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Abstract: The paper reviews the history of B-spline methods for atomic structure calculations for
bound states. It highlights various aspects of the variational method, particularly with regard to the
orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the
related SPHF, DBSR-HF, and SPMCHF programs. B-splines facilitate the mapping of solutions from one
grid to another. The following paper describes a two-stage approach where the goal of the first stage
is to determine parameters of the problem, such as the range and approximate values of the orbitals,
after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem,
which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic
calculation is −2.
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1. Introduction

In 1996 Oleg Zatsarinny published a program for computing matrix elements in a
non-orthogonal radial basis in which configuration state functions (CSFs) were expanded in
determinants [1]. A non-orthogonal basis can greatly reduce the size of multiconfiguration
wave function expansions. The orthogonal versus non-orthogonal issue is a complex one,
so I invited Oleg for a three-month visit, with the National Science Foundation support
for members of the former Soviet Union. Before he left, I shared with him the B-spline
library I had developed for calculations of high accuracy “good to the last bit”. Oleg
improved and extended the library, which became the basis for the BSR code he published
in 2006 [2] for both non-relativistic and the Breit–Pauli R-matrix theory. It was not until
2011 [3] that I published a non-relativistic B-spline Hartree-Fock program for bound states
using the extended library. In the mean time, Oleg extended BSR to Dirac relativistic theory
where the R-matrix approach relies on eigenvectors of a B-spline matrix at the boundary.
However with the traditional Galerkin method applied to the pair of first-order differential
equations, spurious solutions appeared for the R-matrix.

The presence of spurious solutions from the application of the Galerkin methods is
well known—a Google search for “Galerkin spurious” has 165,000 responses from areas
of theoretical physics, applied mathematics, and engineering. Inspired by the work of
Igarashi [4,5], I had the idea that the problem was related to the fact that Dirac equations
are a system of first-order equations. I showed that the problem also occurs for y′′ = −λ2y,
with boundary conditions y(0) = 0 and y(R) = 0, when the single second-order equation
is replaced by a pair of first-order equations. Igarashi was focusing mostly on kinetically-
balanced basis sets but tried also some other ideas like using B-splines of a different
order. If we think of the Galerkin method approximating the small component by say,
Qks(r) = ∑i ciB

ks
i (r), where Bks

i (r) is a B-spline of order ks (or piecewise polynomial of
degree ks − 1), then the large component is proportional to (d/dr − κ/r)Qk(r), namely
piecewise polynomials of degree ks − 2 with a B-spline basis of order ks − 1. Representing
these functions by a higher-order polynomial presents difficulties that would not arise if
a lower order of splines were used. In my test case, the eigenvalues from using different
orders for pairs of equations were the same as those from a single second-order equation,
indicating that the problem was not just a Dirac equation-related problem. Splines of
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different orders worked beautifully for the R-matrix approach as well as the Thomas–
Reiche–Kuhn sum rule and all our other tests. I convinced Oleg that we should prepare
a paper for Physical Review Letters, but the referee was not as excited by this result as I
was. Oleg was not prepared to argue so the paper was published in Computer Physics
Communication [6].

The present paper is dedicated to the memory of Oleg Zatsarinny who extended the
bound state B-spline codes to the fully relativistic DBSR-HF version [7].

2. In the Beginning ...

In the early days of computing, atomic and molecular calculations relied either on
finite-difference methods based on numerical procedures developed by Hartree [8], or an-
alytic methods based on basis sets such as Slater-type orbitals [9]. Bachau et al. [10] in
their excellent review on B-splines, refer to these methods as local versus global methods,
respectively, in that finite difference methods relied on only a few values at adjacent points
of a grid in specifying an approximation. Much changed when de Boor [11] published his
book in 1985 about B-splines with a local but complete basis for piece-wise polynomial
approximations along with Fortran programs for standard spline procedures. Among the
first to use his codes were Johnson and Sapirstein [12], who used B-splines to generate
their numerical basis set for perturbation theory that greatly advanced the theory. How-
ever B-splines also offer advantages for a wide range of applications as Bachau et al., show
in their extensive review.

By the 1990s, the non-relativistic Hartree–Fock variational method had evolved into a
multiconfiguration theory as implemented in the MCHF77 [13] program. Later this theory
was extended to include relativistic corrections through a Breit–Pauli approximation and,
together with programs for atomic properties (hyperfine, isotope shifts, and transition
probabilities), became an atomic structure package ATSP2K [14]. All calculations were
based on numerical procedures and supported a limited amount of non-orthogonality of
the radial basis [15] of one or at most two overlap integrals.

With the development of faster computers along with considerable more memory,
an interesting question arose—what is the best method for solving the MCHF equations? The
latter required node counting to control the convergence of an integro-differential equation
with many solutions, dealing also with Lagrange multipliers for satisfying orthonormality.

This paper reviews the development of spline methods for variational approaches to
solutions of the wave equation for atoms with the assumption that the reader is familiar
with the basic properties of splines as presented by Bachau et al. [10]. Unlike the latter,
the emphasis here is more on the computational methods and the programs that have
emerged rather than their application.

3. The B-Spline Basics

A spline approximation of order ks is an approximation that is a piecewise polynomial
of degree ks − 1 (with ks coefficients) in intervals defined by “knots” that define a grid.
In applications, the grid itself, in a sense, is arbitrary but the choice of grid can have a large
influence on the accuracy of an approximation.

3.1. Spline Grid for Radial Functions

In atomic structure applications, it is convenient to define the grid in terms of the
variable t = Zr (the hydrogenic case) and then transform to the current value of Z. Let
h = 1/2m. This is not strictly necessary, but it ensures that the arithmetic is exact in binary
arithmetic. Then:
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ti = 0 for i = 1, . . . , ks (1)

ti = ti−1 + h for i = ks + 1, . . . , ks + m (2)

ti = ti−1(1 + h) for i = ks + m + 1, . . . , ns + 1 (3)

ti = tns + 1 for i = ns + 2, . . . , ns + ks (4)

ri = ti/Z for i = 1, ns + ks (5)

Thus the grid is linear for m intervals near the origin after the t = 0 knots of multiplicity
ks, then linear in log(r). If continuum calculations are involved, the range may be extended
to include equally-spaced values at the end of the exponential range, followed by final
knots of t = tmax of multiplicity ks. The above grid is most appropriate for a finite nucleus.
The number of non-zero intervals between knots is ns − ks + 1 where ns is the number
of basis states. Note also that, the end of the exponential region, t = tns+1 defines the
maximum range R of the bound-state orbitals, that are assumed to be zero for r > R.

In an early B-spline study, Froese Fischer and Parpia [16] studied the accuracy of the
application of B-splines to the Dirac equation for He with a grid over the range (0, 40),
comparing a grid for ρ = r1/4 with a grid for ρ = log(r). The former was considerably
more accurate but is rarely used other than for plotting since r = 0 transforms to ρ = 0 in
the first transformation, whereas in the latter it transforms to −∞. However, an advantage
of splines is that points need not be equally spaced so r = 0 can be chosen as a grid-point
(as in Equation (1)) even when the remaining grid-points are on an exponential grid.

3.2. Integration Methods

The piecewise polynomial values are represented by ks values at the Gaussian points
for Gauss–Legendre integration. Then,

∫ 1

0
f (x)dx =

ks

∑
i=1

gw(xi) f (xi), (6)

where gw(xi) are the Gaussian weights at the Gaussian points xi. This formula is exact for
integrands f (x) that are polynomials of degree 2ks − 1.

3.3. Slater Integrals

A detailed analysis of algorithms for the calculation of Slater integrals was reported
by Qiu and Froese Fischer [17], and will be summarized here.

Let a, b, c, d denote a set of nl quantum numbers associated with a radial function:

P(a; r) = ∑
i

aiBi(r) (7)

with similar expansions for b, c, and d. Then,

Rk(a, b; c, d) = ∑
i

∑
j

∑
i′

∑
j′

aibjci′dj′R
k(i, j; i′, j′), (8)

where,

Rk(i, j; i′, j′) =
∫ R

0

∫ R

0

rk
<

rk+1
>

Bi(r1)Bj(r2)Bi′(r1)Bj′(r2)dr1dr2 (9)

will be referred to as B-spline Slater integrals. Many symmetries exist. Furthermore,

Rk(i, j; i′, j′) = 0 if |i− i′| > ks, or

= 0 if |j− j′| > ks. (10)

Symmetry and the “local” property of these integrals, greatly reduce the number of
B-spline Slater integrals included in the summation.
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The spline-approximation divides the integration range into sub-intervals and the
two-dimensional integration into patches or “cells”. Thus the fundamental process is one
of integration over a cell, riv ≤ r1 ≤ riv+1 and rjv ≤ r2 ≤ riv+1, namely,

∫ riv+1

riv

∫ rjv+1

rjv

rk
<

rk+1
>

Bi(r1)Bj(r2)Bi′(r1)Bj′(r2)dr1dr2. (11)

However for an off-diagonal cell, the above two-dimensional integral is separable and
equal to (for iv < jv):∫ riv+1

riv

Bi(r1)rk
1Bi′(r1)dr1

∫ rjv+1

rjv

Bj(r2)(1/rk+1
2 )Bj′(r2)dr2

≡ rk(i, i′; iv)× r−(k+1)(j, j′; jv), (12)

where rk(i, i′; iv) and r−(k+1)(j, j′; jv) are referred to as moments.
The diagonal cells reduce to integrations over upper and lower triangles or, through

an interchange of arguments, as:

Rk(i, j; i′, j′; iv) = Rk
∆(i, j; i′, j′; iv) + Rk

∆(j, i; j′, i′; iv) (13)

and
Rk

∆(i, j; i′, j′; iv) =
∫ riv+1

riv

1
rk+1

1

Bi(r1)Bi′(r1)dr1

∫ r1

riv

rk
2Bj(r2)Bj′(r2)dr2. (14)

Thus the computational complexity of an integration over a diagonal cell is O(k2
s ) and

for the Rk(i, j; i′, j′) array, it is O(nsk2
s ). Furthermore, when all B-splines are defined on an

exponential grid where ti+1 = (1 + h)ti, (as in the middle region of the logarithmic grid)
scaling laws can be applied, namely:

〈Bi+1(r)|rk|Bj+1(r)〉 = (1 + h)1+k〈Bi(r)|rk|Bj(r)〉
〈Bi+1(r)|1/rk+1|Bj+1(r)〉 = (1 + h)−k〈Bi(r)|1/rk+1|Bj(r)〉

Rk(i + 1, j + 1; i′ + 1, j′ + 1) = (1 + h)Rk(i, j; i′, j′). (15)

With such a grid, some Slater integrals would be computed using the basic integration
procedures and others could be scaled.

4. Tensor Products of B-Splines as a Basis

Traditionally, the wave functions for multi-electron systems are expanded in terms
of configuration state functions (CSFs) that are products of one-electron wave functions
(or orbitals) where, for bound-state problems, the latter provides an orthonormal basis.
An early spline study of the 1s2, 1s2s 1S or 3S, and 1s2p 1P or 3P states of Helium [18],
took a different approach and explored the direct use of a tensor product of B-splines as a
non-orthogonal basis.

For a two-electron system, a wave function for a state Ψ(γLS), where γ denotes
the configuration, can be expressed in terms of pair functions, identified by their angular
symmetry, namely:

Ψ(γ LS) = ∑
n

∑
n′

cnn′ | nln′l′ LS〉. (16)

Here,

| nln′l′ LS〉 = N 1
r1r2

(1−P12)P(nl; r1)P(n′l′; r2) | ll′ LS〉, (17)

where N is a normalisation factor that may depend on symmetry, P12 is a permutation
operator, | ll′LS〉 a is spin-angular factor that identifies the pair function, and P(nl; r) and
P(n′l′; r) are radial functions. In other words, the pair function is a linear combination of
configuration state functions of the same symmetry. Substituting into Equation (16) and
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noting that each term has the same spin-angular factor, that the double sum is an expansion
in a basis of a function of two variables, we get a pair function p(r1, r2), such that:

Ψ(ll′ LS) = N 1
r1r2

(1−P1,2)pl(r1, r2) | ll′ LS〉. (18)

In essence, pl(r1, r2) is a general two-dimensional function, usually expanded in terms
of orbitals but one that could also be expanded in terms of tensor products of B-splines,
namely Bi(r1)Bj(r2). The advantage of this basis is the local support (non-zero region)
compared with products of orbitals which extend over the entire two-dimensional region.

In the case of 1P state, the possible orbital symmetries (sp, pd, d f , f g) can be repre-
sented as (l, l′) where l = 0, 1, . . . lmax, with l′ = l + 1. Then the 1s2p 1P state can be
expressed in terms of partial waves as:

Ψ(1s2p 1P) =
1√

2r1r2
∑

l
(1−P1,2)pl(r1, r2) | ll′ 1P〉, l′ = l + 1, (19)

where,
pl(r1, r2) = ∑

i
∑

j
pl

i,jBi(r1)Bj(r2). (20)

The application of the Galerkin method leads to a system linear equations, where
the equations for a specific basis, identified by the parameters (i, j, l), 1 ≤ i, j ≤ N and
l = 0, . . . , lmax, are:

∑
i′

∑
j′

pl
i′ j′

[
Ll

ii′Sjj′ + Sii′L
l
jj′ − ESii′Sjj′

]
+ ∑

l′
∑
i′

∑
j′

∑
k

c(ll, l′l′; k1)pl
i′ j′R

k(i, j; i′i′) = 0. (21)

In the above, Ll = (Ll
ii′) and S = (Sii′) are matrices with:

Ll
ii′ = 〈Bi(r)| −

1
2

d2

dr2 −
Z
r
+

l(l + 1)
2r2 |Bi′(r)〉,

Sii′ = 〈Bi(r)|Bi′(r)〉. (22)

In the B-spline basis, the one-electron operators ( Ll and S matrices) connect the
coefficients within a pair function ( pl(i, j) for a given l) whereas the Slater integrals
in the B-spline basis, connect the different pair functions. The coefficients of the Slater
integrals c(ll, l′l′; kL) arise from angular integrals related to the Slater integrals. Both can be
treated as data for the calculation and depend only on the underlying grid. The equations
themselves were solved iteratively with the energy E determined as a Rayleigh quotient.
The solution is numerically intensive and has many options for parallelism.

Of interest in 1991 was the performance of the algorithm on parallel vector processors.
An accuracy of a micro-Hartree was achieved for the energy. Figure 1 shows the matrix
of coefficients pl

i,j for B-spline tensor-product expansions for sp, pd, d f , f g (or l = 0, 1, 2, 3)
pair functions from left to right and top to bottom, respectively. Notice that each subplot
has a different scale with the maximum value decreasing. For sp symmetry, the matrix is
approximately the cross-product of the expansion coefficients for the 1s and 2p Hartree–
Fock orbitals in a B-spline basis. As l increases, the maximum coefficient (dark red in colour)
moves closer to the diagonal r1 = r2 region. However more importantly, the significant
components are concentrated in a smaller and smaller region. What this calculation clearly
shows is that correlation is a “local” correction and that, as the orbital symmetry l increases,
an oscillating orthonormal basis would not be an efficient basis.
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Figure 1. A visualisation of the magnitude of the matrix of expansion coefficients pl
i,j {i, j} = 1, . . . , 30

for the 1s2p 1P state of Helium. Shown, from left to right and top to bottom, are the expansion
coefficients for the sp, pd, d f , and f g pair functions. The maximum values are 0.45, 0.010, 0.0035,
0.0020, respectively. Note both the changing region and decreasing maximum magnitude of each
partial wave. (See also [19].)

However the example is also interesting from other perspectives. Like the Hyller-
aas method, there are no orbitals, nor are there orthonormality constraints and hence, no
Lagrange multipliers. The wave function is a sum of pair functions rather than a linear com-
bination of configuration state functions, and there is no matrix diagonalisation. In present
GRASP [20] or ATSP calculations, the usual first step is to compute all angular data, which
then needs to be read and stored in memory when needed. With pair functions the amount
of angular data is greatly reduced and often could be computed as needed. It should also
be remembered that orbitals are a theoretical concept.

5. Spline Galerkin and Inverse Iteration Methods

The development of B-splines (of an order greater than that of cubic splines) began
before the LAPACK [21] routines were released. Available instead, were LINPACK [22]
routines for solving systems of equations. Some early papers by Froese Fischer and
Idrees [23,24], described a spline algorithm for solving the continuum functions that used
the spline Galerkin method for deriving linear equations of the form:

(H − ES)c = A(E)c = 0 (23)

and inverse iteration for solving the equation for a given energy. The latter was similar to
the power method for finding the eigenvector associated with the largest eigenvalue. For
continuum solutions, the energy E is specified and what is needed is the eigenvector of the
nearest (or smallest) eigenvalue to E. Like the power method, the method is iterative.

Let the matrix A be an N×N matrix and L and U lower and upper triangular matrices,
respectively, of similar dimension, such that A = LU. and c(0)i = 1, i = 1, . . . , N is a vector.
Then, starting with m = 0 and incrementing by 1, until the vector c has converged (i.e.,
|cm+1

i − c(m)
i | < 10−12), let:

Ly = c(m)
i

Ux = y

c(m+1) = x/||x||,
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where x and y are vectors of length N. The method was tested for the hydrogen scattering
problem and then photoionisation in He. It was also determined how orthogonality
conditions could be included by extending the definition of A(E) and the vector c for
the case,

Ψ(1sks 1S) = c0|1s2 > +|1sks >, (24)

as an example. Resonances, phase shifts, or photoionisation cross-sections were extracted
from the results. A more extensive investigation of resonance positions and widths for
H− and He was reported by Brage et al. [25,26], adding to the rich ‘flora’ of results by
many different methods for these cases. Xi and Froese Fischer extended these results to
three-electron He− system in the investigation of cross-section and angular-distribution
for the photodetachment of He− 1s2s2p 4Po below the He (n = 4) threshold [27] and also
below the 1s detachment level [28]. A multichannel theory was developed. Among the
resonances found was a 2s2p2 4P resonance state immediately below the 1s threshold. A
similar theory was applied to Be− 1s22s2p2 4P [29].

The above methods had only one region. These simple approaches were extended by
Oleg Zatsarinny to numerous continuum processes based on the R-matrix method [2,30]
with its inner and outer regions and non-orthogonal orbitals. He referred to one region
methods as “straight forward” methods.

6. Spline Methods for Bound State Problems

Several options are available for B-spline solutions that were not feasible for finite
difference methods. Consider the simple equation for 1s2 that was studied by Froese
Fischer and Guo [31]. The differential equation that needs to be solved is:(

d2

dr2 −
2
r

(
Z−Y0(1s, 1s; r)

)
− ε

)
P(1s; r) = 0, (25)

where P(1s; r) = 0 when r = 0 or r → ∞ and the radial function P(1s; r) is expanded in a
B-spline basis so that:

P(1s; r) = ∑ ciBi(r). (26)

This problem can be linearised by computing Y0(1s, 1s; r) from current estimates,
and then solved as a generalised eigenvalue problem for an improved estimate, with at
best a linear rate of convergence. Or, we can think of the equations as non-linear equa-
tions, and solve for changes in the expansion coefficients and energy parameters, using
the Newton–Raphson (NR) method with a quadratic rate of convergence (see Ref. [32]
for details).

The many-electron variational methods are extensions of the Hartree–Fock methods [3,19]
for which three categories of methods have been implemented and evaluated.

6.1. Generalised Eigenvalue Problem for a Single Orbital

In this approach, orbitals are improved one at a time according to a generalized
eigenvalue problem,

(Ha − εaaS)a = 0. (27)

When two orbitals are constrained through orthogonality, as in the case of 1s2s 1S,
then the iterative process will not converge without first rotating the two orbitals, say a
and b for a stationary energy, a process implemented in the SPHF program [3]. Projection
operators may then be applied to eliminate the off-diagonal Lagrange multiplier εab. The
matrix Ha is then a full matrix when exchange contributions are present.

6.2. Multiple Orbitals and SVD

Another possibility is to solve for a set of orbitals at the same time using singular
value decomposition (SVD) which is closely related to inverse iteration and is included in
LAPACK [21].
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Let Ai be the expansion vector for orbital i. Then the system of equations can be
written as: 

F11 F12 · · · F1m

F21 F22 · · · F2m

· · · · · · · · · · · ·
Fm1 Fm2 · · · Fmm




A1
A2
· · ·
Am

 = 0, (28)

where Fii contains the contributions from one-electron integrals, the direct Slater integrals
for orbital i, as well as −εiiB, and Fij (i 6= j) contains the contribution from exchange
integrals between orbitals i and j and possible orthogonality constraints. In this case, all
matrices are banded. In this approach, the energy parameters are computed from current
estimates of the orbitals.

The earlier SVD study [19] showed poor convergence in the case of 1s2s 1S but 1s22s2

converged linearly. For the latter, the off-diagonal energy parameter is zero and rotation
of orbitals is not important. Applying a projection operator to a system of equations is
equivalent to using current estimates of a radial function to determine off-diagonal energy
parameters. It is possible that SVD equations should be extended to include the energy
parameters (diagonal εii) as well as off-diagonal (εij) unknowns so that an effective rotation
of orbitals is part of the SVD solution.

6.3. Newton–Raphson with Quadratic Rate of Convergence

Consider the case of two orbitals a and b, with an orthogonality constraint between
them. Then the unknowns are (a, b, εaa, εbb, εab). The equations to be solved are the two
orbital equations along with the three orthonormality conditions that are part of the
energy functional. Let (a, b) be the current estimates that are used to evaluate the ε-matrix.
If symmetry conditions are not satisfied exactly, we can use the average value,

εab = εba =
(

btHaa + atHbb
)

/2. (29)

Then, by the Newton–Raphson method [3]. ∆a and ∆b are solutions of:
Haa − εaaB Hab − εabB −Ba −Bb
Hba − εabB Hbb − εbbB −Bb −Ba
−(Ba)t

−(Bb)t

−(Bb)t −(Ba)t




∆ a
∆ b
∆εaa
∆εbb
∆εab

 =


−resa
−resb

0
0
0

. (30)

In the above, Ha − εaaS = resa, namely the amount by which the current estimates do
not satisfy the equations.

7. The SPHF and SPMCHF Programs

The B-spline methods clearly offer some advantages, even when they are more compu-
tationally intensive than finite difference methods. The eigenvalue method is the preferred
method for singly occupied orbitals, particularly with large principal quantum numbers.
However for a multiply occupied shell, the Newton–Raphson method is efficient in that
the “self-energy” is readily accounted for which greatly improves the rate of convergence.
When many subshells are present with different principal quantum numbers, convergence
can be improved with the simultaneous improvement of orbitals. For this reason, both
SPHF [3] and SPMCHF (available at GitHub [33]) have “phases” and different “levels” of
accuracy. All iterative methods need initial estimates. The first phase is stable even when
estimates are of a poor accuracy and the grid that defines the B-spline basis is relatively
coarse. Orbitals are updated sequentially using the generalised eigenvalue method on the
first iteration but, in other iterations use NR for a single orbital when a subshell is multiply
occupied. This first phase is referred to as the “SCF” phase. The codes also have the initial
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level of accuracy (with a coarse grid) and less accurate tests for convergence and a higher
level of accuracy. When initial estimates are for the refined grid, the program assumes
there is only one level of accuracy. In any event, the convergence tests may be reset by
the user, over-riding program defaults. Unlike the SPHF program, the SPMCHF program
does not include orbital rotation in this phase. The next phase is thought of as a “clean-up”
phase that raises the level of accuracy and improves the relationship of one subshell to the
other. In the Be 1s22s2 case, if the 1s orbital is too contracted the 2s subshell will be too
expanded. The NR phase deals with this issue that greatly affects the Virial Theorem (V/T)
ratio, as well as orbital rotation when off-diagonal energy parameters are important.

Figure 2 shows the parameters for two levels in the calculation for Be 1s22s2 1S.
The default grids and convergence parameters are displayed for both accuracy levels. No
initial estimates were provided in this case so the initial range was estimated to be fairly
large. At the second level of accuracy, the range is known much more precisely. Notice
the improved VT in going from the first to the second level of accuracy. The 1s2s 1S case
is very similar except now off-diagonal Lagrange multipliers are needed for a stationary
energy with respect to rotation and the requirement that εab = εba. Table 1 shows how
during the SCF iterations, the values are opposite in sign and the calculations do not
converge, but everything changes during the NR iterations and iterations converge rapidly.
The default options of DBSR-HF do not include orbital rotations. For the 1s2s 1S case, it
converges but to an incorrect value, made evident only through the Virial theorem (VT).
Thus VT is an important check for this code.
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the user, over-riding program defaults. Unlike the SPHF program, the SPMCHF program
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expanded. The NR phase deals with this issue that greatly affects the Virial Theorem (V/T)
ratio, as well as orbital rotation when off-diagonal energy parameters are important.
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MCHF WAVE FUNCTIONS FOR Be Z = 4.0
Core = 1s( 2)

Other Orbitals = 2s( 2)
Level 1: MCHF_parameters
----------------------

Step-size (h) 0.25000
Spline order (ks) 4
Size of basis (ns) 38
Maximum radius 252.44
SCF convergence tolerance 1.00D–11
Orbital convergence tolerance 1.00D–05
Orbital tail cut-off 1.00D–05
Orbitals varied all, all

TOTAL ENERGY (a.u.) –14.573017876615637
Ratio –2.000000986194356

Level 2: MCHF_parameters
----------------------

Step-size (h) 0.12500
Spline order (ks) 8
Size of basis (ns) 60
Maximum radius 50.10
SCF convergence tolerance 1.00D–15
Orbital convergence tolerance 1.00D–08
Orbital tail cut-off 1.00D-08
Orbitals varied all, all

TOTAL ENERGY (a.u.) –14.573023168316350
Ratio -2.000000000000619

Figure 2. Computer output showing the convergence for the two levels of accuracy . The calculations
are for Be 1s22s2 1S.

Figure 2. Computer output showing the convergence for the two levels of accuracy. The calculations
are for Be 1s22s2 1S.



Atoms 2021, 9, 50 10 of 14

Table 1. Table showing the convergence of off-diagonal energy parameters ε1s2s and ε2s1s as a
function of the iteration (i) for the eigenvalue SCF iteration updating orbitals sequentially and the
Newton–Raphson (NR) method updating both simultaneously. The calculations are for He 1s2s 1S.
The values for i = 0 of the SCF iteration are computed from initial estimates. For all other iterations,
values are determined after the iteration has completed. For exact solutions, ε1s2s = ε2s1s. Note that
the SCF process did not converge.

SCF NR

i ε1s2s ε2s1s i ε1s2s ε2s1s

0 0.03432768 0.35742083 4 0.15038917 0.14949971
1 −0.00696379 0.13503646 5 0.15093334 0.15089696
2 −0.00969413 0.14106384 6 0.15089696 0.15089696
3 −0.00968723 0.14104181 7 0.15089691 0.15089691

8 0.15089706 0.15089705

The SPMCHF method differs not only in that expansion coefficients for configuration
states (CSFs) need to be determined but also in that the the energy expression is no longer
limited to direct (Fk(a, b)) and exchange (Gk(a, b)) Slater integrals. The process by which
the energy expression relates to the matrix form 〈a | Ha | a〉 requires that two occurrences
of the orbital a be present in the matrix element [19]. In the MCHF approximation:

Ψ(3s3d 1D) = c1Φ(3s3d 1D) + c2Φ(3p2 1D) (31)

the interaction matrix element is 2√
15

R1(3s3d, 3p3p). The SPMCHF treats the contribution
to Equation (27) for 3s or 3d as a “residual” term (not included in the matrix), but Zat-
sarinny [34] pointed out that if the matrix element was treated as:

2√
15

R1(3s3d, 3p3p)S(3s, 3s)S(3d, 3d) (32)

then the matrix form could be retained. The factors, S(3s, 3s) and S(3d, 3d) are normalisa-
tion integrals. This modification has not yet been implemented in SPMCHF.

Figure 3 and 4 show the SPMCHF solution for this example. Neither SPHF nor SPMCHF

require initial estimates so the first calculation was for a Hartree Fock calculation for Mg
3s3d 1D. The output was then used in the second multiconfiguration run as input to serve
as initial estimates and the first level varied only the 3p orbital, not present in the input.
Then the second varied all orbitals with excellent results as reported.

At this time, the SPMCHF program for multiconfiguration wave functions has not yet
been been fully tested. Through the use of the term=jj command-line option, the fully
relativistic DBSR-HF code can be used as an average energy level (EAL) approximation.
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MCHF WAVE FUNCTIONS FOR Mg Z = 12.0
Core = 1s( 2) 2s( 2) 2p( 6)

Other Orbitals = 3s~3d
Level 1: MCHF_parameters
----------------------

Step-size (h) 0.25000
Spline order (ks) 4
Size of basis (ns) 43
Maximum radius 256.79
SCF convergence tolerance 1.00D-11
Orbital convergence tolerance 1.00D-05
Orbital tail cut-off 1.00D-05
Orbitals varied all, all

SCF Phase
DeltaE =-0.17171D+02 Weighted total energy = -192.1383765929
DeltaE =-0.55311D+01 Weighted total energy = -197.6694874160
DeltaE =-0.89908D+00 Weighted total energy = -198.5685626677
DeltaE =-0.31594D+00 Weighted total energy = -198.8845019714
ALL_NR Phase
DeltaE = -0.4492D+00 Weighted total energy = -199.3336968207
DeltaE = -0.8426D-01 Weighted total energy = -199.4179608981
DeltaE = -0.8718D-02 Weighted total energy = -199.4266784165
DeltaE = -0.6904D-05 Weighted total energy = -199.4266853209
DeltaE = -0.7562D-07 Weighted total energy = -199.4266853965
DeltaE = -0.2549D-10 Weighted total energy = -199.4266853965
TOTAL ENERGY (a.u.) -199.426685396493866

Ratio -2.000000645930774
Level 2: MCHF_parameters
----------------------

Step-size (h) 0.12500
Spline order (ks) 8
Size of basis (ns) 78
Maximum radius 139.13
SCF convergence tolerance 1.00D-15
Orbital convergence tolerance 1.00D-08
Orbital tail cut-off 1.00D-08
Orbitals varied all, all

ALL_NR Phase
DeltaE = -0.3474D-04 Weighted total energy = -199.4267518942
DeltaE = 0.2993D-10 Weighted total energy = -199.4267518941
DeltaE = 0.6821D-12 Weighted total energy = -199.4267518941
TOTAL ENERGY (a.u.) -199.426751894120116

Ratio -1.999999999999927

Figure 3. Computer output of a Hartree–Fock calculation for the Mg [Ne] 3s3d 1D wave function.
Figure 3. Computer output of a Hartree–Fock calculation for the Mg [Ne] 3s3d 1D wave function.
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MCHF WAVE FUNCTIONS FOR Mg Z = 12.0
Core = 1s( 2) 2s( 2) 2p( 6)

Other Orbitals = 3s 3d~3p
Level 1: MCHF_parameters
----------------------

Step-size (h) 0.12500
Spline order (ks) 8
Size of basis (ns) 78
Maximum radius 139.13
SCF convergence tolerance 1.00D-15
Orbital convergence tolerance 1.00D-08
Orbital tail cut-off 1.00D-08
Orbitals varied =1, all

SCF Phase
DeltaE =-0.59389D-02 Weighted total energy = -199.4326908631
DeltaE =-0.15426D-02 Weighted total energy = -199.4342334760
DeltaE =-0.60072D-06 Weighted total energy = -199.4342340767
DeltaE =-0.38938D-11 Weighted total energy = -199.4342340767
ALL_NR Phase
DeltaE = -0.5324D-02 Weighted total energy = -199.4395583266
DeltaE = -0.8646D-03 Weighted total energy = -199.4404229110
DeltaE = -0.1338D-03 Weighted total energy = -199.4405567000
DeltaE = -0.1961D-04 Weighted total energy = -199.4405763067
DeltaE = -0.2794D-05 Weighted total energy = -199.4405791006
DeltaE = -0.3935D-06 Weighted total energy = -199.4405794941
DeltaE = -0.5516D-07 Weighted total energy = -199.4405795492
DeltaE = -0.7719D-08 Weighted total energy = -199.4405795569
DeltaE = -0.1079D-08 Weighted total energy = -199.4405795580
DeltaE = -0.1517D-09 Weighted total energy = -199.4405795582
DeltaE = -0.2049D-10 Weighted total energy = -199.4405795582
DeltaE = -0.3467D-11 Weighted total energy = -199.4405795582
DeltaE = 0.5400D-12 Weighted total energy = -199.4405795582
...
TOTAL ENERGY (a.u.) -199.440579558185400

Ratio -2.000000000000509

Figure 4. Computer output for multiconfiguration calculation for Ψ(3s3d 1D) = c1Φ(3s3d 1D) +

c2Φ(3p2 1D). Calculations are for Mg [Ne]3s3d 1D using the radial functions from Figure 3 as
initial estimates.

8. Concluding Remarks

The spline codes reviewed in this article were developed in the last 20 or so years.
For bound state problems, the GRASP code, for example [20], based on finite difference
methods and an orthonormal orbital basis, is extensively used for complete spectra in-
cluding relatively highly excited levels [35] and certain heavy elements, primarily for
highly ionised systems where valence correlation can be dealt with and the effect of core
correlation on spectra and other properties is limited. SPMCHF with its greater flexibility
still needs to be tested on lanthanides and actinides with two open shells (n = 4, 5 for
lanthanides and n = 5, 6 for actinides) where natural orbital transformation could prove
useful in connection with orthonormal radial functions [36]. Multiple f -orbitals could also
be a challenge for BSR in that the number of determinants can increase rapidly.

In 1984, it took 254 seconds to execute a numerical HF program for Ra 7s2 1S on a VAX
11/780; in 1987, 2 seconds on a Cray X-MP; and in 1993, 1 s on a Dec Alpha, which was
a popular computer at its time. Thus time (cost) is no longer an important factor but rather
ease of use and reliability. The same is not true when accurate wave functions are needed
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c2Φ(3p2 1D). Calculations are for Mg [Ne]3s3d 1D using the radial functions from Figure 3 as
initial estimates.

8. Concluding Remarks

The spline codes reviewed in this article were developed in the last 20 or so years.
For bound state problems, the GRASP code, for example [20], based on finite difference
methods and an orthonormal orbital basis, is extensively used for complete spectra in-
cluding relatively highly excited levels [35] and certain heavy elements, primarily for
highly ionised systems where valence correlation can be dealt with and the effect of core
correlation on spectra and other properties is limited. SPMCHF with its greater flexibility
still needs to be tested on lanthanides and actinides with two open shells (n = 4, 5 for
lanthanides and n = 5, 6 for actinides) where natural orbital transformation could prove
useful in connection with orthonormal radial functions [36]. Multiple f -orbitals could also
be a challenge for BSR in that the number of determinants can increase rapidly.

In 1984, it took 254 seconds to execute a numerical HF program for Ra 7s2 1S on a VAX
11/780; in 1987, 2 seconds on a Cray X-MP; and in 1993, 1 s on a Dec Alpha, which was
a popular computer at its time. Thus time (cost) is no longer an important factor but rather
ease of use and reliability. The same is not true when accurate wave functions are needed
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for many-electron systems for different atomic properties. Important now is how well an
algorithm can be made parallel, and how efficiently memory usage can be managed.

The present paper has been about non-relativistic calculations. Relativistic methods
are similar, except that the decision to represent large and small components of radial
functions by splines of different order, automatically implies that every Slater integral is the
sum of four integrals. This decision was important in BSR [2] in that it eliminated spurious
solutions in the R-matrix and was also used for DBSR-HF. However, is it the most efficient
solution of the problem? For a grid of nv intervals, the number of independent basis
functions is nv + ks − 1. Thus, by going from ks to ks − 1, the number of independent basis
states decreases. The spurious solutions generally are higher in the spectrum. For bound
state solutions, the asymptotic conditions are such that both the large and small components
and their derivatives go to zero. In fact, in non-relativistic calculations, applying both
conditions stabilises the solution at large r. Further study might be appropriate.
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20. Froese Fischer, C.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the General Relativistic Atomic

Structure Package. Comput. Phys. Commun. 2019, 237, 184–187. [CrossRef]
21. LAPACK Library. Available online: http://www.netlib.org/lapack/ (accessed on 28 July 2021).

http://doi.org/10.1016/0010-4655(96)00079-3
http://dx.doi.org/10.1016/j.cpc.2005.10.006
http://dx.doi.org/10.1143/JPSJ.75.114301
http://dx.doi.org/10.1143/JPSJ.76.054301
http://dx.doi.org/10.1016/j.cpc.2008.12.010
http://dx.doi.org/10.1016/j.cpc.2015.12.023
http://dx.doi.org/10.1103/RevModPhys.23.69
http://dx.doi.org/10.1088/0034-4885/64/12/205
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1016/0010-4655(78)90057-7
http://dx.doi.org/10.1016/j.cpc.2007.01.006
http://dx.doi.org/10.1016/0010-4655(88)90141-5
http://dx.doi.org/10.1016/0375-9601(93)91138-U
http://dx.doi.org/10.1006/jcph.1999.6361
http://dx.doi.org/10.1177/109434209100500101
http://dx.doi.org/10.1016/j.cpc.2018.10.032
http://www.netlib.org/lapack/


Atoms 2021, 9, 50 14 of 14

22. LINPACK Library. Available online: http://www.netlib.org/linpack/ (accessed on 28 July 2021).
23. Froese Fischer, C.; Idrees, M. Spline algorithms for continuum functions. Comput. Phys. 1989, 3, 53–58. [CrossRef]
24. Froese Fischer, C.; Idrees, M. Spline methods for resonances in photoionisation cross sections. J. Phys. B At. Mol. Opt. Phys. 1990,

23, 679. [CrossRef]
25. Brage, T.; Froese Fischer, C.; Miecznik, G. Non-variational, spline-Galerkin calculations of resonance positions and widths, and

photodetachment and photoionization cross sections for H− and He. J. Phys. B At. Mol. Opt. Phys. 1992, 25, 5289–5314. [CrossRef]
26. Brage, T.; Froese Fischer, C. Spline-Galerkin methods for Rydberg series, including Breit-Pauli effects. J. Phys. B At. Mol. Opt.

Phys. 1994, 27, 5467–5484. [CrossRef]
27. Xi, J.; Froese Fischer, C. Cross section and angular distribution for the photodetachment of He− 1s2s2p 4Po below the He n = 4

threshold. Phys. Rev. A 1996, 53, 3169–3177. [CrossRef]
28. Xi, J.; Froese Fischer, C. Photodetachment cross-section of He- (1s2s2p 4Po ) in the region of the 1s detachment threshold. Phys.

Rev. A 1999, 59, 307–314. [CrossRef]
29. Xi, J.; Froese Fischer, C. Cross section and angular distribution for photodetachment of Be- 1s22s2p2 4P. J. Phys. B At. Mol. Opt.

Phys. 1999, 32, 387–396. [CrossRef]
30. Zatsarinny, O.; Froese Fischer, C. The use of basis splines and non-orthogonal orbitals in R-matrix calculations: Application to Li

photoionization. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 313–341. [CrossRef]
31. Froese Fischer, C.; Guo, W. Spline algorithms for the Hartree-Fock equation for the helium ground state. J. Comput. Phys. 1990, 90,

486–496. [CrossRef]
32. Froese Fischer, C.; Guo, W.; Shen, Z. Spline methods for multiconfiguration Hartree-Fock calculations. Int. J. Quantum Chem. 1992,

42, 849–867. [CrossRef]
33. SPMCHF. Available online: http://github.com/compas/spmchf(accessed on 28 July 2021).
34. Zatsarinny, O.; Drake Umiversity. Private communication, 1 May 2016.
35. Li, W.; Amarsi, A.M.; Papoulia, A.; Ekman, J.; Jönsson, P. Extended theoretical transition data in C I–IV. Mon. Not. R. Astron. Soc.

2021, 502, 3780–3799. [CrossRef]
36. Schiffmann, S.; Godefroid, M.; Ekman, J.; Jönsson, P.; Froese Fischer, C. Natural orbitals in multiconfiguration calculations of

hyperfine-structure parameters. Phys. Rev. A 2020, 101, 062510. [CrossRef]

 http://www.netlib.org/linpack/
http://dx.doi.org/10.1063/1.168325
http://dx.doi.org/10.1088/0953-4075/23/4/002
http://dx.doi.org/10.1088/0953-4075/25/24/010
http://dx.doi.org/10.1088/0953-4075/27/22/007
http://dx.doi.org/10.1103/PhysRevA.53.3169
http://dx.doi.org/10.1103/PhysRevA.59.307
http://dx.doi.org/10.1088/0953-4075/32/2/019
http://dx.doi.org/10.1088/0953-4075/33/3/303
http://dx.doi.org/10.1016/0021-9991(90)90176-2
http://dx.doi.org/10.1002/qua.560420422
http://github.com/compas/spmchf
http://dx.doi.org/10.1093/mnras/stab214
http://dx.doi.org/10.1103/PhysRevA.101.062510

	Introduction
	In the Beginning ...
	The B-Spline Basics
	Spline Grid for Radial Functions
	Integration Methods
	Slater Integrals

	Tensor Products of B-Splines as a Basis
	 Spline Galerkin and Inverse Iteration Methods
	 Spline Methods for Bound State Problems
	 Generalised Eigenvalue Problem for a Single Orbital
	Multiple Orbitals and SVD
	 Newton–Raphson with Quadratic Rate of Convergence

	The sphf and spmchf Programs
	 Concluding Remarks
	References

