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Abstract: The Canadian Arctic has a long history with diarrheal disease, including outbreaks of
campylobacteriosis, giardiasis, and salmonellosis. Due to climate change, the Canadian Arctic is
experiencing rapid environmental transformation, which not only threatens the livelihood of local
Indigenous Peoples, but also supports the spread, frequency, and intensity of enteric pathogen
outbreaks. Advances in diagnostic testing and detection have brought to attention the current burden
of disease due to Cryptosporidium, Campylobacter, and Helicobacter pylori. As climate change is known
to influence pathogen transmission (e.g., food and water), Arctic communities need support in
developing prevention and surveillance strategies that are culturally appropriate. This review aims to
provide an overview of how climate change is currently and is expected to impact enteric pathogens
in the Canadian Arctic.
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1. Introduction

Gastrointestinal (GI) infections are a major contributor to global morbidity and mor-
tality [1]. While GI infections can occur at any age, individuals vulnerable to dehydration
(i.e., young children and the elderly) are at an increased risk of experiencing severe com-
plications. Notably, dehydration due to diarrheal disease is one of the leading causes of
death in children under the age of five [2]. Other symptoms of infection include nausea,
vomiting, abdominal pain, and fatigue. Diagnosis is often clinical, but can involve culture
dependent and independent methods [3]. Most infections are self-limiting and therefore
do not require treatment; however, oral rehydration solution, antibiotics, and zinc may be
provided if indicated [3].

Viruses, bacteria, and parasites are the most common pathogens involved in GI
infections. These pathogens can spread through food-borne, water-borne, mechanical
vector-borne, and/or person-to-person transmission. The seasonality of diarrheal disease is
in part attributed to climate, which can influence pathogen growth and dissemination [4–6].
In a recent three year retrospective study, Chao et al. (2019) assessed the seasonal prevalence
of enteric pathogens in children with mild-to-severe diarrhea in seven study sites in
Africa and South Asia [7]. They observed that the incidence of certain enteric pathogens
consistently peaked each year, although not necessarily at all study sites. In general,
rotavirus was most prevalent during the dry winter months, whereas many bacterial
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pathogens were more prevalent during the hotter and wetter months. With regards to
bacterial pathogens, other studies have similarly found that Salmonella and Campylobacter
infections peak in the summer and spring, respectively [8,9]. It is important to note that
viral-induced diarrhea has distinct peaks in temperate climates (e.g., norovirus in winter)
and year-round peaks in tropical climates [8,10]. In addition to temperature, humidity also
effects GI pathogen replication and transmission. Decreased humidity has been found to
increase GI illness due to rotavirus infection in the tropics, Japan, and Peru [11–13]. Seasons
also influence human behaviour (e.g., social interaction and water and food consumption),
which may help facilitate the spread of enteric pathogens [14].

As climate changes, so too does the pattern of diarrheal disease. For example, flooding
is associated with increases in cholera, cryptosporidiosis, rotavirus, typhoid, and paraty-
phoid [15–20]. In the United States [20], New Zealand [21], the Solomon Islands [22],
and Canada [23,24], the occurrence of diarrhea correlates with increases in temperature,
and changes in precipitation. Similarly, there has been a correlation established between
flooding and increased bacterial and parasitic populations found in potable, drinking
water [25,26]. Flooding is thought to increase GI illness through the contamination of
water supplies (either with human or animal pathogens) that increase turbidity, which
hinders adequate disinfection [27]. In comparison, drought is associated with increases
in salmonellosis, shigellosis, and leptospirosis [28]. Drought is thought to concentrate
pathogens in remaining water sources [29]. Climate patterns like El Niño events have
been linked to increased diarrheal disease in Peru [30], Bangladesh [31], China [32], and
Japan [33]. Understanding how climate change impacts enteric pathogens will facilitate
disease forecasting, diagnostic ability, and outbreak preparedness. It is for these reasons
that Ledin and Macrae (2020), in a recent clinical review, urged the gastroenterology com-
munity to become more involved in the climate change movement through educating,
advocating, and supporting others in their efforts [34].

While climate change is already having significant impacts globally, the Arctic is
experiencing some of the fastest rates of environmental change with warming occurring at
two to three times the global average [35–37]. The Arctic in Canada is inhabited by over
100,000 people, who primarily live in small, remote communities outside of city centers
(Figure 1) [38]. Much of Northern Canada is Inuit Nunangat, the homeland of approxi-
mately 65,000 Inuit in Canada. The cold predictable northern climate is important to Inuit
health and well-being as ice and snow offer opportunities to travel between communities,
harvest and prepare foods, and for other cultural activities [39,40]. Climate change has
not only impacted the livelihoods of Indigenous Peoples living in the Arctic [37], but also
supports the spread, frequency, and intensity of infectious diseases [41]. Consequently,
the purpose of this review is to summarize what is known about the relationship between
enteric pathogens and climate change in Northern Canada. We begin by characterizing
the extent of enteric infection in the Arctic, with further exploration into the connection
between diarrheal disease and water and food safety practices. In the next section, we
focus on three pathogens prevalent in the Arctic to explore the impact of infection on
gastrointestinal health and disease. Finally, looking at what is to come, we review how
the burden of disease will be impacted by climate change and we identify areas in need of
continued research.
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2. The Current State of Enteric Infections in the Arctic

Arctic communities across North America have a well-documented history of di-
arrheal diseases [42–45]. Between 1991 and 2008, campylobacteriosis, giardiasis, and
salmonellosis were the most commonly identified GI pathogens in 33 communities found
in the Northwest Territories [46]. All three pathogens seasonally peaked in late summer to
autumn. In the last decade, surveys in Arctic Canada have shown higher rates of acute
gastrointestinal illness (AGI) compared to communities in southern Canada and other
high-resource countries [10,47–50]. In September 2012, Iqaluit and Rigolet each had an
estimated annual incidence rate of 3.8 episodes/person per year, which was roughly three
times as high as the rates in Ontario and British Columbia [50]. Research by Harper et al.
(2015) found that while Inuit communities had higher rates of self-reported AGI than non-
Inuit communities, they had lower rates of AGI-related healthcare use [51]. It is therefore
important to consider that traditional passive surveillance of health care utilization may
not accurately reflect the burden of AGI disease in these communities. Beyond the obvious
costs for AGI, there are also several indirect costs including loss of pay, altered diet, poorer
mental health, and decreased social welfare [52]. The higher incidence of AGI in the Arctic
has been associated with factors including animal exposure, overcrowding, and water and
food safety practices.

Despite Canada being a water wealthy country, water quality is a persistent con-
cern for many northern communities [53]. In some communities, homes are built with a
drinking water storage tank that is filled by municipal tanker trucks. The water is drawn
from local bodies of water, treated with chlorine, and then delivered by truck. While
treated tap water is available in many households, people also collect their own water
(e.g., brooks, lakes, icebergs, etc.) or purchase bottled water. In Rigolet, 77.6% of surveyed
households consumed alternative sources of water stored in containers [54]. When these
containers were sampled for pathogens, 25.2% were found to have coliform concentrations
above acceptable levels. Furthermore, use of dippers and transfer devices was associated
with an increase in total coliforms. In their study in Iqaluit, Masina et al. (2019) exam-
ined untreated drinking water between June and September 2016 for E. coli (indicator
coliform) as well as two select pathogens: Giardia and Cryptosporidium [55]. Using stan-
dard methods for detection in environmental samples, 20% of samples tested positive
for Giardia, 1.8% tested positive for Cryptosporidium, and 30.9% tested positive for E. coli.



Gastrointest. Disord. 2021, 3 116

These rates of Giardia and Cryptosporidium contamination appeared lower than previously
recorded in other parts of Canada [55]. Similarly, in a study by Daley et al. (2016) that
sampled other sites in the Arctic (Coral Harbour, Pond Inlet, and Pangnirtung), there
were low levels of fecal coliforms and none of the specific pathogens were detected (e.g.,
Campylobacter jejuni, Cryptosporidium parvum, Giardia lamblia, etc.) [56]. However, the occur-
rence of enteric pathogens in surface water is notoriously variable over time and conditions.
In order to fully characterize vulnerabilities in the Arctic water system, additional research
needs to occur during environmentally stressful periods (e.g., snowmelt). In a study by
Harper et al. (2011) based in Nain, there was a positive association between water volume
(e.g., heavy rainfall, rapid snowmelt) and total coliform counts in untreated water, as
well as clinic visits for AGI [57]. While water volume peaked in spring and summer, the
number of AGI-related visits to the healthcare facility increased in summer and fall. These
studies illustrate how microbial contamination varies throughout the Arctic. As microbial
indicators, fecal coliforms, specifically E. coli, are often used to assess water quality. In
recent years, however, this practice has been called into question as outbreaks of water-
borne illnesses resulted from sources deemed safe by coliform concentration standards.
Furthermore, the presence or absence of fecal coliforms does not always correlate to other
enteric pathogens [58]. It will be important to continue monitoring the development of
microbial indicators to assess their application in water quality evaluation in northern
communities.

Throughout the Arctic, gastrointestinal health is not only impacted by access to clean
drinking water, but also to safe wastewater disposal. Due to climate, population size,
and remoteness, many Arctic communities use basic treatment systems for wastewater
management [59]. Treatment systems involve the natural environment and typically occur
in lagoons, wetlands, lakes, and ponds. In wastewater stabilization ponds (WSPs), for
example, there is no discharge during the winter months as the pond is frozen. In the
summer when the pond thaws, the elevated water temperature “treats” the pond contents,
which can then be discharged into the surrounding environment (either land or water).
These systems are only capable of low-level pathogen removal, meaning that potentially
hazardous microorganisms can be released into the surrounding environment. In their
study of WSPs in Nunavut at two separate sites over three consecutive summer treatment
seasons, Huang et al. (2017) observed that the WSPs provided a 2–3 Log removal of the
indicator organism, E. coli [60]. Nevertheless, not all bacteria were reliably removed as
Salmonella spp., pathogenic E. coli, and Listeria monocytogenes were still detected. The
extent to which gastrointestinal disease can be attributed to wastewater contamination
remains unclear, but there are several models being used to generate estimates [61]. Water
contamination not only poses a direct risk for AGI, but also can pose an indirect risk
through the contamination of food.

Many communities in the Arctic rely on country foods, which are foods that are gath-
ered, trapped, and hunted from the surrounding lands and waters. Country foods are not
only an excellent source of nutrition, but also are a way to support cultural continuity [62].
Several studies have suggested that the preparation and consumption of country foods
may increase the risk of enteric pathogens (e.g., walrus, seal, caribou, and whale linked to
botulism and trichinosis were the most common country foods tied to GI illness) [63–65].
Strategies to reduce water- and food-related AGI must be culturally appropriate and done
in consultation with Arctic communities [66]. The Government of Nunavut, for exam-
ple, developed safety guidelines for the preparation and consumption of country food
in government-funded facilities [65]. Furthermore, Rigolet youth, in collaboration with
a research team and community members, developed a whiteboard video tool to share
recommendations aimed at reducing the risk of AGI [67]. As shown above, different
parts of the Arctic face different challenges in regard to water and food safety; therefore,
strategies have to be tailored to fit each community.
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3. In-Depth Review of Three Prevalent Enteric Arctic Pathogens

While the Canadian Arctic is home to a large number of enteric pathogens, it would
not be feasible to provide a thorough analysis for each one in this review. As such, we
have selected three pathogens that offer different insights into how Arctic communities are
affected and adapting to enteric pathogens.

3.1. Cryptosporidium

Since the first documented case in humans in 1976 [68], Cryptosporidium, a microscopic
intestinal parasite, has become one of the most common global causes of water-borne
disease [69]. Additionally, in the recent 2017 Qanuilirpitaa? Nunavik Inuit Health Survey,
Cryptosporidium seroprevalence was positively associated with the consumption of certain
country foods, such as seal meat, sea trout, brook trout, salmon, and shellfish (mostly
raw) [70]. There are many species of Cryptosporidium, but most human infections involve C.
hominis (which can only infect humans) and C. parvum (an important zoonotic species) [71].

While cryptosporidiosis has been a reportable disease in Canada since 2000,
Cryptosporidium went largely undetected in the Arctic until 2013 when more specific tech-
niques were implemented [72]. In the Qikiqtani region of Nunavut, multiple-target molec-
ular testing conducted over an 18 month period identified Cryptosporidium in 20% of all
stool samples, making it the most commonly identified pathogen [73]. Importantly, during
this study period, Nunavut’s territorial enteric surveillance program did not detect any
cases of cryptosporidiosis, therefore passive surveillance is believed to vastly underes-
timate the true number of cases [73,74]. Around the same time, the Nunavik region of
Québec, Canada, began using modified acid-fast staining to detect Cryptosporidium in stool
samples [75]. Then, using molecular subtyping, all study specimens were determined to
be C. hominis, suggesting an important role for human-to-human transmission [75]. As
an aside, a subsequent Québec-based study between 2016 and 2017 found that 74% of
fecal samples—predominantly from Southern Quebec—were infected with C. parvum (in
comparison to 23% with C. hominis), demonstrating the geographical predominance of
certain species [76]. More information on the history of Cryptosporidum in the Arctic can be
found in the recently published document by Ducrocq et al. (2021) [70].

Previous studies have found the highest incidence of Cryptosporidium to be amongst
children under 5 years of age [75]. Of the Cryptosporidium species, C. hominis is the main
cause of childhood diarrheal disease [77]. This finding is particularly worrying seeing
that Cryptosporidium infection (with or without diarrhea) has been associated with reduced
linear growth, lower adult height, impaired cognitive development, poor performance in
school, and less economic productivity [78–80]. Furthermore, food insecurity, which is a
concern for 24%–46% of surveyed Canadian Arctic households, exacerbates the effects of
Cryptosporidium infection on growth and brain development [81]. Important to the context
of water treatment in the north, Cryptosporidium is relatively resistant to chlorination;
however, boiling, filtration, and UV treatment is effective [77]. Following the 2013–2015
Cryptosporidium outbreak in Nunavik, UV filters were increasingly installed across northern
Canada [75].

3.2. Campylobacter

Able to persist both on land and in water, Campylobacter is one of the leading causes of
gastroenteritis worldwide [82]. C. jejuni is responsible for 95% of Campylobacter-induced
diarrheal disease [83]. As mentioned previously, Campylobacter was one of the most com-
monly reported infections in the Northwest Territories between 1991 and 2008 (this article
was not able to address any possible geographical reporting biases and did not mention
the separation of Nunavut in 1999) [46]. In the Canadian Arctic, Campylobacter is typically
thought to cause infection through the contamination of food, but person-to-person and
zoonotic transmission is also possible. In a study of domestic dogs in northern Canada,
Himsworth et al. (2010) identified Campylobacter using PCR in 75% of fecal samples [84]. In
many northern communities there are large populations of free-roaming domestic dogs,
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which may serve as a source of infection for humans. Climate change, due to warmer
and wetter seasons, has the potential to increase risk and frequency of campylobacteriosis
through the various routes of transmission [85]. The article by Huang et al. (2015) pro-
vides a full review of the animal, food, and environmental sources of Campylobacter in
Canada [86].

Campylobacter, similar to Cryptosporidium, has a history of being underreported in the
north due to challenges with current standard testing methods. A study by Goldfarb et al.
(2013) observed that PCR detected Campylobacter spp. more often than the standard culture
approach in diarrheal stool samples from Qikiqtani General Hospital in Nunavut [73]. The
diagnostic superiority of PCR over culture for the identification of Campylobacter has been
reported by others [87]. Furthermore, Rothrock et al. (2009) showed that PCR was also
the preferred method for identifying Campylobacter in aqueous and solid environmental
samples [82]. While the effect of transportation time has been hypothesized to impair
culturing of Campylobacter, Bullman et al. (2011) noted that 46.8% of PCR-positive spec-
imens did not grow in culture even when transport time was not a factor [88]. As such,
the role for molecular-based diagnostics over culture should be considered, especially as
Campylobacter cases are expected to increase due to climate change. Qikiqtani General
Hospital, for instance, has now implemented molecular testing on site. Since implementing
enteric pathogen PCR testing on the Ungava coast of Nunavik, Campylobacter is the leading
pathogen identified in stool [89]. Furthermore, the number of such reportable infections has
doubled compared to the use of on-site culture [89]. While campylobacteriosis is usually
self-limiting, it will continue to represent a significant public health burden if surveillance
and diagnostics are not improved [86].

3.3. Helicobacter Pylori

Considered one of the most prevalent global human pathogens, H. pylori is a Gram-
negative bacterium known to cause several gastropathies including inflammation of the
gastric mucosa (gastritis), peptic ulcer disease, and gastric cancer [90]. Arctic residents,
in comparison to those in southern Canada, have an elevated prevalence of H. pylori
infection [91]. In an Arctic study by Fagan-Garcia et al. (2019), the estimated prevalence of
H. pylori amongst Indigenous Peoples was 66% and amongst non-Indigenous Peoples was
22% [92]. Despite seroprevalence not being an ideal measure (as H. pylori serological testing
does not distinguish between previous and current infection), 66% of gastric biopsies
(n = 194) were positive for H. pylori on histology in a study conducted in the Northwest
Territories by Cheung et al. (2014) [93]. Using a multivariable model for analysis, the
prevalence of H. pylori was positively associated with alcohol consumption and inversely
associated with previous gastroscopy and H. pylori therapy. Conversely, in a more recent
2017 medical file review, the Nunavik Inuit Health Survey observed no cases of gastric
cancer or MALT lymphoma despite the high prevalence of H. pylori in Nunavik [70]. In that
same survey, H. pylori infection was positively associated with several factors including
drinking from natural water sources in winter and household overcrowding.

H. pylori has several routes of transmission, including between people and through
contaminated food and water. In Nunavut, H. pylori has been detected in community water
supplies [60]. As climate change in the north is expected to increase the transmission of
water-borne pathogens, due to increased water volume, it is crucial that water treatment
systems are prepared to limit H. pylori transmission [94].

Current guidelines recommend using non-invasive techniques to test individuals
with dyspeptic symptoms for H. pylori, but this test-and-treat strategy has been shown
in low-endemic areas to only have a modest benefit in relief of symptoms. Consequently,
many are discussing the applicability of these current guidelines to areas like the Canadian
Arctic that have higher prevalence levels [95]. Worryingly, there have been reports about
treatment-resistant and anti-microbial resistant H. pylori infections from several parts
of the Arctic [96,97]. Individuals with treatment-resistant H. pylori describe several GI
symptoms including abdominal pain, indigestion, diarrhea, reflux, and constipation [97].
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In comparison to Southern Canada, Arctic communities appear to have higher antibiotic
dispensation rates, especially with beta-lactam and macrolide antibiotics [98]. This is
particularly worrying seeing as work by Gromala (2020) identified both macrolide and
beta-lactam antibiotic resistance genes in WSPs in the Arctic [99]. People in the Northwest
Territories and Yukon are disproportionately impacted by gastric cancer when compared
to the rest of Canada [100]. While Fagan-Garcia et al. (2019) found no cases of dysplasia or
carcinoma (due to small sample size), the disease burden certainly increased the risk of
stomach cancer within the study population [92,101].

Despite the number of epidemiological studies conducted in the Arctic surrounding
H. pylori infection, there is limited understanding of how the pathogen is impacting com-
munities on a broader level. In recent work, Cromarty (2020) examined how deprivation
indicators (estimated from the Canadian Deprivation Index, a validated predictor of health
status) could be related to H. pylori disease burden [102]. Cromarty observed that higher
H. pylori prevalence was associated with higher deprivation levels, following adjustment
for confounding variables. Further analysis suggested that disease burden due to H. pylori
could be related to social and gender inequities within Indigenous Arctic communities.
In addition, in order to comprehend the perception of H. pylori in the Arctic, Highet et al.
(2019) analyzed drawings made by Indigenous children from Fort McPherson, an Arctic
hamlet [103]. The authors noted that many children drew bacterium that were “overtly
menacing,” which emphasized how concerning H. pylori was to the community. Due to the
serious harm that can come from chronic H. pylori infections, many Northern communities
and health officials are attempting to improve public awareness and are seeking more
research dedicated to preventing and reducing transmission [93].

4. The Future of Enteric Infections in the North

Arctic communities are already experiencing a wide-range of health concerns due
to climate change [37]. While this review has focused on enteric pathogens, other areas
of health that are expected to be impacted include, but are not limited to, mental health,
obesity, and cancer [104–108]. Climate change influences infectious disease transmission
in four major ways: (1) by affecting the development, reproduction, and mortality of the
microbe, (2) by affecting the development, reproduction, and mortality of vectors and the
host, (3) by affecting host/microbial/vector behaviour, and (4) altering host susceptibil-
ity [109]. In this final section, we will review how climate change is expected to continue
impacting the gastrointestinal health of Arctic communities.

4.1. Routes of Infection

Climate change has already begun to threaten Indigenous food systems by impacting
how people interact with the land, water, and animals. Due to increasing temperatures
and changing climate, more country foods in the Arctic are becoming home to micro-
bial pathogens [110–113]. One such pathogen is the bacterium, Vibrio, that can cause AGI
through the ingestion of untreated water or raw/undercooked fish and shellfish. Increasing
water temperatures have extended the summer season for non-cholera Vibrio spp. and have
extended their geographical distribution to several locations around the subarctic [114–118].
As an example, V. parahaemolyticus, known for residing in oysters in more temperate wa-
ters, has more recently been found in Alaskan oysters, causing one of America’s largest
outbreaks of vibriosis [119]. Alongside oysters, mussel populations have been found to
be affected by warmer waters [120]. Relatively small increases in ambient temperatures
have been shown to be associated with dramatic increases in the filtration rate of mussels,
therefore increasing exposure risk to pathogens [121]. In a study conducted in six com-
munities in Nunavik, Cryptosporidium was detected in 73% of blue mussel samples [122].
Finally, in a recent study based in Iqaluit, Giardia DNA was detected in clams for the first
time [62]. Other foodborne pathogens that will be important to consider in the context of
climate change include Norovirus, Clostridium perfringens, Campylobacter spp., nontyphoidal
Salmonella spp., Bacillus cereus, E. coli, and Listeria [123].
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While environmental contamination is not the focus of this review, it is important to
recognize that these contaminants also pose a risk to GI health in the Arctic. For example,
fish and whale contaminated with methylmercury have been shown to increase the risk
of gastric cancer in Arctic communities. In a study by Walker et al. (2021), analysis of
80 gastric biopsies found evidence of intestinal metaplasia, atrophy, and severe chronic
gastritis in 17%, 29%, and 38% of cases, respectively [124]. Interestingly, selenium intake
appeared to counter the harmful effects of methylmercury contamination. The review by
Gibson et al. (2016) offers a more extensive review of chemical trends in the Arctic [125].
Many households in the Arctic are reporting food insecurity, reflecting challenges related
to accessing country foods and purchasing retail foods. In comparison to country foods,
store-bought food offers a very different nutritional profile.

Diet is known to impact the composition of bacteria in the gut, with traditional diets
leading to more diverse and distinct microbial communities than western diets [126]. The
traditional Inuit diet is low in carbohydrates and rich in animal fats and proteins. Due
to climate change impacting the ability to access and consume certain country foods as
well as other factors, some Inuit communities are shifting towards store-bought foods
that have lower micronutrient intake [127]. To assess the impact of diet on gut bacterial
composition, Girard et al. (2017) used 16S rRNA gene sequencing to compare Montrealers
who consumed a Western diet and Inuit who consumed a range of Western and traditional
diets [128]. Overall, microbial community was indistinguishable between the Montrealers
and Inuit; however, following oligo-typing, there were significant differences in the relative
abundance of certain bacterial subgenera. Those who consumed a more Western diet had
enriched Prevotella spp., which are associated with high-fiber diets. In a follow-up study
by Dubois et al. (2017) that collected monthly fecal samples from Montrealers and Inuit
participants, it was clear that the traditional Inuit diet impacted gut microbial composition,
diversity, and stability [129]. Nevertheless, Dubois et al. (2017) noted there were no clear
seasonal shifts in the gut microbiomes of either study group, which might suggest the role
of the western diet in acting like a buffer. The long term health implications of Western
diet in Inuit populations remains unclear, but represents an active area of research.

Waterborne disease is also a mounting challenge due to climate change, with important
and disproportionate impacts anticipated in the Arctic [57]. Several pathogens are expected
to thrive including Cryptosporidium spp., Brucella spp., and Giardia spp. [41,55]. As described
previously, many consume untreated water from the environment, primarily from moving
bodies of water like rivers [53]. Environmental change, however, is making this practice
riskier due to increased turbidity and microbial and chemical contaminants [57,130,131]. As
such, communities may need to begin exploring other treatment options such as filtration,
UV-treatment, or sedimentation. This recommendation, however, only impacts those who
drink treated tap water, neglecting many who drink raw water because it tastes better.
Furthermore, Harper et al. (2020) proposed in their review, additional Arctic adaptions
including community-based monitoring and the development of health metrics that are
locally and culturally appropriate [132].

4.2. Prevention and Detection

Currently, the Arctic is faced with inadequate surveillance systems and several chal-
lenges related to outbreak preparedness, such as low rates of healthcare-seeking behavior,
overcrowding, and poor diagnostic ability [41,73,133,134]. Medical and public health sys-
tems have to be prepared for the expected increase in GI illness in the coming years. This
will require clinicians to stay alert to enteric pathogen trends and learn to recognize the
signs and symptoms of both common and emerging pathogens. Furthermore, clinicians
will need to stay informed on anti-microbial trends when determining best treatment
options. Public health will have to develop practices that keep the public informed. Labo-
ratories will not only need to increase in capacity, but also create/modify techniques to
identify emerging pathogens. Finally, surveillance will need to be strengthened to monitor
trends and inform best practices.
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5. Conclusions

It is clear that climate change is an irreversible process that is well underway. Arctic
communities are vulnerable to the changing environment due to their close relationship
with the land and water. Over the last few decades as temperature increases in the north,
there has been a similar increase in GI infections and AGI. Further research is needed to
fully understand the extent to which climate change will affect the health of northern Arctic
populations, and which pathogens will be the most prevalent.
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