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Abstract: The spatial variation of poplars’ reproductive phenology in Beijing’s urban area has ag-
gravated the threat of poplar fluff (cotton-like flying seeds) to public health. This research explored
the impact of microclimate conditions on the reproductive phenology of female Populus tomentosa
in Taoranting Park, a micro-scale green space in Beijing (range <1 km). The observed phenophases
covered flowering, fruiting, and seed dispersal, and ENVI-MET was applied to simulate the effect
of the microclimate on SGS (start day of the growing season). The results showed that a signifi-
cant spatial variation in poplar reproductive phenology existed at the research site. The variation
was significantly affected by the microclimate factors DMT (daily mean temperature) and DMH
(daily mean heat transfer coefficient), with air temperature playing a primary role. Specifically,
the phenology of flowering and fruiting phenophases (BBB, BF, FF, FS) was negatively correlated
with DMT (−0.983 ≤ r ≤ −0.908, p <0.01) and positively correlated with DMH (0.769 ≤ r ≤ 0.864,
p < 0.05). In contrast, DSD (duration of seed dispersal) showed a positive correlation with DMT
(r = 0.946, p < 0.01) and a negative correlation with DMH (r = −0.922, p < 0.01). Based on the findings,
the increase in air convection with lower air temperature and decrease in microclimate variation in
green space can be an effective way to shorten the seed-flying duration to tackle poplar fluff pollution
in Beijing’s early spring.

Keywords: ENVI-MET simulation; microclimate; micro-scale space; Populus tomentosa; reproductive
phenology; spatial variation

1. Introduction

The rapid changes in urban environments driven by the massive landscape reshaping
during urbanization have dramatically shifted the growth rhythm of city plants [1–4].
The variation of the phenological temporal pattern can affect public health by influencing
the occurrence period of phenology-triggered diseases [5,6].

A long-term phenology-correlated public health problem in Beijing is the seasonal
respiratory diseases caused by the cotton-like flying seeds from Populus tomentosa (Chinese
white poplar) and other Salicaceae species in early spring [7,8]. P. tomentosa is one of the
most common and widespread deciduous woody species native to Beijing. It is dioecious
and wind-pollinated, blooming in early spring before leafing [9]. In the 1960s, 0.2 million
cloned female poplars were planted in Beijing city in a large-scale city greening action,
in consideration of their rapid propagation and fast growth at a young age. Since then,
the catkin fibers have become a major trigger of respiratory ailments, skin anaphylaxis,
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inflammation, and other diseases in Beijing’s early spring, posing a great risk to public
health [10,11]. Beyond China, some other countries also face similar health problems caused
by poplar fluff. For example, in Kashmir, India, the flying seeds of introduced Eastern
Cottonwood (Populus deltoides) have given significant rise to the respiratory disease cases of
local people in recent years [12,13]. In Abbottabad, Pakistan, as one of the main triggers of
allergic asthma in spring, poplar fluff has caused severe psychological stress [14]. In Beijing,
several strategies have been put forward by the Beijing Gardening and Greening Bureau to
control poplar seed pollution, such as breeding sterile triploid female poplars, replacing
female plants with male ones, and inhibiting catkin formation [15,16]. However, the heavy
workload, high economic cost, and limited budget for treating such a huge number of
targeted poplars made the implementation very difficult. Furthermore, the interindividual
difference in the seed dispersal time between different regions or within green spaces
extended the overall flying-seed period in Beijing’s urban area [17], aggravating the threat
of catkin fibers to public health. A profound understanding of the temporal pattern of
poplars’ reproductive phenology and the impact mechanism behind the spatial variation is
the basic step to tackle this problem.

In recent years, a prominent intra-urban spatial variation of plant spring phenology
has been found in many metropolises at both an urban scale (<50 km) [18–21] and micro-
scale (<1 km) [19]. With regard to the impact mechanism associated with the intra-urban
phenological variation, most of the research was conducted at an urban scale, revealing
that the urban-scale variation in spring phenology was mainly driven by environmental
factors, especially the near-surface air temperature that indicates urban heat [19,21,22].
However, the key influential factors of the phenological variation at the micro-scale are still
largely unknown, even though a spatially uneven microclimate has been found in urban
green spaces [23,24]. For urban-scale research, a significant phenological variation within
a green space can affect the overall spatial pattern of studied phenology [22]. Therefore,
more micro-scale studies need to be done.

In this research, we focused on the spatial variation of the reproductive phenology
of female P. tomentosa in Taoranting Park, a micro-scale green space in Beijing, aiming to
explore the key influential factors of this phenological variation. We attempted to answer
two questions: (1) Is there a significant spatial variation in the reproductive phenology
of female P. tomentosa in Taoranting Park? (2) What are the key influential factors for this
variation? Assuming the impact mechanism at the micro-scale is similar to what has been
widely revealed for the urban scale, we proposed two hypotheses to be tested.

Hypothesis 1 (H1): There was no significant difference between the reproductive phenology of P.
tomentosa in different sampling points of Taoranting Park (p > 0.05). H1: There was a significant
difference between the reproductive phenology of P. tomentosa in different sampling points of
Taoranting Park (p < 0.05).

Hypothesis 2 (H2): The spatial variation in reproductive phenology had no significant correlation
with any microclimate factor (p > 0.05). H1: The spatial variation in reproductive phenology had a
significant correlation with at least one of the microclimate factors (p < 0.05).

Based on the revealed impact, this study attempted to gain some insight into more
effective control and management of poplars’ catkin fiber pollution in Beijing’s early spring.

2. Materials and Methods
2.1. Research Site

The research was conducted in Taoranting Park, Xicheng District, Beijing, China.
Beijing (39◦54′ N 116◦24′ E), the capital city of China, is located at the northern tip of
the North China Plain. Beijing has a monsoon-influenced humid continental climate,
characterized by hot, humid summers and cold, dry winters. Taoranting Park (39◦52′21” N
116◦22′32” E) is situated in the central downtown area of the dense capital city. As one of the
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largest urban public gardens in Beijing, with a 65-year development history, Taoranting Park
is famous for the flourishing vegetation with rich diversity and healthy growth conditions.
The dense evergreen forest dominated by Platycladus orientalis (L.) and Juniperus chinensis L.
together with deciduous groves has formed various green spaces in the garden, and the
uneven landscape structure of the underlying surface has resulted in a highly diverse
microclimate environment.

2.2. Research Object

Female Populus tomentosa (Chinese white poplar) trees growing in Taoranting Park
were the research objects for phenological observation. According to the garden con-
struction record, the adult female white poplars in Taoranting Park were planted in 1952.
The seedlings were a batch of clones that were propagated with the cutting of root suckers
from a stock plant. Therefore, the influence of genetic variation on the interindividual
phenological variation [25,26] could be excluded in this research.

2.3. Selection of Sample Poplars and Setting of Sampling Points

There were eight female poplar populations distributed in the green space, with each
population composed of 3–5 individuals. From each population, we selected two adjacent
adult individuals with good growth conditions (that performed well in yearly growth
and reproduction, with no sign of diseases or being subject to serious environmental
stress) as the sample poplars of this population; their canopy height ranged from 5 to
11 m. The central growing point of the two sampling trees was set as the sampling point;
the distribution of eight sampling points is shown in Figure 1.

Figure 1. The distribution of sampling points and setting of the buffer area in Taoranting Park.
The background image is the Worldview-3 satellite image of Taoranting Park taken in February 2019.

From each sampled individual, three branchlets at the height of 7–9 m above ground
were selected for phenological observation, with 20–30 catkins growing on each branchlet.
A branchlet refers to a 2-year-old branch formed in the previous year [27]. The phenology
data of each branchlet were obtained from the earliest catkin, and the data for each sampling
point were the values of six branchlets (three branchlets/individual × two individuals).
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2.4. Setting of the Buffer Area

A buffer area was set around each sampling point for microclimate simulation.
Each buffer area was a 100 m × 100 m square centered on the sampling point, as shown
in Figure 1. The size of the buffer area was determined with reference to the findings of
previous research, i.e., that the microclimate of a point in urban green land can interact with
the thermal environment of its surrounding area within a range of 100–200 m [24,28,29].
Considering that the distance between any two sampling points was less than 100 m
in this research, the side length of the square buffer area was set to 100 m to prevent
considerable overlap.

2.5. Data Collection
2.5.1. Reproductive Phenology Data Collection

The reproductive phenology of female P. tomentosa was observed from February
20 until April 18 in 2019, covering the entire reproduction process from the beginning
of bud break to the end of seed dispersal. The observation was conducted every day
at 13:00–14:00, when the air temperature reaches its daily maximum and often drives a
phenological change [30].

The BBCH (Biologische Bundesanstalt, Bundessortenamt and Chemical Industry)
scale was used to identify the phenological development stages, i.e., phenophases [31],
and the phenology data of each phenophase were recorded in Julian Day (the day of the
year). The observed phenophases covered flowering, fruiting, and seed dispersal, including
the Beginning of Bud Break (BBB, 07)—bud scales spread open with the catkin top visible,
Beginning of Flowering (BF, 60)—the first few flowers bloom, Full Flowering (FF, 65)—more
than 95% flowers bloom, Fruit Set Visible (FS, 69)—green fruits appear behind flowers,
Beginning of Seed Dispersal (BSD, 89a)—pericarps crack and the first few seeds covered
with white fibers detach, End of Seed Dispersal (ESD, 89b)—all the seeds detach from
peduncles, and Duration of Seed Dispersal (DSD, N/A)—The period between BSD and
ESD. The number in the parentheses is the BBCH code for each phenophase (Finn et al.,
2007). The detailed images of the reproductive phenophases are shown in Figure 2.

Figure 2. Detailed images of the reproductive phenophases of female P. tomentosa. (a) Beginning of bud break (BBB),
(b) Beginning of flowering (BF), (c) Full flowering (FF), (d) Fruit set visible (FS), (e) End of flowering, (f) Beginning of seed
dispersal (BSD), (g) Peak of seed dispersal, (h) End of seed dispersal (ESD).

2.5.2. Data Collection of Microclimate Factors with ENVI-MET Simulation

We needed to evaluate the microclimate environment at the height of the sampled
branches (7–9 m). Field data measurements are generally accepted and widely applied in
the data collection of the microclimate condition, including using fixed equipment [32].
However, this method was not feasible in this research, subject to the management regu-
lation of the Park Administrative Office, that no equipment was allowed to be attached
to tree branches to prevent potential damage caused to the plants. Unable to measure the
microclimate with field data, we applied ENVI-MET software (ENVI-MET 4.0, sourced
from ENVI_met GmbH, Essen, Germany) for microclimate simulation in the micro-scale
green space.

ENVI-MET is holistic, three-dimensional and non-hydrostatic modeling software, de-
veloped by the research team of Professor Michael Bruse at Johannes Gutenberg University
Mainz [33]. Based on computational fluid dynamics, ENVI-MET is often used to simulate
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urban microclimate environments and evaluate the effects of small-scale variations in
urban design (e.g., atmosphere, vegetation, architecture, and materials) on the microcli-
mate [34–40]. ENVI-MET has some functions in favor of phenological research. Firstly,
the 3D modeling can simulate meteorological conditions at a specific height, a favorable
point for the phenological research of tree species, whose reproductive phenology can
be directly affected by the microclimate condition at canopy height via bud temperature
perception [41]. Secondly, ENVI-MET can simulate multiple microclimate parameters, e.g.,
air temperature, convection, and wind, which can help explore the key microclimate factors
that affect plant phenology. These characteristics provide evidence for its applicability in
phenological research.

The microclimate simulation in ENVI-MET mainly includes the following several
steps: (1) Create a Workspace in Manage Projects and Workspaces, (2) Construct a 3D model
in SPACES, (3) Run the Simulation in ENVIGuide, (4) Extract data in LEONARDO.

3D Model Construction

The satellite images of the eight 100 m × 100 m buffer areas were extracted from the
Worldview−3 image of Taoranting Park in February 2019 as the background image for
model construction. A network of 50 grids (x)× 50 grids (y)× 30 grids (z) with a resolution
ratio of 2 m/grid was constructed for each buffer area in ENVI-MET.

The basic model elements include architecture, vegetation, DEM (topography), soil,
and surface (including water). The height of landscape elements (e.g., evergreen trees and
architecture) was measured with Nikon Forestry Pro, i.e., laser rangefinder equipment.
The height of the architecture and single trees was measured one by one, while the height
of evergreen forest was measured using 3–5 sample trees at the forest edge surrounding
the sampling point. The topography data were extracted from Google Earth Pro. The vege-
tation and architecture layer of the constructed models is shown in Figure 3, which can
reflect the various landscape structures of the underlying surface of the eight buffer areas.

Figure 3. The vegetation and architecture layer of the ENVI-MET model for the eight buffer areas.

Microclimate Simulation

Simulation time. The number of days for microclimate simulation varied between
different studies, ranging from one day [42,43] to three days [44] or more [33,45]. Generally,
the simulation of the microclimate for each hour would take 0.5–1.5 h in ENVI-MET (when
running on equipment with a Core i7 processor and 8 Gb RAM), which varied depending
on the complexity of the models and the running speed of the equipment. In this research,
the ENVI-MET simulation for one-day microclimate of the eight models (eight buffer areas)
would take more than 10 days with tests and final running time taken into account.
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Spring phenology in temperate zones is affected by the microclimate of the develop-
ment period prior to the phenophase occurrence [46]; therefore, the microclimate during
this period was expected to be simulated in this research. Considering the high time
consumption of ENVI-MET simulation for the eight buffer areas, we chose to simulate the
microclimate condition on 25 February 2019, the start of the growing season (SGS) for P.
tomentosa in Beijing. SGS was chosen for simulation considering that the above-threshold
air temperature at the onset of the growing season could be an effective stimulus to ini-
tiating spring phenology, such as sprouting and flowering [46]. SGS is defined as the
beginning of the first six consecutive days with local daily mean air temperature > 5 ◦C,
the general threshold temperature for tree growth in temperate zones [47,48]. The date of
SGS was calculated based on the dynamics of daily mean temperature in Beijing’s early
spring (shown in Appendix A, Figure A1). The simulation extended a period of 24 h from
0:00 to 24:00. Each simulation had been repeated twice before to ensure a steady running
condition in the final round.

Initial meteorological condition preset. We preset the initial meteorological condition
including wind, temperature, and humidity. We used min/max temperature bounds for
forcing in ENVI-MET. The data for the meteorology preset came from the Hourly Observation
Dataset of Surface Meteorological Stations in Beijing Station (54,511, 39◦48′ N,116◦28′ E,
31.5 m elevation above sea level), retrieved from the Chinese Meteorological Data Network
(http://data.cma.cn/) (accessed on 15 March 2021). The detailed setting of the background
meteorological condition is shown in Table 1.

Table 1. The setting of background parameters for microclimate simulation in ENVI-MET.

Parameters

Wind Speed
Measured at
10 m Height

(m/s)

Wind
Direction (deg)

Minimum
Temperature of
the Atmosphere

(◦C)

Maximum
Temperature of
the Atmosphere

(◦C)

Minimum
Relative

Humidity at
2 m (%)

Maximum
Relative

Humidity at
2 m (%)

Set value 1.89 45 −2 12 17 47

Simulation. The microclimate simulation was run in ENVIGuide. The output data
were stored in SIMX files.

Data Extraction and Calculation of Microclimate Parameters

Data extraction. The output of the ENVI-MET simulation provided hourly data of
multiple microclimate parameters. In this research, the air temperature (◦C), heat transfer
coefficient (m2/s), and wind speed (m/s) were selected as the microclimate factors to
be analyzed. The heat transfer coefficient/heat exchange coefficient is a proportionality
constant between the heat flux and the thermodynamic driving force for the flow of
heat [49]. In thermodynamics, the heat transfer coefficient usually indicates the overall heat
transfer rate, reflecting the efficiency and activeness of air convection, and is considerably
affected by the pattern of air-flow and the geometry of solid space [49,50]. In this study,
besides the two basic factors, air temperature and wind speed, the heat transfer coefficient
was also used to explore the impact of convection efficiency on reproductive phenology.

Calculation of microclimate parameters. Considering that the reproductive phenology
of sampling branchlets could be directly affected by the surrounding microclimate condi-
tion, the microclimate data of each sampling point was extracted from the central eight grids
in the 4 m (x-axis) × 4 m (y-axis) × 2 m (h-axis) model space. The 4 m × 4 m horizontal
area was constituted by four grids (25,25),(25,26),(26,25),(26,26) at each height, the verti-
cal range of 2 m covered the height of 7 m and 9 m (the height of sampled branchlets).
The values of the daily mean air temperature (DMT), daily mean heat transfer coefficient
(DMH), and daily mean wind speed (DMW) for each grid were calculated with the hourly

http://data.cma.cn/
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simulated data. Taking air temperature as an example, the DMT for each sampling point
was calculated with Formula (1).

DMTn =
Σx=25,26Σy=25,26Σh=7,9(DMTn)xyh

4 ∗ 2
, n = 1, 2, 3 . . . . . . 8 (1)

where DMTn refers to the DMT of sampling point n; x,y,h refer to the respective x-ordinate,
y-ordinate, and h-ordinate of a grid in the model; (DMTn)xyh refers to the DMT on the grid
(x,y,h) of sampling point n.

The Accuracy Evaluation of ENVI-MET Microclimate Simulation

The measured and simulated air temperature 1.5 m above ground was used for the
accuracy evaluation. The air temperature of 1.5 m above ground (Ta) is one of the standard
indexes for the performance evaluation of ENVI-MET microclimate simulation [39,51,52].
The field data of air temperature at eight sampling points were simultaneously collected at
9 a.m., 11 a.m., and 13 p.m. on February 25, with TES−1314, a high-accuracy handheld
digital hygrothermograph.

A suite of quantitative indices for model evaluation recommended by Willmott
(1982) [53], was used to evaluate the model performance, including the root mean square
error (RMSE), systematic errors (RMSEs), unsystematic errors (RMSEu), and the index
of agreement (d). With a purpose to obtain an accurate simulation outcome, the magni-
tude of RMSEs should approach 0, the value of RMSEu should approach RMSE, and the
value of d should approach 1. RMSE, RMSEs, RMSEu, and d were calculated with
Formulas (2)–(8) [54,55].

RMSE =
√

RMSES
2 + RMSEu2 (2)

RMSES =

√√√√N−1
N

∑
i=1

(
P̂i −Oi

)2 (3)

RMSEu =

√√√√N−1
N

∑
i=1

(
Pi − P̂i

)2 (4)

P̂i = f (Oi) = E(Oi|Pi) = a + bOi (5)

d = 1−
[

ΣN
i=1(Pi −Oi)

2

ΣN
i=1

(∣∣P′i ∣∣+ ∣∣O′i∣∣)2

]
, 0 ≤ d ≤ 1 (6)

P′i = Pi −O (7)

O′i = Oi −O (8)

where Oi refers to the observed value, Pi refers to the simulated value, P̂i refers to the fitted
value from the linear regression equation between the observed value and simulated value,
and Oi refers to the average of observed values.

2.6. Statistical Analysis
2.6.1. MANOVA (Multivariate Analysis of Variance) of the Reproductive Phenology
among Different Sampling Points

Multivariate analysis of variance (MANOVA) was applied to explore whether there
was a significant variation in the reproductive phenology of female P. tomentosa among
the eight sampling points within the green space. The dependent variables for MANOVA
included the phenology of various reproductive phenophases—BBB (beginning of bud
break), BF (beginning of flowering), FF (full flowering), FS (fruit set visible), BSD (beginning
of seed dispersal), ESD (end of seed dispersal), DSD (duration of seed dispersal).
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2.6.2. Pearson Correlation Analysis between Reproductive Phenology and
Microclimate Factors

Pearson correlation between the microclimate parameters and reproductive phenology
was analyzed to explore the key microclimate factors that had a significant influence on the
spatial variation of studied phenology and to reveal the quantitative impact. The indepen-
dent variables for Pearson correlation analysis included DMT (daily mean temperature),
DMH (daily mean heat transfer coefficient) and DMW (Daily mean wind speed); the ana-
lyzed dependent variables included the phenology of the reproductive phenophases—BBB,
BF, FF, FS, BSD, ESD, DSD.

2.6.3. Multiple Regression Analysis of Reproductive Phenology in Relation to Multiple
Microclimate Factors

Multiple regression analysis was performed to explore the overall correlation pattern
between the phenology of each reproductive phenophase and multiple microclimate factors
(DMT, DMH, DMW). According to the primary multiple regression analysis, there was a
high-degree multicollinearity between DMT and DMH with VIF (variance inflation) >10.
In response to the problem of multicollinearity, we applied Ridge Regression in the multiple
regression analysis [56,57].

3. Results
3.1. Simulated Microclimate Conditions in Taoranting Park

With respect to the accuracy evaluation of the air temperature simulation in ENVI-
MET, RMSE = 1.057 ◦C, RMSEs = 0.684 ◦C, RMSEu = 0.806 ◦C, d = 0.962. With RMSEu
approaching RMSE and d approaching 1, the model performance can be evaluated as ‘good’,
which means the ENVI-MET simulation could reflect the actual thermal environment in
this research. The detailed data of the accuracy evaluation are shown in Appendix A,
Table A1 and Figure A2.

Among the eight sampling points, DMT (daily mean temperature) ranged from 4.578
to 5.071 ◦C, SD = 0.147 ◦C; DMH (daily mean heat transfer coefficient) ranged from 0.440
to 1.403 m2/s, SD = 0.300 m2/s; DMW (daily mean wind speed) ranged from 0.017 to
0.160 m/s, SD = 0.079 m/s. A significant correlation was found between DMT and DMH
(r = −0.920, p <0.01), which means a higher air temperature was associated with a lower
convection rate. The simulated data of the microclimate factors are shown in Appendix A,
Table A2.

3.2. Spatial Variation of the Reproductive Phenology of Female P. tomentosa in Taoranting Park

The multivariate tests (MANOVA) showed that there was a statistically significant dif-
ference in the phenology of analyzed reproductive phenophases among the eight sampling
points (p < 0.01). As seen in Figure 4, the phenology of BBB showed the most significant
spatial difference, and the between-point phenological variation in flowering phenophases
(BF, FF) was more significant than that in the fruiting and seed dispersal phenophases
(FS, BSD).

In the micro-scale green space, the entire reproduction process of female P. tomentosa
occurred from Julian day 58 (27 February)–Julian day 106 (16 April), from the earliest
flower bud breaking to the latest time of seed dispersal. The beginning of bud break (BBB)
ranged from Julian day 58 to day 63, the beginning of flowering (BF) ranged from day 65 to
day 71, full flowering (FF) ranged from day 67 to day 72, fruit set visible (FS) ranged from
day 70 to day 73, beginning of seed dispersal (BSD) ranged from day 93 to day 96, end of
seed dispersal (ESD) ranged from day 102 to day 106, and duration of seed dispersal (DSD)
ranged from 6 days to 12 days.
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Figure 4. The reproductive phenology of female P. tomentosa at eight sampling points.

A significant positive correlation was found between BBB, BF, FF, FS, BSD,
the phenophases at flowering and fruiting stage (0.781 ≤ r ≤ 0.986, p < 0.05), while they
showed a significantly negative correlation with DSD (−0.930 ≤ r ≤ −0.840, p < 0.01).
This contrast indicated that the seed dispersal of female P. tomentosa could be a different
process inconsistent with the flowering and fruiting development. The raw phenology
data are presented in Appendix A, Table A3.

3.3. Key Microclimate Factors Affecting the Reproductive Phenology of Female P. tomentosa in
Taoranting Park

According to the Pearson correlation analysis between reproductive phenology and
the daily mean value of three microclimate parameters associated with SGS, we found that
the phenology of the reproductive phenophases was heavily dependent on air temperature
and the heat transfer coefficient, while wind speed showed no significant correlation.

3.3.1. Air Temperature vs. Reproductive Phenology

As shown in Figure 5, the DMT (daily mean temperature) associated with SGS was
significantly negatively correlated with the phenology of BBB, BF, FF, FS, BSD, which means
a higher air temperature at the onset of the growing season could drive an earlier occurrence
of flowering and fruiting in female P. tomentosa. For BBB, BF, FF, and FS that happened
successively within 15 days from the beginning of reproduction, the correlation was
extremely significant (−0.983 ≤ r ≤ −0.908, p < 0.01), while the phenology of BSD that
happened over 20 days after the appearance of fruit set showed a weaker correlation
with DMT (r = −0.754, p < 0.05). Besides, according to the linear regression analysis,
the absolute slope of the regression decreased with the occurrence time of the phenophases,
with a change rate of −12.64 day/◦C for BF to −5.23 days/◦C for BSD. This difference
demonstrated that the ‘driving effect’ of the air temperature at the onset of the growing
season could become weaker for those phenophases occurring at later reproduction stages.

With respect to ESD and DSD, the correlation pattern reversed. Their positive cor-
relation with DMT (r = 0.749, p < 0.05; r = 0.946, p < 0.01) indicated a different impact
mechanism behind the seed dispersal process.
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Figure 5. The correlation between microclimate factors (DMT, DMH on SGS) and the reproduc-
tive phenology of female P. tomentosa. DMT—daily mean temperature, DMH—daily mean heat
transfer coefficient, BBB – beginning of bud break, BF—beginning of flowering, FF—full flowering,
FS—fruit set visible, BSD—beginning of seed dispersal, ESD—end of seed dispersal, DSD—duration
of seed dispersal.
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3.3.2. Heat Transfer Coefficient vs. Reproductive Phenology

As shown in Figure 5, the DMH (daily mean heat transfer coefficient) associated with
SGS was significantly positively correlated with BBB (r = 0.864, p < 0.01), BF (r = 0.769,
p < 0.05), FF (r = 0.788, p < 0.05), and FS (r = 0.799, p < 0.05). The positive correlation
means a lower air convection rate could advance the occurrence of flowering and fruiting
phenophases, especially in the early development stage. According to the linear regression
between phenology and DMH, the slope of the regression decreased with the phenophase
occurrence time, from 5.11 day/(m2/s) for BF to 1.88 day/(m2/s) for BSD, which indicated a
declining influence of the heat transfer coefficient at SGS on the late-occurring phenophases.
In addition, similar to DMT, the correlation between DMH and phenology ceased to be
negative with respect to DSD (r =−0.922, p < 0.01).

Compared with air temperature, the heat transfer coefficient had a less significant im-
pact on the reproductive phenology, reflecting on a lower absolute r (correlation coefficient)
for most analyzed phenophases.

3.4. Multiple Regression of Reproductive Phenology in Relation to Microclimate Factors

Based on Ridge Regression analysis, the regression models of the phenology for
various reproductive phenophases (BBB, BF, FF, FS, BSD and DSD) are shown as follows.

DBBB = 96.230− 7.781 XDMT
∗∗ + 1.607 XDMH

∗ + 4.797 XDMW
(

R2 = 0.962, p < 0.01, k = 0.1
)

DBF = 120.203− 11.257 XDMT
∗ + 0.744 XDMH + 6.335 XDMW

(
R2 = 0.887, p < 0.05, k = 0.08

)
DFF = 120.381 − 10.759 XDMT

∗ + 0.213 XDMH + 3.025 XDMW
(

R2 = 0.875, p < 0.05, k = 0.06
)

DFS = 104.534− 6.942 XDMT
∗ + 0.055 XDMH

(
R2 = 0.821, p < 0.05, k = 0.05

)
DBSD = 110.402 − 3.816 XDMT + 1.731XDMH + 13.010XDMW

(
R2 = 0.843, p < 0.05, k = 0.01

)
DDSD = −23.747 + 7.255XDMT

∗ − 2.658 XDMH
∗ − 0.489 XDMW

(
R2 = 0.911, p < 0.05, k = 0.07

)
where D refers to the phenology (Julian day) or duration (days) of phenophases;

XDMT refers to the value of the daily mean temperature at SGS, XDMH refers to the value
of the daily mean heat transfer coefficient at SGS, XDMW refers to the value of the daily
mean wind speed at SGS; k refers to the ridge parameter; * refers to the factor that had a
significant influence on the analyzed phenology in the ridge regression model (* p < 0.05,
** p < 0.01).

In general, the regression models for various phenophases showed a satisfactory fit
(R2 = 0.883, p < 0.05) especially for BBB and DSD, which means the three microclimate
factors could explain more than 88% of the spatial variation in reproductive phenology.
In the regression of flowering and fruiting phenophases, BBB, BF, FF, FS, and DMT had a
significantly negative influence on the phenology, while DMH showed a weaker positive
correlation. As regards to the regression of DSD, the correlation pattern shifted, where DMT
exerted a significantly positive impact on seed dispersal duration while DMH showed a
negative effect.

4. Discussion
4.1. Testing of Hypothesis 1: There Was a Significant Difference between the Reproductive
Phenology of P. tomentosa at Different Sampling Points in Taoranting Park (H1)

H1 was true based on the MANOVA results, i.e., that the phenology of the analyzed
reproductive phenophases all showed a statistically significant difference among the eight
sampling points (p < 0.05). This is consistent with the finding that a significant spatial
unevenness of plant phenology could appear in a small-scale urban space [19] or natural
space [58–60]. Affected by this spatial variation, the duration of seed dispersal for female
P. tomentosa in the green space extended from the average of 8.8 days for an individual to
13 days in total, aggravating the threat of poplar fluff to public health, let alone the impact
at the urban scale, which highlights the need for more micro-scale studies in this field.
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4.2. Testing of Hypothesis 2: The Spatial Variation of Reproductive Phenology Had a Significant
Correlation with at Least One of the Microclimate Factors (H1)

H1 was true based on the results of the correlation and regression analyses, i.e., that the
DMT and DMH at SGS were significantly correlated with the reproductive phenology of
female P. tomentosa (p < 0.05). Besides, air temperature played a key role in the multiple
regression of reproductive phenology for various phenophases, showing a more significant
impact on phenology than other factors. This also illustrated that in the studied garden area,
the primary influence on poplar’s reproductive phenology was air temperature, and other
microclimate factors might exert their effects by affecting or interacting with temperature.

This significant correlation showed that a slight microclimate variation could lead to
an obvious spatial unevenness of reproductive phenology in such a micro-scale green space.

4.2.1. Air Temperature

The significant linear correlation between the air temperature and phenology of
the reproductive phenophases demonstrated the prominent influence of the micro-scale
thermal environment on poplar’s reproductive development in Beijing’s early spring.
This finding accords with the widely accepted conclusion that air temperature is the critical
climate driver of spring flowering and sprouting phenology in temperate zones [60–64],
including poplar’s reproduction [65].

The simulated air temperature at SGS performed well in the correlation and regression
analyses, but the limitation of the one-day simulated data should be mentioned as well.
In this research, the R2 (coefficient of determination) of the linear regression between air
temperature and phenology decreased as the phenophases occurred later, which means
the ability of the temperature data at SGS to explain the spatial variation in late-occurring
phenophases (e.g., FS, BSD) declined. Some studies revealed that multi-day thermal
accumulation, e.g., Growing Degree Days, is the decisive initiator of spring phenology and
has been widely applied in phenology modeling [66,67]. From this perspective, the one-
day simulated microclimate data may not be robust enough for phenology prediction,
and multi-day data simulation or observation is needed in future research.

4.2.2. Heat Transfer Coefficient

In addition to air temperature, the heat transfer coefficient was also found to have
a significant impact on the reproductive phenology of female poplars. In Beijing in late
February, a much lower heat transfer coefficient in an urban microclimate usually indicates
a less frequent air disturbance from the outer cold airflow (e.g., Skimming flow regime),
which is conductive to the establishment of a stable flow pattern with independent cir-
culatory vortexes and a steady thermal field [49] that can provide a favorable condition
for reproductive development. As a micro-scale parameter, the role of the heat transfer
coefficient in affecting phenological variation was rarely explored before and deserves
more attention.

4.2.3. Wind Speed

As an important impact factor of air temperature [68,69] and the heat transfer coeffi-
cient [70] in urban microclimates, wind speed is expected to show a clear correlation with
the studied phenology. However, in this research, the correlation between wind speed and
the phenology of reproductive phenophases was not significant, even though wind speed
had a weak positive impact on the flowering and fruiting phenophases and a negative
influence on the duration of seed dispersal in the multiple regression models.

One possible reason for this discrepancy could be the poor simulation accuracy of
wind speed in ENVI-MET. Due to the lack of measurement data for comparison and
validation, the performance of wind simulation could not be evaluated in this research.
A challenge in the wind simulation is due to the unique wind environment in the micro-
scale green space. Different from open urban spaces characterized with strong wind
fields (e.g., urban canyons) [71], the large area of evergreen woods in the research site
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could function as a wind obstacle, decreasing the turbulence of high-momentum fluid [72],
forming small vortexes with changeable airflow [73]. Further, the weak wind field in Beijing
city on the simulated day (1.89 m/s at 10 m height), the changeable wind pattern, and low
wind speed could bring a large challenge to the wind simulation in ENVI-MET [74,75].

The unexpected correlation pattern between wind speed and reproductive phenology
showed the limitation of ENVI-MET in wind environment simulation, highlighting the
need for field data as a support.

4.3. Some Insights into the Alleviation of Catkin Fiber Pollution from Female Poplars

Based on the revealed impact of microclimate factors on the reproductive phenology
of female P. tomentosa, some potential strategies to alleviate the catkin fiber pollution can
be proposed.

(1) Shorten the seed-flying period by increasing air convection and decreasing spatial
variation of the microclimate in the green space.

The phenological response of seed dispersal to microclimate factors showed that
the duration of seed dispersal (DSD) was significantly correlated with air temperature
(r = 0.946) and the heat transfer coefficient (r = −0.922). Considering the heat transfer
coefficient, the indicator of air convection, has been proved to be positively correlated with
the spatial openness [49], to improve the air convection by increasing spatial openness
can be an effective way to shorten the duration of seed dispersal for each individual
poplar. In addition, the decrease in microclimate variation in the green space can help
standardize the thermal environment around target trees and reduce the spatial variation of
reproductive phenology, so as to shorten the overall duration of seed dispersal. Of course,
the implementation of this potential strategy can be subject to reality and a comprehensive
trade-off consideration, which deserves further discussion.

(2) Time arrangement of flying seed control based on the phenological response to
air temperature.

According to the linear regression, with an increase in the daily mean temperature at
SGS of 1 ◦C, BSD could advance 5.23 days and DSD could extend over 10 days. Combining
local meteorological data, the phenological response of seed dispersal to air temperature
variation can provide a reference to the timing of flying-seed control in Beijing’s different
urban heat environments (Yang et al., 2013).

4.4. Research Prospect—Other Possible Influential Factors Besides the Microclimate?

As shown in Figure 4, among the eight sampling points, the female P. tomentosa
at point 8 showed a significantly later phenology than at other points for most analyzed
phenophases (BBB, BF, FF, FS, BSD), and the poplars at points 2 and 6 showed a significantly
earlier phenology than that at other points. According to the landscape pattern of the
eight buffer areas shown in Figure 3, point 8 was situated in a highly open space with
a wide wind corridor, while points 2 and point 6 were highly enclosed by evergreen
groves. This indicates a possible correlation between the spatial structure (e.g., spatial
openness) and reproductive phenology. Besides, the spatial structure of the underlying
surface has been proved to have a significant influence on the air temperature in urban
microclimates [24,49,76]. Therefore, a possible impact mechanism of the spatial structure—
microclimate– reproductive phenology should be explored in follow-up research.

5. Conclusions

This research investigated the impact of microclimate factors on SGS (start of the
growing season) on the spatial variation in the reproductive phenology of P. tomentosa
in a micro-scale green space in Beijing. We found that the phenology of the flowering
and fruiting phenophases of female poplars was significantly negatively correlated with
DMT (daily mean temperature) and positively correlated with DMH (daily mean heat
transfer coefficient), while the duration of seed dispersal was positively affected by DMT
and negatively affected by DMH. Based on the findings, an increase in air convection
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with lower air temperature and a decrease in the spatial variation of microclimates in
green spaces can be an effective way to shorten the seed-flying duration, so as to help
tackle poplar’s catkin fiber pollution in Beijing. The discovery of this research can help
fill the knowledge gap in the impact mechanism of the microclimate with respect to
plant phenology in a micro-scale urban green space. It can also provide some empirical
guidance for the alleviation of catkin fiber pollution in Beijing and other countries facing a
similar problem.

Meanwhile, some limitations of this research need to be noted. ENVI-MET microcli-
mate simulation (especially thermal environment simulation) was suitable for this phe-
nological study, but field data measurements are still strongly advocated for the data
collection for microclimate conditions to ensure data accuracy. Subject to the management
regulation of the Park Administrative Office, we were unable to collect microclimate data
with field measurements in this research. Regarding this, we will try to improve the access
to field data in our future work. Another limitation was that the one-day simulated micro-
climate was not robust enough for phenology prediction, which addressed the importance
of multi-day data collection in follow-up work.
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Appendix A

Figure A1. The Daily Mean Air Temperature of Beijing City in the Spring (10 February—30 April/Julian Day 41–120) of
2019. Data Came from the Hourly Observation Dataset of Surface Meteorological Stations in Beijing Station (54511).
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Table A1. The Observed and Simulated Data for the Accuracy Evaluation of Air Temperature
Simulation with ENVI-MET.

Sampling Point Time/h O (Observed Value)/◦C P (Simulated Value)/◦C

1 9 7.900 7.359
1 11 10.200 9.891
1 13 10.700 11.938
2 9 9.100 7.521
2 11 11.300 10.204
2 13 11.500 12.050
3 9 8.900 7.088
3 11 10.000 9.599
3 13 11.300 11.655
4 9 7.300 7.162
4 11 11.700 10.077
4 13 12.300 12.449
5 9 9.200 7.454
5 11 11.000 10.207
5 13 12.200 12.322
6 9 8.400 7.243
6 11 10.400 9.742
6 13 13.500 11.999
7 9 8.700 7.467
7 11 10.000 10.184
7 13 12.600 12.128
8 9 9.100 6.955
8 11 9.900 9.234
8 13 11.600 11.257

Figure A2. The linear regression between the observed and simulated air temperature at height of
1.5 m.
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Table A2. The Simulated Values of Microclimate Parameters.

Sampling Point Height/m Grid Air Temperature (◦C) Heat Transfer Coefficient (m2/s) Wind Speed (m/s)

1 7 (25,25) 4.94411 0.73853 0.15746
1 7 (25,26) 4.95718 0.68387 0.15649
1 7 (26,25) 4.93272 0.71091 0.09793
1 7 (26,26) 4.95432 0.65436 0.10095
1 9 (25,25) 4.82478 0.921 0.15724
1 9 (25,26) 4.83755 0.86584 0.15776
1 9 (26,25) 4.79132 0.88426 0.11612
1 9 (26,26) 4.81473 0.82837 0.12184
2 7 (25,25) 4.96934 0.86473 0.01732
2 7 (25,26) 4.98826 0.83966 0.01732
2 7 (26,25) 4.97558 0.78301 0.01732
2 7 (26,26) 4.98805 0.76064 0.01732
2 9 (25,25) 4.85373 0.96057 0.01732
2 9 (25,26) 4.86631 0.94578 0.01732
2 9 (26,25) 4.85275 0.85853 0.01732
2 9 (26,26) 4.85959 0.8466 0.01732
3 7 (25,25) 4.7894 0.80526 0.0855
3 7 (25,26) 4.90766 0.62121 0.04893
3 7 (26,25) 4.72684 0.84954 0.10222
3 7 (26,26) 4.82913 0.7035 0.05171
3 9 (25,25) 4.75257 0.94812 0.15999
3 9 (25,26) 4.85382 0.75199 0.098
3 9 (26,25) 4.69495 0.99634 0.15359
3 9 (26,26) 4.7795 0.84172 0.0987
4 7 (25,25) 4.86222 0.66136 0.19295
4 7 (25,26) 4.88697 0.62847 0.17919
4 7 (26,25) 4.80913 0.67229 0.15741
4 7 (26,26) 4.82516 0.65482 0.14189
4 9 (25,25) 4.76722 0.83137 0.17774
4 9 (25,26) 4.78572 0.80715 0.15244
4 9 (26,25) 4.72532 0.83442 0.15273
4 9 (26,26) 4.73824 0.81826 0.12612
5 7 (25,25) 4.74393 1.16586 0.08481
5 7 (25,26) 4.76468 1.09453 0.09385
5 7 (26,25) 4.75177 1.11631 0.08857
5 7 (26,26) 4.77499 1.05017 0.09886
5 9 (25,25) 4.62369 1.41415 0.02509
5 9 (25,26) 4.63422 1.34605 0.03397
5 9 (26,25) 4.63427 1.36947 0.02808
5 9 (26,26) 4.64675 1.30627 0.03778

6 7 (25,25) 5.07931 0.37814 0.13877
6 7 (25,26) 5.14171 0.31286 0.10161
6 7 (26,25) 5.11634 0.31783 0.09593
6 7 (26,26) 5.1789 0.27043 0.10044
6 9 (25,25) 4.97752 0.62436 0.11991
6 9 (25,26) 5.01796 0.5542 0.13044
6 9 (26,25) 5.00566 0.56704 0.11992
6 9 (26,26) 5.04808 0.49504 0.12892
7 7 (25,25) 4.87942 0.92416 0.03561
7 7 (25,26) 4.90284 0.88042 0.05461
7 7 (26,25) 4.86616 0.87325 0.01906
7 7 (26,26) 4.88696 0.8336 0.02451
7 9 (25,25) 4.74441 1.10841 0.01732
7 9 (25,26) 4.76104 1.08415 0.01793
7 9 (25,26) 4.74054 1.05178 0.01732
7 9 (26,26) 4.75756 1.02931 0.01732



Sustainability 2021, 13, 3518 17 of 20

Table A2. Cont.

Sampling Point Height/m Grid Air Temperature (◦C) Heat Transfer Coefficient (m2/s) Wind Speed (m/s)

8 7 (25,25) 4.60172 1.38658 0.01732
8 7 (25,26) 4.59001 1.33089 0.01732
8 7 (26,25) 4.60631 1.34551 0.01732
8 7 (26,26) 4.5964 1.2865 0.01732
8 9 (25,25) 4.56218 1.51627 0.01732
8 9 (25,26) 4.55053 1.45792 0.01732
8 9 (26,25) 4.56434 1.48148 0.01732
8 9 (26,26) 4.5539 1.4205 0.01732

Table A3. The Raw Phenology Data of Reproductive Phenophases of Female P. tomentosa.

Sampling Point Phenophase
Sample Tree 1 Sample Tree 2

Mean SDSample
Branch 1

Sample
Branch 2

Sample
Branch 3

Sample
Branch 1

Sample
Branch 2

Sample
Branch 3

1 BBB 59 59 60 60 60 61 59.8 0.753
1 BF 65 66 66 66 66 67 66.0 0.632
1 FF 67 68 68 68 68 69 68.0 0.632
1 FS 70 70 70 70 70 71 70.2 0.408
1 BSD 94 95 95 95 95 96 95.0 0.632
1 ESD 103 104 104 104 105 104 104.0 0.632
1 DSD 9 9 9 9 10 8 9.0 0.632

2 BBB 59 58 59 59 59 59 58.8 0.408
2 BF 65 64 65 65 65 65 64.8 0.408
2 FF 67 66 67 67 67 67 66.8 0.408
2 FS 70 69 70 71 70 70 70.0 0.632
2 BSD 93 92 93 94 93 93 93.0 0.632
2 ESD 103 103 103 104 103 103 103.2 0.408
2 DSD 10 11 10 10 10 10 10.2 0.408

3 BBB 61 62 61 60 61 61 61.0 0.632
3 BF 68 69 68 67 68 68 68.0 0.632
3 FF 70 71 70 70 70 70 70.2 0.408
3 FS 72 73 72 72 72 72 72.2 0.408
3 BSD 95 96 95 94 95 95 95.0 0.632
3 ESD 103 103 103 102 103 103 102.8 0.408
3 DSD 8 7 8 8 8 8 7.8 0.408

4 BBB 61 61 60 61 61 62 61.0 0.632
4 BF 68 68 68 68 68 67 67.8 0.408
4 FF 69 69 69 69 69 69 69.0 0.000
4 FS 71 71 70 71 71 71 70.8 0.408
4 BSD 95 95 94 95 95 96 95.0 0.632
4 ESD 105 105 104 105 105 105 104.8 0.408
4 DSD 10 10 10 10 10 9 9.8 0.408

5 BBB 62 63 62 62 62 61 62.0 0.632
5 BF 68 69 68 68 68 67 68.0 0.632
5 FF 70 70 70 70 70 69 69.8 0.408
5 FS 72 72 73 72 72 71 72.0 0.632
5 BSD 95 96 95 95 95 95 95.2 0.408
5 ESD 102 103 102 102 102 101 102.0 0.632
5 DSD 7 7 7 7 7 6 6.8 0.408
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Table A3. Cont.

Sampling Point Phenophase
Sample Tree 1 Sample Tree 2

Mean SDSample
Branch 1

Sample
Branch 2

Sample
Branch 3

Sample
Branch 1

Sample
Branch 2

Sample
Branch 3

6 BBB 58 58 57 58 59 58 58.0 0.632
6 BF 65 65 65 65 65 64 64.8 0.408
6 FF 67 67 67 67 67 66 66.8 0.408
6 FS 70 70 69 70 70 70 69.8 0.408
6 BSD 94 94 93 94 95 93 93.8 0.753
6 ESD 106 107 106 106 106 105 106.0 0.632
6 DSD 12 13 13 12 11 12 12.2 0.753

7 BBB 61 61 61 61 61 60 60.8 0.408
7 BF 67 66 67 67 66 67 66.7 0.516
7 FF 69 69 69 69 68 69 68.8 0.408
7 FS 71 71 71 71 70 71 70.8 0.408
7 BSD 94 94 94 94 93 93 93.7 0.516
7 ESD 102 103 102 102 102 101 102.0 0.632
7 DSD 8 9 8 8 9 8 8.3 0.516

8 BBB 63 62 63 64 63 63 63.0 0.632
8 BF 71 70 71 71 71 71 70.8 0.408
8 FF 72 72 73 72 72 72 72.2 0.408
8 FS 73 73 74 73 73 73 73.2 0.408
8 BSD 96 96 97 96 96 96 96.2 0.408
8 ESD 102 102 103 102 102 102 102.2 0.408
8 DSD 6 6 6 6 6 6 6.0 0.000
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