosin-II accumulation at the phagocytic 27 
synapse [212] and suppressing the respiratory burst [213]. T-cell activation is secondarily 28 
decreased as an indirect result of reduced tumor cell ingestion by antigen-presenting cells; [214] 29 
furthermore, activation of CD47 on naïve T-cells promotes the formation of Tregs [215,216] and 30 
inhibits formation of T helper 1 effector cells. [217]  31 
 32 
Overexpression of CD47 has been observed across most cancers [218–225], suggesting that 33 
malignant cells exploit the CD47/SIRPα “don’t eat me” signal to evade phagocytosis. In 34 
translational studies, high CD47 mRNA expression levels correlate with poor clinical outcomes. 35 
[223,225–233] In vitro, CD47/SIRPα blockade induces phagocytosis of cancer cells by human 36 
and mouse macrophages [221–223,225,226]. Anti-CD47 monoclonal antibodies have impressive 37 
activity in xenograft models [221–226,234,235], although because human CD47 binds 38 
exceptionally well to the SIRPα of the NOD-scid-IL2Rgammanull mice used [236,237], some 39 
studies may overestimate the degree of efficacy [238].  40 
 41 
Many early phase clinical trials are in progress targeting the CD47/ SIRPα axis (Table 1). 42 
Toxicity data has been presented for NCT02216409, a trial investigating anti-CD47 antibody 43 
Hu5F9-G4, [235] which was well-tolerated in 16 patients with advanced solid tumors.  44 

3.1.2. IDO 45 
Indoleamine-2,3-dioxygenase (IDO) is an intracellular enzyme, which − in the immune 46 
compartment − is found in macrophages and dendritic cells [239–242], where it catalyzes the 47 
first, rate-limiting step of tryptophan catabolism [243–245]. In converting tryptophan to 48 
kynurenine, IDO impacts immune surveillance in two ways: 1) depletion of tryptophan impairs T-49 
cell proliferation due to amino acid insufficiency [246–248], and 2) kynurenine induces apoptosis 50 



8 
 

of Th1 cells [249] and promotes differentiation of naïve T cells to regulatory T cells [250]. This 1 
generates an immune-privileged environment, as seen in the placenta, where IDO was first 2 
isolated [251]. 3 
 4 
Numerous cancer types have been shown to constitutively express IDO [239,252]. Transfecting 5 
cell lines with IDO prevents their rejection in tumor antigen-immunized mice [252], an effect 6 
reversible with IDO inhibitors. Pharmacological inhibition of IDO has been shown in numerous 7 
mouse tumor models to stimulate a robust T cell response and inhibit tumor progression 8 
[253,254]. The tumor suppressor BIN1, which controls expression of IDO, is deficient in 9 
numerous cancers [255–259]; BIN1 knockout induces higher levels of IFNγ-stimulated IDO 10 
expression and results in larger tumors in immunocompetent mouse models compared to controls 11 
[260]. 12 
 13 
There are presently four small molecule inhibitors of IDO under investigation in clinical trials. 14 
One of these, epacadostat, is registered to 20 clinical trials, including one phase 3 trial, and in 15 
patients with advanced malignancies, stable disease ≥16 weeks was observed in 7/52 patients (no 16 
objective response). [261] In combination with anti-PD-1 agent pembrolizumab, reductions in 17 
tumor burden were observed in 15/19 patients with advanced solid malignancies, including 2 18 
complete responses in melanoma patients [262]. 19 
 20 
3.2. Natural Killer Cell Checkpoints 21 

3.2.1. KIR family 22 
The Killer Immunoglobulin-like Receptor (KIR) family is composed of highly polymorphic 23 
genes expressed on the cellular membrane of most NK and some T cells. Some KIR family 24 
members (KIR2DL1-3, KIR3DL1) are associated with inhibitory functions, through binding to 25 
MHC molecules (HLA-C/HLA-B) [263]. KIR expression on NK cells represents one mechanism 26 
to educate NK cells against self-recognition [264,265]. Strong interactions between inhibitory 27 
KIR receptors and HLA ligands can overcome NK activation signals [266].  28 
 29 
Due to their highly polymorphic nature [267], various KIR genes and ligands influence disease 30 
risk, including autoimmunity and cancer [268–276]. Combinations of KIR genes and particular 31 
ligands have been associated with cancer risk [268,271–273,277]. Activating KIR genes 32 
(KIR2DS2, KIR2DS3, and KIR2DS4) are associated with improved survival in colorectal cancer 33 
and glioblastoma patients [274,276]. In mouse models, engineered chimeric antigen receptors 34 
expressing NK-activating KIR2DS2 show higher efficacy than conventional co-stimulatory 35 
molecules [278,279].  36 
 37 
Despite promising pre-clinical results, a phase 1/2 myeloma trial investigating single agent 38 
IPH2101, an antibody inhibitor of KIR2DL1, 2, and 3 (IPH2101), showed no disease responses 39 
[280]. A follow-up correlative study showed that patient peripheral blood mononuclear cells 40 
treated in vitro with IPH2101 led to KIR2DL1 removal on NK cells by trogocytosis from FcγRI-41 
expressing antigen presenting cells [281]. Accordingly, there was a decrease of NK cell cytotoxic 42 
activity that could explain the failure to activate NK cells in trial patients. Another KIR2DL1/2/3 43 
inhibitor (IPH2102, lirilumab) is currently in phase 1/2 clinical trials in advanced solid and 44 
hematologic malignancies, in combination with PD-1 or CTLA-4 blockade (Table 1). Preliminary 45 
results report an encouraging objective response rate of 24% in advanced head and neck cancer 46 
patients treated with lirilumab in combination with anti-PD1 (nivolumab) [282].  47 

3.2.2. CD94/NKG2A 48 
CD94 is an invariant chain receptor that, on NK cells, can form an inhibitory heterodimer with 49 
the C type lectin like family member NKG2A or an activating heterodimer with NKG2C or E 50 
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[283]. T cells can also express CD94/NKG2A receptor (albeit to a lesser degree compared to NK 1 
cells), where it functions as a predominant inhibitory checkpoint [284]. Binding to MHC class I 2 
(HLA-E) mediates the inhibitory function of CD94/NKG2A following TCR engagement [284]. 3 
The CD94/NKG2A-HLA-E interaction can be blocked by targeting ERAP-1, a protein required 4 
to provide functional ligands for CD94/ NKG2A on HLA-E molecules [285].  5 
NKG2A blockade can improve antibody-dependent cell cytotoxicity [286], and solid cancers that 6 
overexpress HLA-E are associated with poor prognosis [287–289], supporting CD94/NKG2A as 7 
an active target for cancer immunotherapy [290]. Indeed, multiple studies report the presence of 8 
CD94/NKG2A+ cells in cancer patients [287–289,291–297]. Blood samples from early-stage 9 
colorectal cancer patients show elevated frequency of NKG2A+ NK cells with lower cytotoxic 10 
activity compared to samples from healthy controls [297]. NKG2A expression on NK cells is 11 
higher in tumors versus from peripheral blood of lung and cervical cancer patients [293,295]. In a 12 
small cohort of oral cancer patients, a higher frequency of NKG2A+ NK infiltrating in the tumor 13 
region compared to normal mucosa was reported [291]. The highest expression of NKG2A+ NK 14 
cells was observed in nests of cancer with low CD8 + TILs that were negative for Ki67. In 15 
hepatocellular carcinoma, greater numbers of NKG2A+ NK cells are found in the intratumoral 16 
compared to peritumoral regions [289]. These findings support the relevance of NKG2A 17 
inhibitory mechanisms as an important immune evasion pathway in human tumors [291]. There 18 
are at least six phase 1/2 clinical trials investigating the IPH2201 antibody targeting NKG2A in 19 
various advanced stage cancer patients, some in combination with PD-L1 inhibitors (Table 1).  20 
 21 
4. Discussion 22 

The success of early immune checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1 has led to 23 
a surge in research and development of resources devoted to cancer immunotherapy. How these 24 
emerging targets and drugs will be incorporated into the clinical practice is one of the major 25 
focuses of clinical cancer research today. There is evidence for additive anti-tumor activity but 26 
also higher adverse effects of strategies combining CTLA-4 and PD-1 checkpoint inhibitors [1,2]. 27 
Many agents listed in this review are being evaluated in combination with PD-1 and/or CTLA-4 28 
inhibitors (Table 1), with unresolved issues including not only efficacy and toxicity, but also 29 
optimal sequential delivery in patients and identification of predictive biomarkers of response.  30 
 31 
At present, few predictive biomarkers of response to immune checkpoint inhibitors are in use. 32 
The best tests to support PD-1/PD-L1 agents are a subject of great controversy, and most new 33 
agents do not have validated companion biomarkers. However, inflamed tumors are associated 34 
with an elevated response to immune checkpoint inhibitors, and frequently comprise tumors with 35 
a high mutational load or with microsatellite instability[13,298], the latter now considered an 36 
FDA-approved biomarker for pembrolizumab independent of tumor site or histology. Immune 37 
response profiling by next generation panel sequencing or technologies such as NanoString may 38 
also prove useful in this regard and are a subject of active research in clinical trial correlative 39 
science studies. In contrast, immune-desert (so-called “cold”) tumors have only modest responses 40 
to immune checkpoint inhibitors and may need to be treated using immunostimulatory 41 
approaches [299]. Clinical trial designs that include assessment of immune biomarkers (e.g., T 42 
cell receptor sequencing), access to early on-treatment biopsies for immune monitoring, and 43 
identification of peripheral blood biomarkers that correlate with the tumor immune 44 
microenvironment may help to address these issues.   45 
 46 
5. Conclusions 47 

This field is rapidly advancing and extremely active for drug development and clinical trials. 48 
Toxicities still need to be determined, particularly of combination strategies, which risk enhanced 49 
autoimmune side effects. Given limited resources and patients available for clinical trials, 50 
emerging agents with acceptable toxicity will need to be prioritized based on factors including not 51 
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only the strength of evidence implicating their role in cancer immuno-oncology, but also their 1 
frequency of expression in areas of clinical need not well-served by existing agents. While many 2 
of these agents may not ultimately find a place in the growing armamentarium of anticancer 3 
immuno-oncology drugs, the pathways under investigation are so many, and the early data so 4 
promising, that it is likely that several truly effective new treatment strategies will emerge.  5 
 6 
 7 
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Figure legend 1 

FIGURE 1. Overview of emerging targets for cancer immunotherapy. Immune inhibitory 2 
interactions are marked in red, and immune co-stimulatory interactions are marked in 3 
green. 4 

 5 

 6 

 7 

 8 
 9 
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Table 1. A summary of past and current clinical trials in cancer for immune checkpoint agents 1 

Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

LAG3 
 

IMP321 Monoclonal 
soluble LAG-3 
agonist antibody 

Paclitaxel NCT00349934 1 Metastatic breast cancer Immuntep S.A; Umanis 

Paclitaxel NCT02614833 2 Metastatic breast cancer Immuntep S.A; 
Prima BioMed Ltd 

- NCT00351949 1 Metastatic 
Renal Cell Carcinoma 

Immuntep S.A; Umanis 

Anti-PD-1 NCT02676869 1 Advanced melanoma Prima BioMed Ltd 

LAG525 Monoclonal anti-
LAG-3 antibody 

Anti-PD-1 NCT02460224 1/2 Advanced solid 
malignancies 

Novartis  
Pharmaceuticals 

BMS986016  Monoclonal anti-
LAG-3 antibody 

 Anti-PD-1 NCT01968109  1/2  Advanced solid and 
hematologic malignancies  

Bristol-Myers Squibb 

Anti-PD-1 NCT02061761 1/2 hematologic malignancies   

Anti PD-1 NCT02060188 2 Colorectal cancer  

Anti-PD-1 NCT02488759 1/2 Virus-associated tumors  

Anti-PD-1 NCT02935634 2 Advanced gastric cancer  

Anti-PD-1 NCT02750514 2 Advanced NSCLC  

Anti-PD-1 NCT02996110 2 Advanced RCC  

Anti-PD-1 NCT02658981 1 Recurrent brain 
neoplasms 

Bristol-Myers Squibb 

Anti-PD-1 NCT02966548  1 Advanced solid 
malignancies 

Bristol-Myers Squibb; 
Ono Pharmaceutical Co. Ltd 

REGN3767 Monoclonal anti-
LAG-3 antibody 

Anti-PD-1 NCT03005782 1 Malignancies (progressed 
without any available 
therapy and are immune 
checkpoint naive) 

Regeneron  
Pharmaceuticals; Sanofi 

TIM-3 TSR-022  Monoclonal anti- 
TIM-3 antibody 

Anti-PD-1 NCT02817633   1 Advanced solid 
malignancies 

Tesaro, Inc. 

LY3321367  Monoclonal anti- 
TIM-3 antibody 

Anti-PD-L1 NCT03099109 1 Advanced 
relapsed/refractory solid 
malignancies 

Eli Lilly and Company 

MBG453  Monoclonal anti- 
TIM-3 antibody 

Anti-PD-1 NCT02608268 1-1b/ 2 Advanced/metastatic solid 
malignancies 

Novartis Pharmaceuticals 

Anti-PD-1 NCT03066648 1 Acute myeloid leukemia 
or high-risk 
myelodysplastic syndrome 

 

TIGIT OMP-313M32 Monoclonal anti- 
TIGIT antibody 

 - NCT03119428 1 Advanced and metastatic 
solid tumors 

OncoMed  
Pharmaceuticals, Inc 

MTIG7192A/R
G6058 

Monoclonal anti- 
TIGIT antibody 

Anti-PD-L1 NCT02794571 1 Advanced and metastatic 
solid tumors 

Genentech 

VISTA JNJ-510588 Monoclonal anti- 
VISTA antibody 

 - NCT02671955 1 Advanced and metastatic 
solid tumors 

Janssen Research & 
Development 

CA-170 Small molecule 
targeting PD-L1, 

- NCT02812875 1 Advanced solid and 
hematologic malignancies 

Curis, Inc. 
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Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

PD-L2, and VISTA 

B7-H3 Enoblituzuma
b (MGA271) 

Monoclonal anti-
B7-H3 antibody 

- NCT02982941 1 B7-H3-expressing relapsed 
or refractory solid 
malignancies 

MacroGenics 

Anti-PD-1 NCT02475213 1 B7-H3-expressing 
melanoma, squamous cell 
cancer of the head and 
neck, non-small cell lung 
cancer and other B7-H3-
expressing cancers 

 

Anti-CTLA-4 NCT02381314 1 B7-H3-expressing 
melanoma, squamous cell 
cancer of the head and 
neck, non-small cell lung 
cancer and other B7-H3-
expressing cancers 

 

- NCT01391143 1 Refractory Cancer  
131I-8H9 Monoclonal anti-

B7-H3 antibody 
radiolabeled with 
iodine-131 

- NCT01099644 1 Desmoplastic small round 
cell tumors and other 
solid tumors involving the 
peritoneum 

Memorial Sloan Kettering 
Cancer Centre 

- NCT01502917 1 Non-progressive diffuse 
pontine gliomas 

 

- NCT00089245 1 Refractory/recurrent/adva
nced CNS or 
leptomeningeal cancer 

 

MGD009 B7-H3 x CD3 
Dual-Affinity Re-
Targeting (DART) 
Protein 

- NCT02628535 1 Unresectable or 
metastatic B7-H3-
expressing neoplasms 

MacroGenics 

ICOS JTX-2011  Monoclonal anti-
ICOS agonist 
antibody 

Anti-PD-1 NCT02904226 1/2 Advanced solid 
malignancies 

Jounce Therapeutics, Inc. 

GSK3359609  Monoclonal anti-
ICOS agonist 
antibody 

Anti-PD-1 NCT02723955 1 Advanced solid 
malignancies 

GlaxoSmithKline 

GITR  TRX518  Monoclonal anti- 
GITR antibody 

 - NCT01239134  1  Unresectable and 
metastatic solid 
malignancies 

Leap Therapeutics,  
Inc.;   Cancer  
Research Institute 

MEDI1873 Monoclonal anti- 
GITR antibody 

- NCT02583165 1 Advanced solid 
malignancies 

MedImmune LLC 

GWN323 Monoclonal anti- 
GITR antibody 

Anti-PD-1 NCT02740270 1 Advanced solid and 
hematologic 
malignancies 

Novartis Pharmaceuticals 

INCAGN01876 Monoclonal anti- 
GITR antibody 

- NCT02697591 1/2 Advanced and metastatic 
solid tumors 

Incyte Corporation 

 Anti-PD-1 
and/or anti-
CTLA-4 

NCT03126110 1/2 Advanced and metastatic 
solid tumors  
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Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

CD27/ 
CD70 

Varlilumab 
(CDX-1127) 

Monoclonal anti- 
CD27 agonist 
antibody 

Anti-PD-1 NCT02335918 1/2 Advanced refractory solid 
malignancies 

Celldex Therapeutics 

- NCT01460134 1 Selected refractory or 
relapsed hematologic or 
solid malignancies 

 

ONT-10 
(Cascadian 
Therapeutics, 
Inc.) 

NCT02270372 1 Advanced ovarian or 
breast cancer 

 

IMA950 
vaccine, poly-
ICLC 

NCT02924038 1 WHO grade II low-grade 
glioma 

University of California 

Anti-PD1 NCT03038672 2 Relapsed or refractory 
aggressive B-cell 
lymphomas 

National Cancer Institute (US) 

SGN-CD70A Anti-CD70 
monoclonal 
antibody 
conjugated to 
pyrrolobenzodiaz
epine (cytotoxic 
DNA minor-
groove 
crosslinking 
agent) 

- NCT02216890 1 CD70-Positive 
Malignancies 
 

Seattle Genetics, Inc. 

Vorsetuzumab 
mafodotin 
(SGN-75) 

Anti-CD70 
monoclonal 
antibody 
conjugated to 
monomethyl 
auristatin F 
(cytotoxic agent) 

- NCT01015911 1 CD70-positive relapsed or 
refractory non-Hodgkin 
lymphoma or metastatic 
renal cell carcinoma 

Seattle Genetics, Inc. 

ARGX-110 Monoclonal anti-
CD70 antibody 

- NCT01813539 1 Advanced malignancies 
expressing CD70 

arGEN-X BVBA 

- NCT02759250 1 Nasopharyngeal 
carcinoma 

 

BMS-936561 
(MDX-1203) 

Anti-CD70 
monoclonal 
antibody 
conjugated to a 
rachelmycin 
prodrug  

- NCT00944905 1 Renal cell carcinoma or 
non-hodgkin's lymphoma 

Bristol-Myers Squibb 

CD47/ 
SIRPα 

Hu5F9-G4  Monoclonal anti-
CD47 antibody 

- NCT02216409 1 Advanced solid 
malignancies 

Forty Seven, Inc. 

- NCT02678338 1 Relapsed/refractory acute 
myeloid leukemia 

 

Cetuximab  
(EGFR inhibitor) 

NCT02953782 
 

1b/2 Solid malignancies and 
advanced colorectal 
cancer 
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Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

Rituximab  
(CD20 
inhibitor) 

NCT02953509 1b/2 Relapsed/refractory B-cell 
non-Hodgkin’s lymphoma 

 

TTI-621 Recombinant 
SIRPα-Fc fusion 
protein (wild-
type CD47-
binding domain 
of SIRPα fused to 
Fc domain of 
IgG1) 

- NCT02890368  1 Relapsed/refractory solid 
malignancies and mycosis 
fungoides 

Trillium Therapeutics, Inc. 

Anti-PD-1, 
Rituximab  
(CD20 
inhibitor) 

NCT02663518 1a/1b Hematologic malignancies  

CC-90002  Monoclonal anti- 
CD47 antibody 

Rituximab  
(CD20 
inhibitor) 

NCT02367196  1 Advanced solid and 
hematologic malignancies 

Celgene 

- NCT02641002 1 Acute myeloid leukemia 
and high-risk 
myelodysplastic syndrome 

 

ALX148  Recombinant 
SIRPα-Fc fusion 
protein 
(engineered high-
affinity CD47-
binding domains 
of SIRPα, fused to 
Fc domain of 
IgG4) 

Anti-PD-L1, 
Trastuzumab 
(HER2 
inhibitor) 
 

NCT03013218 1 Advanced solid 
malignancies and 
lymphoma 

Alexo Therapeutics, Inc 

IDO Epacadostat 
(INCB024360) 

Small-molecule 
inhibitor of IDO-1 

- NCT01195311 1 Advanced malignancies InCyte CorporationInCyte 
Corporation 

Anti-PD-1 NCT02178722 1/2 Selected cancers  

Anti-PD-1 NCT02327078 1/2 Select advanced cancers  

Anti-PD-L1 NCT02298153 1 Non-Small cell lung 
cancer, previously treated 
stage IV urothelial 
carcinoma 

 

Azacitidine, 
Anti-PD-1 

NCT02959437 1/2 Advanced solid tumors, 
and previously treated 
stage IIIB/IV non-small cell 
lung cancer and stage IV 
colorectal cancer 

 

Anti-PD-L1 NCT02318277 1/2 Selected advanced solid 
tumors 

 

Anti-PD-1 
Oxaliplatin 
Leucovorin 
5-Fluorouracil 
Gemcitabine 
nab-Paclitaxel 
Carboplatin 
Paclitaxel 
Pemetrexed 
Cyclophospha

NCT03085914 1/2 Advanced or Metastatic 
Solid Tumors 
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Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

mide 

Anti-PD-1 NCT02752074 3 Unresectable or 
metastatic melanoma 

 

Anti-PD-1 NCT02862457 1 Advanced solid tumors Merck Sharp & Dohme Corp. 

INCB039110  
(JAK-1 
inhibitor), 
INCB050465 
(PI3K-delta 
inhibitor) 

NCT02559492 1 Advanced or metastatic 
solid tumors 

H. Lee Moffitt Cancer Center 
and Research Institut 

- NCT01822691 2 Myelodysplastic syndrome  

Multipeptide 
Melanoma 
Vaccine 
(MELITAC 12.1) 

NCT01961115 2 Advanced melanoma Fred Hutchinson Cancer 
Research Center 

- NCT02042430 pilot Newly diagnosed stage III-
IV epithelial ovarian, 
fallopian tube, or primary 
peritoneal cancer 

National Cancer Institute (US) 

Survivin 
vaccine DPX-
Survivac, 
Cyclophospha
mide 

NCT02785250 1b Recurrent ovarian, 
fallopian tube, or 
peritoneal cancer 

ImmunoVaccine Technologies, 
Inc. 

CDX-1401 
vaccine (DEC-
205/NY-ESO-1 
fusion protein), 
Poly-ICLC 

NCT02166905 1/2b NY-ESO-1 or LAGE-1 
expressing epithelial 
ovarian, fallopian tube, or 
primary peritoneal 
carcinoma in remission 

Roswell Park Cancer Institute 

Anti-PD-1 
CRS-207 
(listeria-based 
vaccine) 
GVAX 
(pancreas 
vaccine) 
Cyclophospha
mide 

NCT03006302 2 Metastatic pancreatic 
cancer 

Sidney Kimmel 
Comprehensive Cancer Center 

Anti-PD-1 
CRS-207 
(listeria-based 
vaccine)  

NCT02575807 1/2 Platinum-resistant 
ovarian, fallopian, or 
peritoneal cancer 

Aduro Biotech, Inc. 

Anti-PD-1 
Azacitidine 

NCT03182894 1/2 Chemo-refractory 
metastatic colorectal 
cancer 

James J Lee 

Anti-PD-1 NCT03196232 2 Metastatic or 
unresectable 
gastroesophageal junction 
and gastric 
adenocarcinoma  

Pamela L Kunz 
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  1 

Target Agent(s) Mechanism of 
Action 

Other agents Identifier Phase Disease(s) Sponsor 

- NCT02764151 1 Malignant gliomas Pfizer 

Pf-06840003 Small-molecule 
inhibitor of IDO-1 

- NCT02048709 1 Recurrent advanced solid 
tumors 

Genentech, Inc. 

GDC-0919 Small-molecule 
inhibitor of IDO-1 

- NCT03164603 1 Recurrent advanced solid 
tumors 

NewLink Genetics Corporation 

NLG802 Small-molecule 
inhibitor of IDO-1 

- NCT01222286 2 Multiple Myeloma Innate Pharma, 
National Institute of Health 

KIR 
family 

IPH2101 Monoclonal anti- 
KIR2D antibody 

lenalidomide NCT01217203 1 Multiple Myeloma Innate Pharma, 
National Institute of Health 
National Institute of Health 

- NCT01248455 2 Multiple Myeloma  

Anti-CTLA-4 NCT01750580, 1 Advanced solid tumors Bristol-Myers Squibb 

Lirilumab Monoclonal anti- 
KIR2DL1,2,3 
antibody 

Anti-PD-1 alone 
or with Anti-
CTLA-4 

NCT01714739 1/2 Advanced solid tumors Bristol-Myers Squibb 
Innate Pharma 

Anti-CD20 NCT02481297 2 Hematologic malignancies  

Anti-SLAMF7 NCT02252263 1 Multiple myeloma  

Chemotherapy: 
5-azacytidine  

NCT02399917 2 Acute Myeloid Leukemia  

Anti-PD-1 NCT01592370 1 Hematologic Malignancies  

Chemotherapy: 
5-azacytidine  

NCT02599649 2 Hematologic malignancies  

- NCT01687387 2 Acute Myeloid Leukemia  

- NCT02593045 1 Hematologic malignancies  

IPH4102 Monoclonal anti- 
KIR3DL2 antibody 

- NCT02921685 1/2 Hematologic Malignancies Institut Paoli-Calmettes; 
Innate Pharma 

CD94/ 
NKG2A 

IPH2201 Monoclonal anti-
NKG2A antibody 

- NCT02557516 1/2 Chronic Lymphocytic 
Leukemia 

Institut Paoli-Calmettes; 
Innate Pharma 
Innate pharma 

Anti-EGFR NCT02643550 1 Advanced Head and Neck 
malignancies 

 

- NCT02459301 1 Advanced Gynecologic 
malignancies 

Canadian Cancer Trials Group; 
Innate Pharma 

Anti-PD-L1 NCT02671435 1 Advanced solid 
malignancies 

MedImmune 

- NCT03088059 2 Advanced Head and Neck 
malignancies with PD-L1 
therapy naïve or PD-L1 
resistant 

European Organisation for 
Research and Treatment of 
Cancer  
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