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Abstract

Background: The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial
for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI)
disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies
in rodent models have shown that SCl-induced bacterial imbalances in the gut can exacerbate the spinal cord
damage and impair recovery. In this study we, for the first time, characterized the composition of the gut
microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial
phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd
or 10th Thoracic level.

Results: We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in
uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific
time-frame, “SCl-acute stage”, during which many of these bacterial fluctuations occur before returning to “baseline”
levels.

Conclusion: This work presents a dynamic view of the microbiome changes that accompany SCl, establishes a
resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and
may point to a potential therapeutic target for future treatment.
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Background

The gut microbiome is a diverse network of bacteria
which inhabit our digestive tract. This collection of
microbes consists of beneficial (probionts) and patho-
genic (pathobionts) bacteria, whose concentrations
must be carefully maintained to function symbiotically
within the host. Today, we recognize that gut micro-
biota are critical for a number of key physiological
processes such as the development and maintenance
of cellular metabolism, nutrient absorption, and
immune system development [1-3]. Further, there is
increasing interest in the inter-dependent communica-
tion pathway which exists between the gut micro-
biome, the immune system, and the central nervous
system (CNS), referred to commonly as the “gut-brain
axis” or “gut-CNS axis”. The CNS can influence the
composition of the gut microbiome via the autonomic
nervous system by modulating gut motility, intestinal
transit times, gut permeability and through the
luminal secretion of various hormones [4]. Con-
versely, bacteria residing in the intestinal tract can
“communicate” with the CNS directly via immune
cells or nerve fibers as well as indirectly by secreting
neuroactive metabolites (such as short chain fatty
acids [SCFAs] and choline) produced by the fermen-
tation of microbiome-accessible carbohydrates [5, 6].
These neuroactive metabolites can then cross the in-
testinal barrier, enter systemic circulation and poten-
tially cross the blood-brain barrier to influence neural
activity and inflammation [7-9].

Spinal cord injury (SCI) is a life-altering occurrence
affecting approximately 250,000 people in the United
States alone, with between 11,000 and 17,000 new inci-
dents occurring each year [10]. In addition to causing
obvious impairments in motor and sensory function,
SCI disrupts autonomic function below the level of in-
jury. For example, it has become increasingly recog-
nized that amongst the myriad of effects of SCI, it can
cause significant perturbations in the gut microbiome.
Today, we are beginning to understand the role of the
gut microbiome as a disease-modifying factor following
traumatic SCI due to the impaired immune-response
seen in SCI animals [11]. For instance, Kigerl et al.
showed that SCI-induced gut dysbiosis is associated
with a change in the proportion of immune cells found
in mesenteric lymph nodes and that this imbalance can
significantly affect recovery after injury [12]. To better
understand how SCI induces cellular and molecular
changes to lymphoid tissue and other immune re-
sponses in the gut after injury, we must first
characterize how gut bacteria are affected by SCI.

Given the complications in establishing a suitably
translatable SCI-gut microbiome model system, we
sought to determine the effect of SCI on gut microbiota
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using an established porcine model of SCI. Swine has
been deemed an excellent translational model in refer-
ence to digestive physiology, nutrition and dietary be-
havior due to stark similarities in terms of mesenteric
vasculature, functional structural colon segments and
relative length, dietary requirements, enzyme activity
profiles as well as GI transit times of pharmaceuticals
[13, 14]. Pigs are also omnivores and in our animal care
facility, consume their food in meals at scheduled times
as opposed to consuming small amounts all day, which
makes this an ideal model for examining the effect of
dietary manipulation on gut microbes. Acknowledging
the translational potential of porcine species, miniature
swine has emerged as an attractive model to assess the
microbiome as their weight to digestive length is more
equivalent to an average human, while maintaining the
same digestive physiology and microbial composition
[15, 16]. For instance, Ossabaw and Géttingen minipigs
are now considered excellent models to assess the link
between diet and various pathological outcomes includ-
ing obesity, diabetes and metabolic syndrome [17, 18].

Here we used a porcine model (Yucatan) to investigate
the effect of contusive/compressive SCI on the compos-
ition of the gut microbiome before and up to 7 weeks
after injury. To the best of our knowledge, the gut
microbiota of Yucatan minipigs has not been character-
ized previously. Our goal was therefore to determine a
baseline composition of the gut microbiome in our
established Yucatan pig model of SCI [19, 20] and exam-
ine the effects of severe thoracic SCI longitudinally. Fur-
ther, we sought to characterize the disruption that may
be induced by our standard “post-surgical diet” or anti-
biotic treatment on non-SCI animals in an attempt to
isolate the effect of SCI from other factors known to in-
duce gut bacterial dysbiosis.

Results

In this longitudinal study, microbiome composition de-
termined pre-SCI was compared to microbiome com-
position up to 7-8weeks thereafter. Twenty-three
Yucatan pigs were divided into four groups: Control
(n =9), Diet (n = 3), Antibiotic (nz = 3), and SCI (n = 8).
gDNA samples (n =192) were extracted from a total of
262 porcine fecal samples and the bacterial microbiome
composition was determined with 16S rRNA sequen-
cing. Samples from two SCI pigs >49 days after injury
were omitted because a second, non-SCI surgery was
performed 52 days after the initial spinal insult. A single
sample from one of the animals at 8 days post-SCI was
omitted as an outlier due to a stark compositional dis-
similarity (confirmed by Q test) between samples col-
lected from this animal at 7- and 9-days post-SCIL. This
left 93 samples in the control setting, 45 samples in the
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Table 1 Comparing the relative frequency of the most abundant phyla in the porcine gut microbiome between treatment groups
using centered log-ratio transformed data. Global group comparisons for each phylum were first assessed using a one-way ANOVA.
Group comparisons were then assessed relative to the control group using an independent student t-test (two-tailed). Shades
represent a significantly difference result relative to control group. Red = decrease, Green = increase

ANOVA Control (n=93) Antibiotics (n=45) Diet (n=45) SCl-Acute (n=58) SCI-Subacute (n=20)
Phylum F p-value % % p % p % ‘ p % | p

Firmicutes 11.49 <0.0001 11.18 11.43 0.167 11.05 0.392 12.10 0.000 11.04 0.442
Bacteroidetes 4.592 0.0013 10.93 10.54 0.036 10.74 0.169 11.25 0.044 10.91 0.864
Spirochaetes 37.01 <0.0001 7.32 5.17 0.000 7.18 0.395 9.39 0.000 8.26 0.001
Proteobacteria 7.278 <0.0001 6.51 6.56 0.885 7.40 0.0004 5.95 0.033 5.77 0.009
Tenericutes 6.877 <0.0001 4.87 4.05 0.005 3.96 0.000 3.46 0.000 4.69 0.536
Patescibacteria 2.058 0.0868 3.63 4.12 0.241 3.56 0.868 3.56 0.883 1.97 0.068
Actinobacteria 0.983 0.4173 3.36 3.70 0.523 2.93 0.477 4.03 0.174 3.66 0.626
Epsilonbacteraeota 10.31 <0.0001 2.87 1.42 0.003 4.01 0.001 0.86 0.001 1.73 0.169
Cyanobacteria 40.59 <0.0001 2.35 3.22 0.067 3.07 0.079 -1.89 0.000 -1.67 0.000
Fibrobacteres 2.413 0.0495 0.96 0.26 0.289 1.48 0.429 -0.07 0.143 2.56 0.093

diet and antibiotic groups, and
from SCI animals (see Fig. 1).

78 samples collected

Composition, stability and diversity of intestinal
microbiome of uninjured Yucatan Minipigs

Phylum level taxonomy of the most dominant bacterial pop-
ulations in the control setting are presented in Fig. 2. In
Yucatan minipigs, we found that approximately 98% of the
total bacterial abundance was classified into 6 phyla. We
found the majority of bacterial species belong to the Firmi-
cutes and Bacteroidetes phyla, comprising approximately
90% of all bacteria in porcine feces. A smaller fraction of bac-
teria belongs to the Spirochaetes (4.24%), Proteobacteria

(2.23%), Tenericutes (1.01%) and Actinobacteria (0.47%)
phyla.

For each phylum, we established a “baseline range” by
assembling the centered log-ratio (CLR) transformed
values of all fecal samples collected from the Control
group as well as those collected before treatment from the
four groups and plotted them longitudinally. This range
represents the expected microbial composition of Yucatan
pigs at the phylum level which can serve as a reference
dataset for future microbial analyses as well as the ex-
pected stability of this phylum in untreated pigs. Herein,
we utilize a baseline range to compare our expected CLR
values to those obtained after treatment to infer whether
the alterations can be considered significantly different.
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Fig. 1 Longitudinal characterization of bacterial abundance at the phylum level in SCl animals (n=8). The individual median CLR values are
plotted along with the associated loess curves (Local Polynomial Regression Fitting) with confidence intervals in gray. Blue values represent
control samples, Red values represent SCI samples. Black dotted line indicates SCI surgery date
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Fig. 2 Longitudinal characterization of bacterial abundance at the phylum level in antibiotic-treated animals (n=3); The individual median CLR values
are plotted along with the associated loess curves (Local Polynomial Regression Fitting) with confidence intervals in gray. Blue values represent control
samples, Purple values represent samples collected from antibiotic-treated animals. Black dotted line indicates start of treatment
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Fig. 3 Longitudinal characterization of bacterial abundance at the phylum level in animals who underwent post-surgical diet regiment (n=3); The
individual median CLR values are plotted along with the associated loess curves (Local Polynomial Regression Fitting) with confidence intervals in
gray. Blue values represent control samples, Green values represent samples collected from animals fed the standard post-surgical diet. Black
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Spinal cord injury induces time-dependent fluctuations in
the gut microbiome of Yucatan Minipigs

Due to considerable temporal differences in CLR values
of the most dominant bacterial phyla noted following
SCI, particularly within the first 2 weeks after injury, we
decided to divide the SCI samples into two phases, acute
(0-14 days post-SCI) and subacute (> 14 days post-SCI)
and analyze them as separate treatment groups.

When comparing all of the treatment groups, we
noted a statistically significant group effect in 8 of
the 10 most abundant phyla as assessed using a one-
factor ANOVA (Table 1; P <0.05). CLR transformed
longitudinal depictions of the six bacterial phyla ana-
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diet cohorts can be found in Figs. 3, 4 and 5, respect-
ively. While there were distinct trends among the
phyla across time, some changes persisted through
the subacute phase after injury. In the acute phase (<
14d post-SCI), the Proteobacteria, Tenericutes, Epsi-
lonbacteraeota and Cyanobacteria phyla decreased in
abundance compared to controls while Bacteroidetes,
Firmicutes and Spirochaetes species increased (2-tailed
Student t-test; P <0.05). In the sub-acute phase, Spi-
rochaetes, Cyanobacteria and Proteobacteria remained
statistically significantly different relative to controls
and only Proteobacteria had a greater degree of dis-
similarity at the sub-acute stage compared to acute
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timepoints was not statistically significant (P =0.576).
When comparing the SCI-acute and SCI-subacute
groups there was a significant difference noted in 4 of
the 10 phyla, which included Firmicutes, Spirochaetes,
Tenericutes and Fibrobacteres. In only the Spiro-
chaetes phylum was there a significant difference be-
tween acute and sub-acute timepoints while both
remaining statistically greater than control specimens.

We then aimed to assess how the administration of
Enrofloxacin (antibiotic group) or our post-surgical diet
(diet group) compared to the bacterial fluctuations ob-
served after SCI. We found there to be a number of bac-
terial phyla in the antibiotic-treated group which
demonstrated similar patterns of fluctuation to SCI ani-
mals in the acute stage. For instance, relative to controls,

the abundance of Epsilonbacteraeota and Tenericute
bacteria decreased in both the antibiotic (2.87 vs 1.42,
P =0.003; 4.87 vs 4.05, P =0.005, respectively) and SCI-
acute (0.86, P =0.001; 3.46, P =0.0003, respectively)
groups. In addition, Tenericute bacteria decreased in the
diet (4.87 vs 3.96, P =62x10"°) group relative to
controls.

Interestingly, we found several phyla including Bacteroi-
detes, Spirochaetes, Proteobacteria, and Epsilonbacter-
aeota exhibited different kinetic patterns in the antibiotic
and diet cohorts compared to SCI animals. First, the
abundance of Bacteroidete bacteria decreased to a level
just below statistical significance in the antibiotic group
(10.93 vs 10.54, P =0.036) and increased in SCI acute
samples (11.25, P =0.044). A similar trend was observed
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in Spriochaetes (7.32 vs 5.17, P =0.0002; 9.39, P =5.2 x
107 '3). Inversely, in the post-surgical dietary cohort, we
found Proteobacteria and Epsilonbacteraeota bacteria in-
creased in abundance (6.51 vs 7.40, P =0.0004; 2.87 vs
4.01, P = 0.001, respectively) whereas these phyla were sig-
nificantly lower in SCI acute animals (5.95, P = 0.033; 0.86,
P =0.001, respectively) compared to controls.

These results suggest first that there are unique differ-
ences in the microbial composition of animals exposed
to traumatic SCI that were not replicated in uninjured
animals exposed to the same diet or antibiotic interven-
tion. Second, we observed that SCI induces a time-
dependent effect on intestinal microbiota, largely con-
fined to the first 2 weeks post-SCI. It should be noted
that two of the observed fluctuations in the SCI cohort
may be partially explained by the administration of
Enrofloxacin or the post-surgical diet (i.e. a consequence
of the experimental procedure), while others may be ex-
clusive to the SCI itself.

To further understand how the abundance of various gut
microbes can affect the host from a functional perspective,
we performed a functional inference analysis using
PICRUSt2 (Fig. 6). First, the PICRUSt2 tool generated func-
tional classifications of 362 different pathways and parame-
ters. Differential abundance of microbes was calculated
(ALDEx2) and Wilcoxon Rank Sum test statistics were com-
puted using SCI and Control as groups of interest. We found
a statistically significant difference (P <0.05) in 133 of 362
parameters examined. In Fig. 6A, a principal component
analysis (PCA) was performed to determine which character-
istics influence the principal component and a biplot was
used to add a loadings plot to examine how strongly those
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characteristic influence the principal component. Using this,
along with the effect size estimation with PICRUSt we
isolated the parameters and pathway which best explained
the variance between gut microbes in control and SCI pigs.
We found that the greatest negative effect was seen in bac-
teria involved in the methylaspartate cycle (P =5.9 x 10™'?),
fatty acid salvaging (Fig. 6B. P = 5.4 x 10~ '?) and peptidogly-
can biosynthesis (Fig. 6C. P = 8.5 x 10™ '°) whereas the great-
est positive effect was seen in bacteria responsible for
methlyphosphonante degradation (Fig. 6D. P =1.7 x 10”%),
the urea cycle (Fig. 6E. P = 1.1 x 10"7) and NAD salvaging
(P=13x10"°).

Another parameter used to describe the bacteria
present in the microbiome and their relative differences
between treatment groups are alpha diversity metrics.
Alpha diversity is a local measure that refers to the aver-
age species diversity in an ecosystem or specific area
such as the gut. We analyzed both the abundance of spe-
cies (richness) and the distribution of these bacteria
(evenness) in each of our samples. As bacteria are identi-
fied using amplicon sequence variants (ASVs), an in-
crease in ASVs reflects an increase in the richness of
bacteria within an ecosystem whereas evenness refers to
how equally abundant species are in the environment.
Globally, increases in bacterial species richness and
evenness are markers of a healthy gut microbiome [21],
although this is still contested today [22]. Comparing the
richness of each sample across our different treatment
groups (Fig. 7) revealed that, relative to control samples,
there was a significant decrease in species richness in
the antibiotic control group (P < 0.05) as well as the SCI
acute group (P <0.001). In contrast, we did not observe
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a significant decrease in species richness comparing our
dietary group or SCI subacute group to control samples.

We also analyzed species evenness and quantified how
equal the community is in different sample groups
(Fig. 8). By way of example, if an ecosystem contains 40
foxes and 1000 dogs, the community is considered not
‘even’. We found a significant decrease in species even-
ness in the antibiotic (P <0.001), diet (P <0.001) and
SCl-acute (P <0.001) groups. No statistically significant
difference was noted in the SCI subacute group relative
to control values.

As we collected samples weekly, we were able to assess
the stability of the microbiome over time both within and
between subjects. Using volatility control charts in QIIM
E2, we plotted the stability of the microbiome longitudin-
ally in our various treatment groups (Fig. 9). The temporal
stability or volatility of a metric between individual sub-
jects or groups of subjects can be an important measure-
ment, indicating periods of disruption, disease, or
abnormal events. Microbial volatility, the variance in mi-
crobial abundance, diversity, or other metrics over time,
can be a marker of ecosystem disturbance, disease or ab-
normal events [23-25] and provides another important
metric for comparison between experimental groups.
Using the Shannon diversity index [26], a higher degree of
variability or “volatility” between samples would result in a
lower value on the index, whereas more stability between
and within samples would result in a higher Shannon
score. In the control group, we noted the greatest degree
of volatility when the animals initially arrived at the treat-
ment facility (Fig. 9). Over time, we found the microbiome
became more stable in our control animals. When

assessing the stability (or volatility) of the microbiome be-
fore and after SCI, we noted the gut ecosystem to be most
volatile (least stable) within the first ~ 10 days after injury
(Fig. 9) and to rebound to baseline levels shortly there-
after. This trend is similar to the observations noted in the
relative abundance of the dominant bacterial phyla and
was also noted in non-SCI animals receiving Enrofloxacin
treatment. No significant change in volatility was found in
the dietary cohort.

Discussion

This study presents a longitudinal characterization of the
Yucatan pig gut microflora before and after traumatic SCI.
There were three main aims of this study. First, we sought to
describe the intestinal microbiome of Yucatan pigs and de-
termine its composition as well as its stability over time at
the phylum level. Second, we examined how SCI changed
this baseline microbiome composition in a time-dependent
manner, from 1 day to 7 weeks post-injury. Third, we sought
to distinguish which changes in microbiome composition
could be attributable to the antibiotics or dietary alterations
that are associated with the experimental SCI. To address
these research objectives, we used our established porcine
model of thoracic contusive SCI [19, 20] and examined the
alterations to the bacterial ecosystem over time.

In summary, we determined that the microbiome con-
sists largely of bacteria belonging to the Bacteroidetes
and Firmicutes phyla (~90%), with a smaller fraction
comprising Spirochaetes (~5%) and Proteobacteria (~
4%). We found that the most significant alterations to
the gut microbiome occur within the first 14 days post-
SCI, which we have described as a “SCI-acute” window.
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Fig. 8 Schematic of experimental design and sampling overview. I) Non-SCI control group (n=9); these animals received no intervention over the
course of 3-7weeks; Il) Antibiotic group (n=3); these animals received oral Enrofloxacin treatment orally at 10mg/kg per day for 5 days; Ill) Diet
group ((n=3); these animals consumed the standard post-surgical diet for 5 days which consisted of 150g Mazuri youth pellets and 250g of
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compression SCI surgery along with IV Enrofloxacin (5mg/kg) and the standard postsurgical diet. Each point refers to a fecal sample collected
from a given animal. Timeline represents weeks relative to treatment

Further, we have identified specific phyla, (eg.
Spirochaetes), which demonstrate a unique response to
SCI surgery which was not observed in the non-SCI
group treated with antibiotics or in the standard post-
surgery diet.

Our relatively large dataset of 93 Control samples col-
lected from the feces of 23 pigs gave us a solid founda-
tion to examine and interpret both the concentration of
various bacterial phyla at each timepoint, as well as how
they behave longitudinally. We found that the most
dominant phyla in the gut of Yucatan minipigs, making

Bacteroidetes, Firmicutes, Spirochaetes, Tenericutes, Pro-
teobacteria and Actinobacteria. At this level of classifica-
tion (phylum), the fraction of each bacterial phyla
present in the gut largely resembles humans and other
mammalian models [18, 27-33], as well as murine intes-
tinal bacteria [12, 28]. However, although some of the
gut microbes present in murine species are shared with
the human and pig microbiome, Ley et al. (2005) dem-
onstrated that almost 85% of the subgenera present in
the mouse gut are not present in humans. We therefore
aim to expand upon this present analysis in subsequent

up almost 98% of all species detected, include work to include more specific Families, Genus and
N
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Fig. 9 Phylum level taxonomy of fecal bacterial populations from Yucatan minipigs in the control group exclusively (n=93). Relative abundance of
amplicon sequence variants at the phylum level. Each color indicates one phylum. Column height represents the relative abundance of reads (%)
based on 16S rRNA sequencing
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Species when comparing the Yucatan gut to human be-
ings in order to better assess its translational potential.

Longitudinally, we found that in the uninjured “nor-
mal” pigs the concentrations of the most dominant phyla
remain relatively consistent over time with only minor
fluctuations. Further, based on Volatility Control
Analyses (Fig. 8), we observed that the microbial
composition of Yucatan minipigs remained relatively
stable over the course of 5-7 weeks. We also noted the
volatility decreased slightly as the animals adapted to
their new environments (as represented by an increase
in the volatility index over time). This was exemplified
in particular by two animals who, upon arrival at our
animal care facility, had a very high proportion of Pro-
teobacteria species (as high as 70% of all bacteria present
in the gut) but these values returned to concentrations
which better resembled values taken from other subject
after a few days. The temporal stability noted in control
animals was reassuring to then evaluate an intervention
(such as a spinal cord injury) and determine the effect
on the fairly stable microbial ecosystem. We acknow-
ledge that “microbial stability” is a challenging metric to
assess as there are often considerable fluctuations be-
tween and within individuals over time [34, 35], further
microbiome volatility is a poorly understood topic today.
Initially, the volatility of the gut microbiome was described
as the degree of change between timepoints [36, 37] and
aside from this, volatility has been scarcely discussed in
the microbiome field. Recently, its been shown that in-
creased volatility is linked to an increased stress response
in two cohorts of mice and one cohort of humans [38].
The extent to which microbial volatility can influence the
severity of neurological injury and recovery or visa versa
has yet to be investigated but could shed light on this
phenomenon.

Bacteroidetes phylum is an abundant group of aerobic
and anaerobic, rod-shaped, Gram-negative bacteria
which can be found throughout the intestinal tract. Bac-
teroidetes are known for their ability to digest carbohy-
drates such as complex oligoglycans found in mucin
[39]. The degradation of these carbohydrates results in
the production of short chain fatty acids (SCFAs) such
as butyrate, propionate and acetate which are subse-
quently reabsorbed by the host for energy. In a study
examining the gut microbiome of chronic quadriplegic
SCI patients, Zhang et al. (2018) found that Bacteroi-
detes species was at a significantly lower concentration
relative to uninjured, healthy male participants [40].
Similarly, Gungor et al. (2016) showed a decrease in
Bacteroidetes species in the chronic phase of SCI pa-
tients with upper and lower motor neuron bowel disease
[41]. In contrast, increases in Bacteroidetes species were
noted in murine SCI studies in the acute and subacute
stages [12, 42]. Here we found that the relative
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abundance of Bacteroidetes bacteria increased to a level
below our significance threshold during the acute post-
injury stage in Yucatan pigs, then returned to baseline
values in the SCI-subacute stage. Inversely, decreases in
Bacteroidetes species were noted in non-SCI animals
given our standard post-surgical antibiotics and our diet
cohort, although the decrease in Bacteroidetes in unin-
jured animals fed the standard post-surgical diet was not
statistically significant relative to controls. These find-
ings suggest that this bacterial shift may be unique to
the SCI surgery and/or the agents that were adminis-
tered in the acute setting.

Firmicutes are generally classified as endospore form-
ing, obligate and facultative anaerobes [43]. This
phylum contains many commensal bacterial species
such as Ruminoccocus which, like many bacteria within
the Bacteroidetes phylum, contribute to digestion by
fermenting high-fiber carbohydrates and producing bu-
tyrate as a by-product. Butyrate has been shown to
affect enteric neurons and can exert potent anti-
inflammatory effects on microglia in the CNS [44—48].
A study examining the gut microbiome in chronic SCI
patients found that the concentration of butyrate-
producing bacteria, all of which fall into the Firmicute
phylum, were consistently lower in chronic SCI patients
with upper and lower motor neuron bowel disease ap-
proximately 20 months after SCI [41]. A 2018 study in
human SCI patients 6 months or more after their re-
spective injuries, showed that Megamonas species (Fir-
micute) was significantly decreased relative to healthy
participants [40]. A contrasting effect was found in ro-
dent models of SCI in which a statistically significant
increase in Clostridiales (Firmicute) bacteria was dem-
onstrated 2 weeks after SCI which remained signifi-
cantly greater for up to 4weeks post-injury [49].
O’Connor et al. also showed a statistically significant
increase in 3 bacterial species in rats following contu-
sive SCI, two of which belong to the Firmicute phylum,
8 weeks after SCI. It must also be noted that the ro-
dents in the aforementioned study were given antibi-
otics (gentamicin, 5mg/kg) for the first 7 days after
injury [42]. The results of the present analysis were
more similar to acute SCI studies performed on rodents
such that we found Firmicute bacteria to proliferate in
the acute setting after SCI. A similar increase in Firmi-
cute species was noted in one of our non-SCI animals
treated with Enrofloxacin, thus making it difficult to
conclude that the fluctuation observed in Firmicute
bacteria was related to SCI surgery or merely antibi-
otics administration. However, we must also consider
that antibiotics can induce lasting changes to the gut
microbiome that may not detected within the time-
frame of the present study [50-53]. Further it must also
be considered that different antibiotics can have
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different effects on the gut microbiome due to their dis-
tinct pharmacokinetics concerning hepatic or renal
elimination (reviewed in Kim et al. 2017). Interestingly,
Kigerl et al. 2016 showed that SCI induced gut dysbio-
sis in animals who did not receive antibiotic treatment.
This highlights one of the major challenges of conduct-
ing a study to evaluate the changes in the microbiome
after experimental SCI, where the inherent conditions
of the experiment itself may influence the microbiome.

Spirochaetes are anaerobic bacteria with a distinctive
spiral-shape body composition which allows them to
twist and move about. Many species within the Spiro-
chaete phylum are known to cause diseases such as
Lyme disease (B. burgdorferi), syphilis (T. pallidium)
and leptospirosis (Leptospira). Interestingly, these dis-
eases can often result in progressive neurological de-
cline induced by severe neural atrophy [54, 55]. There
is evidence of an increase in abundance of Spiro-
chaetes in patients suffering from Alzheimer’s disease
(AD) relative to healthy controls [56]. Experimentally,
when neuronal and glial cells were exposed to B.
burgdorferi extracted from the brains of AD patients,
there was accumulation of AB-immunoreactive “pla-
ques” and neurofibrillary tangles, a hallmark of AD
progression [57].

The increase in Spirochaetes in the SCI acute and
subacute groups is noteworthy in light of the decrease
in the non-SCI animals that also received the post-
surgical antibiotic regimen. Because this increase in
the Spirochaetes bacteria is unique to SCI-treated ani-
mals, it would be interesting to assess how their rela-
tive abundance might be correlated with recovery
following SCI, and whether this specific phylum
would be a possible target for future therapeutic
intervention.

Diet is perhaps the single most important determin-
ant of the gut microbial composition throughout
one’s life [58, 59]. Interestingly, the administration of
our standard surgical diet had a minimal impact on
the composition of the gut microbiome, with no sta-
tistically significant difference between pre- and post-
dietary samples in most of the analyzed bacterial
phyla, with the exception of Proteobacteria and
Tenericutes. Studies have shown that the consumption
of high-fat, low-fiber diets can result in increased
levels of Proteobacteria relative to low-fat high-fiber
diets, as seen in European children [60]. Furthermore,
the consumption of artificial sweeteners and emulsi-
fiers (commonly used as additives in processed foods),
has also been shown to favour Proteobacteria [61,
62]. Therefore, it is possible that increasing the vol-
ume of wet dog food nourished various Proteobacteria
species in the gut resulting in increased detection
during next-generation rRNA sequencing.
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Bacterial fluctuation as time-dependent phenomenon
This is the first longitudinal SCI study in a large animal
model to compare and contrast the impact on the mi-
crobial ecosystem at acute and subacute phases of trau-
matic SCIL. Clearly, the greatest degree of bacterial
fluctuation and a-diversity in Yucatan pigs occurs within
the acute window from 0 to 14 days post-SCIL. The time-
dependent nature of these results differs from those pre-
sented in Kigerl et al. 2016 such that more drastic
changes are noted from 14 days post-injury onward in
their study and there was no statistically significant
change in Bacteroidales and Clostridales concentrations
in the first week after injury. Our longitudinal results
show a different kinetic response to SCI surgery and
antibiotic treatment such that the most dramatic change
in microbial composition is noted within the first 2
weeks after treatment.

A major unanswered question from our data is
whether or not the temporary shift in microbial compos-
ition is consequential to the recovery post-SCI. Kigerl
et al. 2016 showed that inducing dysbiosis via antibiotics
pre-SCI exacerbated injury severity resulting in wors-
ened pathological outcomes and diminished locomotor
performance in mice; additionally, the authors demon-
strated that post-injury treatment using probiotics could
improve functional outcome and significantly decrease
lesion extent compared to control subjects. The extent
to which pre or post-injury dysbiosis influences recovery
and pathological outcomes has yet to be investigated in
a large animal model but could be a key step to finding
therapeutic targets for future treatment and translating
those findings to clinical practice.

Gungor et al. 2016 examined microbiome dynamics over
time and showed that chronic SCI patients (~20-100
months after injury) have lower levels of Firmicute bacteria
along with higher levels of Bacteroidetes, which is different
than the SCI-induced changes we observed in the present
study and in rodent models of SCI [42, 49]. It is possible
that the initial shift in microbiome composition is more re-
flective of injury, immune response, anesthesia, diet, etc.,
whereas chronic fluctuations come as a result of GI tract
dysfunction such as delayed gastric emptying, impaired mo-
tility, decreased mucin production and impaired immune
function. Interestingly, it has been demonstrated that post-
SCI dysbiosis results in a loss of SCFA producing bacteria
(many belonging to the Firmicute phylum) and may con-
tribute to microglia-mediated neurotoxicity after injury and
influence long-term recovery [41, 63—65]. In the present
study, we found the concentration of fatty acid salvaging
bacteria decreased significantly after SCI (Fig. 5A,B) and
remained well below control samples beyond the SCI-acute
window. These findings suggest that these anti-
inflammatory metabolites such as butyrate, propionate and
acetate, may be depleted after SCL In rodents, Kigerl et al.
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2016 showed that the administration VSL#3, a medical-
grade probiotic consisting of several SCFA-producing bac-
teria, decreased the severity of injury and improved loco-
motor outcomes after a 75-kilodyne spinal contusion at the
T9 level. It would therefore be beneficial to investigate the
therapeutic potential of pre- or probiotics which target
these species in a large animal model.

This highlights the gap in our understanding of the im-
pact of SCI on the microbiome when comparing the pre-
clinical and clinical studies. Those performed in murine
models examine the acute and subacute phases of injury
and generally occur <4—-8 weeks post-SCI [42, 49, 66]. In
contrast, human studies have to date been largely confined
to more chronic SCI patients [33, 40, 41] although we are
aware of efforts to characterize the microbiome in acutely
injured patients. In order to address this issue, studies
need to be conducted longitudinally in acute SCI patients
within the first week of their injury with prospective as-
sessment of functional outcomes with microbial compos-
ition to correlate specific bacterial groups with outcome
measures such as sensorimotor recovery, or neuropathic
pain. It may be possible to utilize the microbiome as a pre-
dictive biomarker for recovery from neurological impair-
ment similar to the Stroke Dysbiosis Index [67]. It is, of
course, acknowledged that individuals who suffer a spinal
cord injury are subjected to a plethora of other “physio-
logic perturbations” that may influence their microbiome
such as enteral feeds, surgical procedures, antibiotics, and
a myriad of other medications. Similar to our experiments,
these issues will undoubtedly cloud the interpretation of
microbiome changes that occur as the direct result of the
neurologic injury. Second, we must consider extending
animal studies to more chronic stages to examine how the
long-term GI tract impairments and neurological recovery
influence the microbiome and visa versa.

Limitations

It is worth noting the limitations of the present study.
First, we acknowledge the absence of a non-SCI treatment
group which received both Enrofloxacin as well as the
post-surgical dietary regiment. This cohort of animals
would provide us with a more representative depiction of
the microbial composition post-SCI. Second, we acknow-
ledge the fact that we did not perform a sham SCI surgery
to best imitate pre/post-surgical SCI conditions. This
would ultimately be the most representative account of
the microbiome changes that occur in a non-SCI animal
receiving all the other experimental/surgical conditions as
the SCI animals. Such conditions include not just antibi-
otics and dietary changes but also anesthesia, pain medica-
tions, stress response, etc. While the costs and time
requirements for such a study are beyond the scope of this
work, we suggest that our dataset will serve as an import-
ant benchmark and resource for future work. In addition,
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we believe it should be mentioned that the contusion/
compression model of thoracic SCI carries several intrin-
sic limitations. For instance, we acknowledge that the
compression and contusion injury in human patients is
normally caused by structures surrounding the spinal cord
such as the intervertebral discs, vertebral bone, ligaments,
epidural components, articular processes and capsules,
etc. and these different anatomical structures are not only
compressing/contusing the spinal cord but also inducing
important inflammation which would affect the general
autonomic afferents/efferents differently with unknown
implication in the gut microbiome. Further, we acknow-
ledge that the antibiotic group was given oral as opposed
to IV antibiotics and although the dose of antibiotics was
adjusted to account for the route of drug administration,
it is recognized that different methods of drug delivery
can have different effects on the gut microbiome [50, 51,
53, 68]. In addition, medications used to treat SCI animals
in the present study such as Fentanyl and Metaclopramide
can influence digestion by decreasing and increasing gas-
tric motility, respectively. Therefore we acknowledge that
these agents can certainly influence the composition of
the gut microbiome and further, the duration of given ad-
ministration can also affect such outcomes. We encourage
other studies to pursue this investigation as the results will
no doubt uncover some interesting implications of various
treatments after injury.

We also acknowledge the relatively small group size
(n = 3) for the diet and antibiotic treated animals, which
makes the interpretation of the variability observed in
the microbiome changes difficult. Finally, the authors ac-
knowledge the variation of the SCI localization, degree
of contusion and duration of compression differ between
animals and this produces different levels of dysfunction
and is therefore a possible source of microbial variation.

Conclusions

The data presented in this study provides a better under-
standing on the microbial response to SCI in the porcine
microbiome. Further, we found specific bacterial phyla
whose kinetic responses were unique to SCI animals and
were not seen in non-SCI minipigs who received the
same post-surgery diet or antibiotic regiment. We be-
lieve this information will be critical for further micro-
bial studies involving neurological insults and could also
aid in the design and development of bacterial-based
therapeutic interventions post-SCI.

Methods

All animal experiments were performed in accordance
with the guidelines of the Canadian Council for Animal
Care, carried out in compliance with the ARRIVE guide-
lines and approved by the University of British Colom-
bia’s Animal Care Committee (A16—0311 SCI in Pigs).
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Animals and experimental design

Female Yucatan pigs (1 =23, purchased from either S&S
Farms, CA, USA, or Sinclair Bio-resources, Columbia,
MO) weighing 20-30 kg were group-housed at our large
animal facility. For information regarding housing, hus-
bandry and environmental enrichment please see previ-
ous publications [19, 20]. Upon arrival, all animals were
introduced to a 3:1 mixture of pellets (300g, Mazuri)
and 100 g wet dog food (Pedigree, Meaty Loaf)(referred
to as “standard diet”) twice daily with ad-libitum access
to water. Animals were kept in a separate holding area
for 14 days to quarantine before the initiation of any ex-
perimental procedure.

We had a number of objectives in this research study.
First, we determined the bacterial composition of the
gut microbiome in the Yucatan minipig over time in the
normal uninjured state as this is, to the best of our
knowledge, the first study to do so. Second, we looked
to determine the effect of administering an oral anti-
biotic commonly used as prophylaxis following experi-
mental surgery. Third, we determined the effect of
altering the diet to our standard post-surgical diet on
the microbiome. Lastly, we sought to determine the ef-
fect of sustaining a severe thoracic SCI on the gut
microbiome.

In order to answer these research questions, we divided
our animals into four treatment groups: Control (n =9),
SCI (n =8), Diet (n = 3) and Antibiotics (7 =3). A sche-
matic of the experimental conditions is show in Fig. 1.

Control group

A group of uninjured “Control” animals (# =9) were fed
the standard diet and did not receive antibiotics
throughout the study’s duration (3—7 weeks). All animals
were administered their respective diets twice daily, first
in the morning (0700-0800 am) and then in the evening
(1600—1700 pm). It is worth noting that all samples col-
lected before a given treatment were also considered
Control specimens.

Antibiotics group

Animals in the “Antibiotics” group (n = 3), were fed the
standard diet and received oral Enrofloxacin (Baytril 10
mg/kg) antibiotic tablets for 5days. These animals
remained untreated thereafter to assess the effect of
post-surgical antibiotics. Enrofloxacin is a fluoroquino-
lone which is efficacious against a variety of bacterial
pathogens in different animal species and is commonly
used to treat respiratory and gastrointestinal tract infec-
tions caused by gram-negative bacteria. Nielsen & Gyrd-
Hansen (1997), demonstrated that a therapeutically ac-
tive concentration of Enrofloxacin could be achieved for
at least 24 h in pigs at an oral dose of 10 mg/kg and an
IV dose of 5mg/kg. Therefore, in order for us to best
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mimic the antibiotic dose (IV 5mg/kg daily for 5 days)
given to our minipigs after injury, and without the ability
to administer IV antibiotics to intact minipigs for ethical
and practical reasons, we delivered enrofloxacin orally at
a dose of 10 mg/kg for 5 days.

Diet group

In the “Diet” group, we assessed the impact of the post-
surgery diet on gut microflora. These #n =3 uninjured
animals were fed the post-surgery diet for 5 days, before
returning to the standard diet (9 days). The “Diet” con-
sists of a 1:1.5 mixture of pellets (150 g, Mazuri) and wet
dog food (225g, Pedigree, Meaty Loaf)(referred to as
“post-surgery diet”) for 5-7 days. The ratio of wet dog
food to pellets is modified after surgery as wet dog food
is easier for the animals to chew and digest. Animals in
the Diet group were housed in separate holding areas for
the duration of their study (14 days).

SCI group

SCI animals (n = 8) were subjected to a contusion/com-
pression injury consisting of a 50 g weight drop at either
the T2 or T10 level, followed by sustained compression,
described in more detail below: Porcine Model of Thor-
acic SCI. All SCI animals received antibiotic treatment
(Enrofloxacin (Baytril), intravenous (IV), 5mg/kg) for
the first 5-7 days after surgery along with the standard
post-surgical diet as described above.

Porcine model of thoracic SCI

Surgical procedures for spinal cord injury (SCI) and
post-operative care were performed as previously de-
scribed [20, 69, 70]. Animals (n =8) were pre-
anesthetized with an intramuscular (IM) injection of
Telazol (4-6 mg/kg), Xylazine (1 mg/kg), and atropine
(0.02 mg/kg). Animals were endotracheally intubated,
and mechanically ventilated at ~ 15/breaths/min. Gen-
eral anesthesia was maintained with either a gas mixture
of Oy (0.6%) and N, (1.4%) and Isoflurane at 0.5-5%
concentration or a mixture of Propofol (6—12 mg/ml),
Fentanyl (8-14 mcg/kg), and Ketamine (5-12 mg/kg).
Midazolam was given (0.2 mg/kg/hr., IV) to 4 of 8
animals.

The affected levels of the thoracic spine were exposed
through a longitudinal midline incision. The spinous
processes, laminae, and transverse processes were ex-
posed two levels above and three levels below the impact
site (eg. T8-T13 for T10 SCI). A total of 4x pedicles
screws (Select™ Multi Axial Screw, Medtronic, Minneap-
olis, MN) were placed bilaterally in the pedicles of the
spine. After the laminectomy was performed, the guide
rail of the impactor was rigidly secured to the pedicle
screws by two rods on both sides and aligned vertically
using spirit levels. Immediately prior to the injury, the
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animal’s ventilation was stopped to cease respiration
motion and the trigger pin was removed to induce the
injury, after which ventilation was resumed. All drop
heights had an additional 100 g static weight placed to
simulate sustained compression.

As these animals were used in studies to answer differ-
ent research questions [71-74] they were subjected to
different injury levels (T2 or T10), drop heights (20 or
50 cm) and compression times (5, 30, or 120 min). The
injury and impact parameters for each animal can be
found in Supplemental Table 1.

After the surgery, a single injection of maropitant cit-
rate (Cerenia; 1mg/kgs.c.) was given to limit opioid-
induced motion sickness and vomiting. Metoclopramide
(0.5 mg/kg; 2-3 days) was administered to 6 out of the 8
SCI animals as needed to assist gastric emptying. All SCI
animals and were maintained on a continuous rate infu-
sion of fentanyl for pain control, which the animals were
weaned off over the course of 3—4 days. This required
close observation and could be adjusted several times a
day if necessary.

Further, all procedures described in this study have
been discussed in length during prior consultations with
licensed on-site veterinarians. Our veterinarians con-
tinue to educate themselves on current techniques of
anesthesia, surgery and analgesia (workshops and confer-
ences, consultation with acknowledged experts in the
field of research) and will utilize and teach new tech-
niques as they arise to improve both the surgical and
anesthetic methods used. In addition, refinements to
prevent/minimize pain and discomfort was implemented
through the use of aseptic surgical techniques performed
by experienced surgeons. Anesthesia was be adminis-
tered and carefully monitored throughout the procedure
by trained animal care technicians.

Fecal sample collection

Fecal sampling date, time, and description were logged
for all sampling timepoints. Feces were generally col-
lected fresh in the morning directly from the pen and a
sample from the interior of the feces was immediately
transferred into an RNase-free 1.5 mL Eppendorf tube,
using a stainless-steel rod which was pre-sterilized with
70% ethanol (EtOH). All samples were labelled, and
stored in a — 70 °C freezer for cryopreservation until fur-
ther processing. All materials were sterilized with 70%
EtOH between each use.

Fecal samples were collected on pre-determined days
before and after their respective treatment (Fig. 9). A
total of 262 fecal samples were analyzed using 16S rRNA
gene sequencing, (described in detail in the paragraph
below: DNA extraction and 16S rRNA gene sequencing).
It is worth noting that animals in the present study par-
ticipated in other ongoing research projects and were

Page 14 of 17

therefore euthanized at the conclusion of those studies
according to their experimental timeline.

DNA extraction and 16S rRNA gene sequencing

DNA was extracted using the MagAttract PowerSoil
DNA KF Kit, according to standard protocol (Qiagen;
Hilden, Germany). DNA was visualized on an agarose
gel and quantified using Qubit fluorometry, according to
manufacturer’s instructions (ThermoFisher; Waltham,
MA). The v3 and V4 regions of the 16S rRNA gene were
PCR amplified using primers F: 5'-TCGTCGGCAGCG
TCAGATGTGTATAAGAGACAGCCTACGGGNGG
CWGCAG and R: 5'- GTCTCGTGGGCTCGGAGATG
TGTATAAGAGACAGGACTACHVGGGTATCTAA
TCC using 12.5 ng input DNA per sample. These ampli-
cons were then converted to sequencing libraries using
an 8-cycle indexing PCR with Nextera XT primers (Illu-
mina; San Diego, CA). Libraries were cleaned using
Ampure XP beads, according to manufacturer’s instruc-
tions (Beckman Coulter; Pasadena, CA) and QC'd using
Agilent (Santa Clara, CA) Bioanalyzer and Qubit fluor-
ometry. Libraries were then pooled and sequenced over
two MiSeq v3 flow cells (Illumina) to generate paired-
end 300 bp reads. Raw data was processed using bcl2fast
v2.20.0.422 to generate demultiplexed fastq files.

Sequencing data processing and analysis

Mlumina sequencing data from each experiment were
processed and analyzed using QIIME2 (v2019.7.0). Se-
quencing analyses were performed by blinded specialists.
In brief, paired reads were trimmed to remove low-
quality bases (Q <20), adapter, and primer sequences
using the Cutadapt module within QIIME2. Resultant
reads were denoised and merged using DADA2. The
reads were assigned to species-equivalent amplicon se-
quence variants (ASVs) at 99% similarity by QIIME2
(phylogeny align-to-tree-mafft-fasttree)  using the
feature-classifier classify-sklearn algorithm against the
Silva_132 release reference sequences (https://www.arb-
silva.de/documentation/release-132). As datasets col-
lected via 16S rRNA sequencing are considered “com-
positional” due to an arbitrary total produced by the
sequencing instrument (Gloor G et al. 2017), a centered
log-ratio (CLR) transformation was performed on all
time series plots to analyze the relative abundance of
each phylum in the present study. Stacked barplots and
alpha diversity metrics were not transformed. Principal
component analysis (PCA) was performed on CLR
values generated by ALDEx2 (medians of each distribu-
tion were calculated from these values). PICRUSt2 was
used to generate functional predictions, using default pa-
rameters. Differential abundance of microbes and func-
tional classifications were calculated (ALDEx2). Alpha
diversity metrics (species richness, species evenness and
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volatility charts) were analyzed using QIIME2. Plots
were generated in R (version 4.0.5) using either ggplot2
or PCATools (version 2.3.13, https://bioconductor.org/
packages/release/bioc/html/PCAtools.html).

Bioinformatics and statistical analysis

Differences in CLR values between treatment groups at
the phylum level were assessed using a one-way
ANOVA via PRISM Graphpad software (version 8.2.1).
Statistical hypothesis testing (Graphpad) was used to
correct for multiples comparisons. Group comparisons
were then assessed relative to the control group using an
independent student t-test (two-tailed). Unless otherwise
specified, we use the term “microbiome” to refer to the
bacterial gut microbiome. Wilcoxon Rank Sum test and
Welch’s t-test statistics were computed using SCI and
Control as groups of interest. Data was subsetted based
on a significant p-values of <0.05 in all cases, using a
Benjamini-Hochberg (BH) post-hoc correction. Compar-
isons between alpha diversity metrics (species richness
and evenness) were assessed using Kruskal-Wallis ana-
lysis (QIIME2). All tests of significance were two-sided
and significance was set at p < 0.05.
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