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Abstract: Essential connections between the classical symmetry and nonclassical symmetry of a
partial differential equations (PDEs) are established. Through these connections, the sufficient
conditions for the nonclassical symmetry of PDEs can be derived directly from the inconsistent
conditions of the system determining equations of the classical symmetry of the PDE. Based on the
connections, a new algorithm for determining the nonclassical symmetry of a PDEs is proposed.
The algorithm make the determination of the nonclassical symmetry easier by adding compatibility
extra equations obtained from system of determining equations of the classical symmetry to the
system of determining equations of the nonclassical symmetry of the PDE. The findings of this study
not only give an alternative method to determine the nonclassical symmetry of a PDE, but also
can help for better understanding of the essential connections between classical and nonclassical
symmetries of a PDE. Concurrently, the results obtained here enhance the efficiency of the existing
algorithms for determining the nonclassical symmetry of a PDE. As applications of the given
algorithm, a nonclassical symmetry classification of a class of generalized Burgers equations and the
nonclassical symmetries of a KdV-type equations are given within a relatively easier way and some
new nonclassical symmetries have been found for the Burgers equations.

Keywords: classical and nonclassical symmetries; connection; partial differential equation

1. Introduction

The nonclassical symmetry method, proposed by G. Bluman et al. in [1], is one of generalization
of the classical Lie symmetry method for obtaining exact solutions of nonlinear PDEs which can not
be obtained through its classical symmetries [2,3]. It has a close relation with the ‘direct’ method,
Bäcklund transformations and functionally invariant solutions etc [4–6].

Determining classical and nonclassical symmetries of a PDE is equivalent to exactly solving
the so-called the systems of determining equations arising from the invariance of the PDE under
such symmetry transformations. There exist algorithms and software packages [7] to produce such
systems of determining equations. However, to obtain nonclassical symmetries, exactly solving
the system is a hard task due to its nonlinearity, unlike the situation for classical symmetries [8].
For this reason, nonclassical symmetries of many PDEs in physics and mechanics have not been
found [9]. In [10–14], the authors investigate ways of simplifying the solution of the system of nonlinear
determining equations based on the Gröebner basis method and Wu’s method. In both methods,
a system of determining equations is regarded as one of differential polynomials. Therefore, the set

Mathematics 2020, 8, 524; doi:10.3390/math8040524 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8040524
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/4/524?type=check_update&version=2


Mathematics 2020, 8, 524 2 of 16

of solutions (equivalent to the set of symmetries of the PDE) of the system of determining equations
is the same as the set of zero points (algebra variety) of the corresponding system of differential
polynomials. Consequently, the problem of solving the system of determining equations is turned to
determining the set of zero points of the corresponding polynomial system. This is suitably dealt with
within the frameworks of the Gröebner basis method and Wu’s method. These methods lead to the
development of algorithms for directly dealing with the system of determining equations. However,
in these algorithms, the computation of the differential Gröebner basis or the characteristic set of the
system of corresponding determining equations is a difficult task and this is hardly implemented for
higher dimensional PDEs [8]. Recently, in [15], we investigate an alternative algorithm to construct
nonclassical symmetries of a PDE basing on so called ‘potential conditions’ and Wu’s method.
The conditions come from an ‘observation’ of link between classical and nonclassical symmetries
of the PDE. However, the algorithm still depends on the calculation of the characteristic set of the
determining system.

The aim of this article was to further investigate the more efficient way for determining
nonclassical symmetry of a PDE. Particularly, some essential connections between the classical and
nonclassical symmetries of a PDE are established through comparing the determining polynomials of
the nonclassical symmetries with those of the classical symmetries. By the connections, some additional
information on the existence of nonclassical symmetries of a PDE can be derived directly from the
classical symmetries of the PDE. In particular, the connections provide supplementary conditions
for nonclassical symmetries so that the corresponding nonlinear determining system is easier to
solve. This leads to a more efficient method to determine the nonclassical symmetry of a PDE
without calculating such characteristic set of the determining system and having these ‘observations’.
Our results not only reveal the more close connection between classical and nonclassical symmetries
of a PDE, but also improve the efficiency of the methods in [10–15].

The rest of this paper is organized as follows. In Section 2, we give some preliminaries on
the classical and nonclassical symmetries of a PDE and present a reduction formula of differential
polynomial with respect to a differential ascending chain. In Section 3, we present our main results
on connection between classical and nonclassical symmetries of a PDE in terms of the determining
polynomial systems of the symmetries and inclusions connections of their zero point sets. In Section 4,
as applications of the obtained connections, nontrivial nonclassical symmetries are found for both a
class of generalized Burgers equations and system of KdV-type equations in a relatively easier way.
In Section 5, we summarize our results and include some concluding remarks.

2. Preliminary

2.1. Notations

Let x = (x1, x2, . . . , xp) and ζ = {ξ1, ξ2, . . . , ξq} be independent and dependent variables,
respectively. Let N0 be the set of non-negative integers. For a multi-index α = {α1, . . . , αp} ∈ Np

0 ,
we denote the differential operator ∂|α|/∂α1

x1 ∂α2
x2 . . . ∂

αp
xp as Dα with order |α| = ∑

p
i=1 αi; we use ∂kζ to

denote the set {Dαξi : |α| ≤ k, i = 1, 2, . . . , q} for a fixed k ∈ N0. Let Kx be a characteristic zero field of
differential functions of x and let Kx[ζ] be the differential polynomial ring in indeterminates ∂kζ for all
non-negative integer k over Kx.

A system of differential equations {p1 = 0, p2 = 0, . . . , ps = 0} where pi are polynomials in
Kx[ζ] is denoted shortly as D = 0 where D is the set of left side polynomials of the equations,
i.e., D = {p1, p2, . . . , ps} ⊂ Kx[ζ]. For a system of differential equations D = 0 in polynomial form,
one has a corresponding system of differential polynomials D. Use Z(D) to denote the set of zero
points of the differential polynomial system D over field Kx. Thus the solution set to the system of
equations D = 0 is the same as the set Z(D).

Under a differential polynomial rank (order), the coefficient of the leading derivative of a
differential polynomial is called initial of the polynomial. The partial derivative of a differential
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polynomial with respect to its leading derivative is called the separant of the polynomial. For a
differential polynomial system D, a product of initials and separants of the polynomials in the system
is called IS product of the system, denote it as IS or IS(D).

For two systems D and Q of differential polynomials, we denote Z(D/Q) = Z(D)\Z(Q).
The notation f |Z(D) denotes the set of values of the differential polynomial f ∈ Kx[ζ] at all points

in Z(D).
In all examples, we use the graded lexicographic differential polynomial rank [10,12,16,17] for

differential polynomials in Kx[ζ] with no further elaboration.

2.2. A Reduction Formula

A reduction of a differential polynomial with respect to another one or an ascending chain of
differential polynomials is a basic operation in polynomial algebra. A reduction formula frequently
used is the pseudo-reduction given in [16,17]. It has been used in the methods given in [7,10] and [18,19]
under different names such as Kolchin-Ritt reduction and Ritt-Wu reduction. We apply the reduction
in this article for setting up a connection between classical and nonclassical symmetries of a PDE and
analyze the set of zero points of a system of differential polynomials.

The reduction is related to the concept of the differential ascending chain of a differential
polynomial system given below.

Definition 1. A differential ascending chain is a finite set of differential polynomials

CS = {F1,F2, . . . ,Fs} ⊂ Kx[ζ], (1)

if, under a differential polynomial rank ≺, it has the two properties showing below:

(a) F1 ≺ F2 ≺ . . . ≺ Fs;
(b) Fj is reduced with respect to Fi (the terms in Fj can not be eliminated by Fi) for i = 1, 2, . . . , j− 1.

The Ritt-Wu reduction for a differential polynomial f ∈ Kx[ζ] with respect to a differential
ascending chain CS ⊂ Kx[ζ] is given as follows.

Theorem 1. For a differential polynomial h ∈ Kx[ζ] and a differential ascending chain CS ⊂ Kx[ζ], there exist
differential operators Di = ∑β∈Np

0
Qβ

i Dβ
i with Qβ

i ∈ Kx[ζ] and an IS product IS of CS such that

IS · h = ∑
Fi∈CS

DiFi + R, (2)

where the R ∈ Kx[ζ], called the remainder of h with respect to CS and denoted by R = Rem(h/CS), is reduced
with respect to CS (any term in R cannot be eliminated further by the polynomials in CS) and the Dβ

i is the
total differential operator related to Fi ∈ CS with respect to β ∈ Np

0 .

The Equation (2) is proved by successively removing from h all terms that are differentiation of
the leading derivatives of the elements of CS under a polynomial order until the procedure cannot
be continued (the details are seen in [16–18]). The procedure of building Equation (2) is constructive
and can be implemented by a computer algebra system [12]. For a differential polynomial system D,
we use the notation

Rem(D/CS) ={Rem(h/CS) for h ∈ D}.

In addition, a basic algorithm used in this article is the well-known Wu’s algorithm (also called
the characteristic set algorithm) for constructing a differential characteristic set for any given finite
differential polynomial system. We use the algorithm to reduce a system of determining equations
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of the symmetries of a PDE into a differential ascending chain. The details of the algorithm appear
in [18–21].

2.3. Classical and Nonclassical Symmetries of a PDE

For simplicity, we consider the case of a scale PDE. Actually, the results presented in the article
hold in the case of a system of PDEs.

A more detailed discussion on the nonclassical symmetry for a general PDEs is given in [10].
Let an kth order PDE

F[u] = F
(

x, ∂ku
)
= 0, (3)

be given with independent variables x and one dependent variable u. Suppose F is a polynomial in
its arguments.

Let

X ′ =
p

∑
i=1

ξ ′i∂xi + η′∂u, (4)

be the generator of classical symmetry of Equation (3) where ξ ′i = ξ ′i(z) and η′ = η′(z) are the
infinitesimal functions of the generator with independent variables z = (x1, x2, . . . , xp, u).

The system of determining equations of generator Equation (4) satisfied by ξ ′i(z) and η′(z) is
derived from the invariance criterion: PrX ′(F) = 0 when F = 0. Here PrX ′ is the prolongation of X ′
on the jet space of u. Explicitly solving the system, one determines generator Equation (4), i.e., the
classical symmetry of PDE Equation (3).

The generator of the nonclassical symmetry of Equation (3)

X =
p

∑
i=1

ξi∂xi + η∂u, (5)

is obtained by requiring that both Equation (3) and its invariance surface equation

ψ =
p

∑
i=1

ξiuxi − η = 0, (6)

are simultaneously invariant under the symmetry transformation of Equation (5). The invariance
criterion: PrX (F) = 0 when F = 0 and ψ = 0 leads to the system of determining equations for
nonclassical symmetry Equation (5). The system is a nonlinear PDEs for the infinitesimal functions
ξi = ξi(z) and η = η(z) that appear in Equations (5) and (6). Thus, in principle, after exactly solving the
system, one finds the nonclassical symmetry Equation (5). However, this is, in general, a hard task [8,10].

The concept of equivalent generators plays a key rule in this article.

Definition 2. Two first order differential operators X ′ and X of the form as Equations (4) and (5) are called
equivalent if they differ by a nonzero differential function multiplier λ(z), i.e., X ′ = λ(z)X .

Equivalent symmetry generators of a PDE generate the same reduced solutions of the PDE.

Remark 1. In this article, without loss of generality, we assume ξ1 6= 0 in Equation (5). Otherwise, we successively
assume ξk 6= 0 and ξi = 0, i = 1, 2, · · · , k− 1 and discuss each case separately. Hence, by Definition 2, we set
ξ1 = 1. Conventionally, in the case of an evolution equation case, each ξ1 is the coefficient of ∂t in generator X
corresponding to the time variable, usually denoted by τ. Hence, in the regular case of the nonclassical symmetries
for an evaluation equation, we set τ = 1.
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In the following, let D′ = 0 and D = 0 be the systems of determining equations for the symmetry
generators X ′ and X of PDE Equation (3). The sets of the left hand sides D′ ⊂ Kz[Λ′] and D ⊂ Kz[Λ]

of the two systems are called determining polynomial systems of the classical and nonclassical
symmetries respectively. Then, the zero point sets Z(D′) and Z(D) are the sets of the classical and
nonclassical symmetries of the PDE.

In convenience, we use the following additional notations: Λ′ = (ξ ′1, . . . , ξ ′p, η′), Λ =

(ξ2, . . . , ξp, η), ∂z = (∂x1 , ∂x2 , . . . , ∂xp , ∂u) and ∂̃z = (∂x2 , ∂x3 , . . . , ∂xp , ∂u). Thus, generators Equations (4)
and (5) can be written shortly as X ′ = Λ′ · ∂z and X = ∂x1 + Λ · ∂̃z by scalar product rule of finite
dimensional vector space.

Our main goal is to determine some connections between the systems D and D′.

3. Connections between Classical and Nonclassical Symmetries of a PDE

It is well-known that the set of classical symmetries of a PDE is a subset of the nonclassical
symmetries of the PDE. Hence, the classical symmetry of a PDE has equivalent expressions in the
coordinates Λ′ and Λ.

Therefore, we use a map between any Λ′ = (ξ ′1, · · · , ξ ′p, η′) with ξ ′1 6= 0 and Λ = (ξ2, · · · , ξp, η)

as coordinately

ξ ′i = ξ ′1ξi, η′ = ξ ′1η, i = 2, . . . , p. (7)

If a nonclassical symmetry X = ∂x1 + Λ · ∂̃z represents a classical symmetry, then there exists an
equivalent X ′ = Λ′ · ∂z such that Λ′ = (ξ ′1, · · · , ξ ′p, η′) ∈ Z(D′) and (1, Λ) = (1, ξ2, · · · , ξp, η) ∈ Z(D)
have a unified proportional relationship. Hence, the transformation Equation (7) map a classical
symmetry expressed by an Λ ∈ Z(D) into equivalence one expressed by the corresponding Λ′ ∈ Z(D′)
and vice versa.

Let ≺ be a differential polynomial rank on Kz[Λ′] with ξ ′1 having the highest rank, i.e., ξ ′j ≺
ξ ′1, j 6= 1. Let C′ be an ascending chain form of D′ which can be obtained by Wu’s algorithm under
the rank. In [12], we have proved that Z(C′) = Z(D′) for a PDE if IS(C′) 6= 0. Hence, the set Z(C′)
represents the classical symmetry of the PDE under the conditions that the initials of C′ are not zero.

Remark 2. Here, we emphasize that it is unnecessary for C′ to be a characteristic set of D′, which is required
in the algorithms given in [12,15]. Here, the cost of calculating C′ is much less than that of calculating the
characteristic set of D′. In the latter, it is involved the calculations of integral conditions of a system which is a
recognized hard problem [16–18].

In evidence, the set C′ is an irreducible ascending chain due to its linearity.
Throughout this article, we assume that the initials of the differential polynomials in C′ are not

zero, i.e.,

IS(C′) 6≡ 0. (8)

Remark 3. Assumption Equation (8) is not critical for a PDE. Since the the polynomials in C′ are linear,
the initials of C′ are polynomials in terms of the independent variable z, so they are never zero if the PDE does
not contain parameters.

Now, we obtain the connections between classical and nonclassical symmetries of a PDE,
which provides sufficient conditions to determine the existence of a nontrivial nonclassical symmetry.

Theorem 2. For an Λ ∈ Z(D), if, after using transformations Equation (7) for a ξ ′1 6= 0, the C′ as a
differential polynomial system in Kz[Λ, ξ ′1] has no zero points, i.e., Z(C′) = ∅ (equivalently, equations C′ = 0
is inconsistence), then the operator X = ∂x1 + Λ · ∂̃z is a nontrivial nonclassical symmetry of the PDE.
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Proof. If the X is equivalent to a classical symmetry, then there exists Λ′ = (ξ ′1, · · · , ξ ′p, η′) ∈ Z(C′)
such that X ′ = Λ′ · ∂Z and the X are equivalent under transformation Equation (7). This means
Z(C′) 6= ∅. This is a contradiction with respect to the assumption of the theorem.

Use the notation D′′ to denote the set of the differential polynomials in C′ whose leading
derivatives are the derivatives of ξ ′1 with respect to z. Thus, for any subset Q ⊂ C′, one has the
following corollaries of this theorem.

Corollary 1. The Theorem 2 is also true when replacing C′ in the theorem with any subset Q ⊂ C′. In particular,
when Q is D′′ or the complement set C′\D′′, the theorem is still true.

Let Q ⊂ C′. Use DQ to denote a set of polynomials obtained from Q or total derivatives of some
polynomials in Q.

Then we have the following second corollary of Theorem 2.

Corollary 2. The Theorem 2 is also true when replacing C′ in the theorem with DC′ or DQ for any subset
Q ⊂ C′.

Proof. The theorem is a direct conclusion of Theorem 2 and the inclusion relation Z(Q) ⊂Z(DQ).

In the following, based on Equation (2) and transformation Equation (7), we turn C′ ⊂ Kz[Λ′]
into a system of differential polynomials in Kz[Λ, ξ ′1] so that it connects the classical symmetries Z(C′)
and nonclassical symmetries Z(D).

From the structure of an ascending chain, we know that the both set D′′ and the complement set
C′\D′′ are differential ascending chain in Kz[Λ′]. Using transformation Equation (7), we change C′

and D′′ to the systems in Kz[Λ, ξ ′1] (again denote therm as C′ and D′′). It is noticed that the rank ≺ on
Kz[Λ′] induces a rank onKz[Λ, ξ ′1] through ξ ′i matching ξi and η′ matching η(i = 2, · · · , p). Obviously,
it keeps the highest rank of ξ ′1. Under the induced rank, we do the reduction

C = Rem((C′\D′′)/D′′) ⊂ Kz[Λ, ξ ′1], (9)

through Equation (2). In the reduction of C, the operation on (ξ, η) is not involved. Therefore, due to
the highest rank of ξ ′1 and the linearity of both C′ and transformations Equation (7), each element in C,
as a differential polynomial in Kz[Λ, ξ ′1] has the same rank and initials as its corresponding one in the
C′\D′′ ⊂ Kz[Λ′]. Hence, the C inherits the differential ascending chain property of the C′\D′′ as well
as the linearity of its polynomials in their leading derivatives with Equation (8).

So far, we have turned C′ ⊂ Kz[Λ′] into the C ⊂ Kz[Λ, ξ ′1].
For the convenience, denote

D = {h1, h2, . . . , hn} ⊂ Kz[Λ],

and

C = {r1, r2, . . . , rm} ⊂ Kz[Λ, ξ ′1].

Thus, we have connection between C and C′ as follows.

Theorem 3. The set Z(C ) contains all classical symmetries X ′ = Λ′ · ∂z with Λ′ = (ξ ′1, · · · , ξ ′p, η′) and
ξ ′1 6= 0 of PDE Equation (3) through transformation Equation (7). More precisely, Z(C′) ⊂ Z(C) holds by
means of the equivalence in Definition 2.

Proof. For an Λ′ ∈ Z(C′), since a classical symmetry X ′ = Λ′ · ∂z with ξ ′1 6= 0 is equivalent to a
nonclassical symmetry of the same PDE, there is a Λ = (ξ2, · · · , ξp, η) ∈ Z(D) connecting X ′ through
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transformations Equation (7). The construction procedure for C immediately shows that Λ ∈ Z(C).
This ends the proof of the Theorem.

Now, we can establish a connection between classical and nonclassical symmetries of a PDE
in terms of the dependence of the determining polynomials in D on the ones in C as stated in the
following theorem.

Theorem 4. For each h ∈ D, there exist differential operators Dh
ν with coefficients in Kz[Λ] and an IS product

ISh of C such that the identities

ISh · h =
m

∑
ν=1

Dh
νrν, (10)

hold for all differential functions ξ and η.

Proof. From the construction of C, for each q′ ∈ C′\D′′, there exist some differential operators D′ν and
an IS product IS′ of D′′ such that

IS′ · q′ = ∑
dν∈D′′

D′νdν + r,

from reduction Equation (2). Here the remainder r = Rem(q′/D′′) ∈ C is reduced with respect to D′′.
The obtained identity with assumption Equation (8) implies

Z(C) ∩ Z(D′′) ⊂ Z(C′) ⊂ Z(C).

Noticing that D′′ ⊂ C′ and using above inclusions, we can easily prove that

Z(C ∪D′′) = Z(C′). (11)

Furthermore, the equality (11) shows that the differential ascending chain C ∪ D′′ is irreducible
since the C′ is irreducible.

On the other hand, for each h ∈ D, there are some differential operators Dν and an ISh product IS
of C, such that

ISh · h = ∑
rν∈C

Dνrν + R, (12)

from reduction Equation (2). Here the remainder R = Rem(h/C) is reduced with respect to C.
It, from Equation (9), is also noticed that the R is also reduced with respect to D′′. Hence the remainder
R is reduced with respect to irreducible ascending chain C ∪ D′′.

Since Z(C′) = Z(D′) ⊂ Z(D), the identity Equation (12) and Theorem 3 imply that the remainder
R = Rem(h/C) is identically equal to zero on Z(C′), i.e.,

R|Z(C′) = 0.

Furthermore, the equality (11) indicates that

R|Z(C∪D′′) = 0,

which yields R ≡ 0 in Equation (12) due to r being reduced with respect to C∪D′′ and the irreducibility
of C ∪D′′. Consequently, the identities Equation (10) in the theorem are true.

Thus, the identities Equations (10) with (8) imply Z(C) ⊂ Z(D).
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Summarizing the above discussions, we have the inclusions:

Z(C′) ⊂ Z(C) ⊂ Z(D). (13)

Remark 4. Theorems 2–4 and Corollaries 1 and 2 give relationships between the classical and nonclassical
symmetries of PDE Equation (3) in terms of the determining polynomial systems C′, C and D of the two kinds of
symmetries, in which the set C plays the rule of a bridge between classical and nonclassical symmetries of a PDE.

From the viewpoint of practical applications, the inclusions Equation (13) imply that more
additional equations from C can be used to extended system D for nonclassical symmetry. In fact,
any subset Q ⊂ C or DQ is compatible with D. Hence, we get some extended system of D by
appending Q or DQ to D. The extended system is more easily solved than the original D since it
contains more equations. It may yield a nonclassical symmetry of the underling PDE.

Obviously, the above process of proving Equation (10) is constructive and forms an algorithm for
constructing Equation (10).

The following is an illustrative example to show how well the above theorems and algorithm
work well.

Example 1. We consider the Burgers - Huxley equation

ut = uxx + u(u− 1)(u− σ). (14)

The whole classical symmetries admitted by the equation are obvious symmetries

X1 = ∂t, X2 = ∂x, (15)

corresponding to time and space translations for any σ ∈ R.
We first establish identities Equation (10) following the procedure (algorithm) of proving Theorem 4.
Step 1. Computing D and D′. The systems of determining equations for a nonclassical symmetry

X = ∂t + ξ∂x + η∂u and a classical symmetry X ′ = τ′∂t + ξ ′∂x + η′∂u of the equation are given by
D = {h1, h2, h3, h4} = 0 and D′ = 0 respectively, where

h1 = ξuu,

h2 = ηuu − 2ξxu + 2ξξu,

h3 = 2ηxu − ξxx + ξt + 2ξξx − (3u(u− 1)(u− σ) + 2η)ξu, (16)

h4 = ηxx − ηt + 2ηξx + (σ− 2u− 2σu + 3u2)η + u(u− σ)(u− 1)(2ξx − ηu),

and

D′ =
{

τ′u, τ′x, τ′t − 2ξ ′x, ξ ′u, ξ ′xx − 2η′xu − ξ ′t, η′uu,

η′t − η′xx + u(u− 1)(u− σ)(2ξ ′x − η′u) + (σ + 3u2 − 2(σ + 1)u)η′
}

.

Step 2. Turning D′ into ascending chain form. Obviously, the system D′ is already an ascending chain
form under rank t ≺ x ≺ u ≺ ξ ′ ≺ η′ ≺ τ′. Hence C′ = D′ and

D′′ =
{

τ′t − 2ξ ′x, τ′x, τ′u
}

.

with IS(C′) = 2 6≡ 0.
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Step 3. Substituting the transformation Equation (7) with ξ ′1 = τ′ into C′, then computing the reduction
Rem((C′\D′′)/D′′) and after deleting the common factor τ′ 6= 0, we have the differential ascending chain
C = {r1, r2, r3, r4} under the induced rank t ≺ x ≺ u ≺ ξ ≺ η of the rank in Step 2. Here

r1 = ξu,

r2 = ηuu,

r3 = 2ηxu + ξt + 2ξξx − ξxx, (17)

r4 = ηxx − ηt + 2ηξx + (σ− 2u− 2σu + 3u2)η + u(u− σ)(u− 1)(2ξx − ηu),

with IS(C) = 2.
Step 4. Using reduction Equation (2), one obtains relations Equation (10) as follows

h1 = Dur1,

h2 = r2 + 2(ξ − Dx)r1,

h3 = r3 − (3u(u− 1)(u− σ) + 2η)r1,

h4 = r4. (18)

This implies Z(C) ⊂Z(D), i.e., the right side inclusion of Equation (13) holds.
Obviously, the first classical symmetry in Equation (15) with ξ ′1 = τ ≡ 1 is contained in Z(C),

i.e., Theorem 3 is satisfied. We notice that the (ξ, η) with

ξ(t, x, u) = a(x) = 3 tan(
1

2
√

2
(x + 24c1))/2

√
2,

η(t, x, u) = (1− 2u)(8a(x)2 + 9)/48.

is in Z(C) for σ = 1/2 but does not correspond to any classical symmetry,i.e., Z(C′) = ∅. This verified the
Theorem 2. It also shows that in general Z(C) may be larger than the set of classical symmetries.

Rather, the (ξ, η) with ξ = (3u − σ − 1)/
√

2, η = −(3/2)u(u − 1)(u − σ) which makes all pi =

0(i = 1, 2, 3, 4) in Equation (16), i.e., the (ξ, η) ∈ Z(D). However, it is obvious that q1 6= 0. Hence the
(ξ, η) 6∈ Z(C). This shows that Z(C) is a proper subset of Z(D) and the operator X = ∂t + (3u − σ −
1)/
√

2∂x − (3/2)u(u− 1)(u− σ)∂u is a generator of a nontrivial nonclassical symmetry of Equation (14).
Consequently, we properly have Z(C′) ⊂ Z(C) ⊂ Z(D) in this example.

4. Applications

We give two examples to show the applications of Theorems 2–4 and Corollaries 1 and 2 to
determine nontrivial nonclassical symmetries of a given PDE.

4.1. A Nonclassical Symmetry Classification of a Class of Generalized Burgers Equations

The nonclassical symmetry classification of a PDE with arbitrary functions is a hard problem
in symmetry analysis of a PDE [9,10]. We solve this problem by using given Theorems 2–4 and
Corollaries 1 and 2.

Consider the nonclassical symmetry classification of a class of generalized Burgers equations

ut + g(u)ux − uxx = f (u), (19)

with two arbitrary functions parameters f (u) and g(u), which covers a wide range of
mathematical models describing various processes in physics, biology and ecology(see [11,22–24] and
references therein).

For the case g(u) = 0, the equation represents: the Huxley equation if f (u) = u2(1 − u);
the Fisher’s equation if f (u) = u(1 − u); the generalized Fisher’s equations if f (u) = u − uk or
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f (u) = up(1− up−1); the Chaffee – Infante or Newell – Whitehead equation if f (u) = βu(1− u2);
the generalized KPP equation if f (u) = αu3 + βu2 + ρu; the Fitzhugh – Nagumo equation if
f (u) = u(1− u)(u− α), etc;

For the case g(u) = αu, the equation represents: the Burgers equation if f (u) = 0; the Burgers -
Huxley equation if f (u) = βu(1− u)(u− γ), etc;

For the case g(u) = αuc(c ∈ R), the equation represents: the generalized Burgers – Fisher equation
if f (u) = βu(1− uc); the generalized Burgers – Huxley equation if f (u) = βu(1− uc)(uc − γ), etc.

In [22], the authors considered Equation (19) with g(u) = λu and gave the nonclassical (there
Q-conditional) symmetry classification with respect to f (u). For g = 0, the complete nonclassical
symmetry classification is given in [11]. In [23,24], the complete classical symmetry classification of the
equations was given.

Now we consider the nonclassical symmetry classification of Equation (19) in general sense for
two arbitrary parameters f (u) and g(u) by using the method given in the article.

The system of determining polynomials of classical symmetry X ′ = τ′∂t + ξ ′∂x + η′∂u of
Equation (19) is given by

D′ =


τ′u, τ′x, τ′t − 2ξ ′x, ξ ′u, η′uu,
η′xx + f ′(u)η′ + f (u)(2ξ ′x − η′u)− g(u)η′x − η′t,
2η′xu + ξ ′xx + g′(u)η′ + g(u)ξ ′x − ξ ′t.

Under the order t ≺ x ≺ u ≺ ξ ′ ≺ η′ ≺ τ′, the system is already in differential chain form. Hence
C′ = D′.

By using the given algorithm, we find the relationships Equation (10) between D and C =

{r1, r2, r3, r4} as follows

h1 = r3 + 2(ξ − g(u))r4 − 2Dxr4,

h2 = r2 + (3 f (u)− 2η)r4,

h3 = Dur4,

h4 = r1, (20)

where

r1 = f (u)ηu + g(u)ηx − ηxx + ηt + 2(η − f (u))ξx − η f ′(u),

r2 = 2ηxu − ξxx + (2ξ − g(u))ξx − ηg′(u) + ξt,

r3 = ηuu,

r4 = ξu,

with IS(C) = −2.
From the transformation Equation (7) in this example, we have C′ 3 ξ ′u = ξuτ′ which implies

that Equations (19) admits a nonclassical symmetry when r4 6= 0 and Z(D) 6= ∅ from Theorem 2.
Therefore, based on the reasonable information we consider the cases of r4 6= 0 and r4 = 0 respectively.

Case 1: r4 6= 0.
In the case, from Theorem 2 we can impose more restrictions on the system D = 0 so that it

is solved easily and yields nontrivial nonclassical symmetries of the equation. It is observed that if
one takes η as ηuu 6= 0, then η′uu = ηuuτ′ ∈ C′ never be zero under transformation Equation (7) for
τ′ 6= 0. Hence, according to Theorem 2, such ξ and η yield a nontrivial nonclassical symmetry of the
equation. Based on the analysis, an ansatz of the infinitesimal functions that fits these conditions is
ξ = a(t, x)u + b(t, x) and η = α(t, x)u3 + β(t, x)u2 + ρ(t, x) + γ(t, x) with α2(t, x) + β2(t, x) 6= 0 or
α(t, x) 6= 0.
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Remark 5. Actually, one takes η = ∑n
i=0 αi(t, x)ui in more general form. However, it is easy to deduce that

αi ≡ 0 when i ≥ 4.

Under these restrictions, system D = 0 is reduced significantly and solved easily. In particular,
we have the following three groups of nonclassical symmetries.

ξ = au + b, η =
1
3
(c1 − a)u3 + a(c2 − b)u2 + ρu + γ, (21)

for f (u) = (2a+c1)
9a

(
a(c1 − a)u3 + 3a(c2 − b)u2 + 3ρu + 3γ

)
, g(u) = c1u + c2 where a, b, c1, c2, ρ and γ

are arbitrary constants with a 6= 0 or c2 6= b or c1 6= a;

ξ =
c1

4
u + b, η =

1
16

c2
1u3 − 1

4
c1(b− c2)u2 + ρu + γ, (22)

for f (u) = 1
8 c2

1u3 + 1
2 c1(c2 − b)u2 + 2ρu + 2γ, g(u) = c1u + c2, where c1, c2, b, ρ and γ are arbitrary

constants with c1 6= 0;

ξ = − c1

2
u + b(t, x), η = −1

4
c2

1u3 +
1
2

c1u2(b(t, x)− c2) + ρ(t, x)u + γ(t, x), (23)

for f (u) = 0, g(u) = c1u + c2, where b = b(t, x), ρ = ρ(t, x) and γ = γ(t, x) are solutions to the system

bt − bxx + (2b− c2)bx − 2ρx = 0,

ρt − ρxx + c2ρx + 2ρbx + c1γx = 0,

γt − γxx + c2γx + 2γbx = 0,

where c1 and c2 are arbitrary constants with c1 6= 0.
Case 2: r4 = 0.
In the case, the additional condition r4 = ξu = 0 gives a first step simplification of the system

D of determining equations. In order to further simplify the system, we use Theorem 2 to find
more information on nontrivial nonclassical symmetry of the equation. For a Λ = (ξ, η) ∈Z(D),
under transformation Equation (7), we have

D′′ = {τ′u, τ′x, τ′t − 2ξxτ′}.

It is clear that Z(D′′) = ∅ if ξxx 6= 0. Hence, by Corollary 1, we look for a nontrivial nonclassical
symmetry of the form ξ = a(x) with a′′(x) 6= 0. Now, we suppose η = b(t, x)u + c(t, x) from the
p1 = 0. These significantly simplify the system of determining equations.

For simplicity, denote b = b(t, x), c = c(t, x) and a = a(x).
Now, the rests of determining equations p2 = 0 and p4 = 0 become

(u + A) f ′(u) + (2B− 1) f (u) + (Eu + F)g(u) + Hu = G,

(u + A)g′(u) + Bg(u) = K, (24)

for b 6= 0, where

A = c/b, B = a′/b, K = (2aa′ + 2bx − a′′)/b, H = (bxx − bt − 2ba′)/b,

E = −bx/b, F = −cx/b, G = (ct − cxx + 2ca′)/b;
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and

f ′(u) + 2B1 f (u) + K1g(u) = H1,

g′ + B1g(u) = E1 (25)

for b = 0 and c 6= 0, where

B1 = a′/c, K1 = −cx/c, E1 = (2aa′ − a′′)/c, H1 = (2ca′ + ct − cxx)/c.

Since the f and g are functions of a single variable u, the coefficients A, B, K, H, E, F, G, , B1, E1, K1

and H1 must be constants. After simple analysis, we can prove that Equation (19) does not admit a
nontrivial nonclassical symmetry unless g(u) ≡ 0, b = b(x) 6= 0 and c = c(x).

Under g(u) = 0, Equations (24) become

(u + A) f ′(u) + (2B− 1) f (u) + Hu = G,

K = 2aa′ + 2b′ − a′′ = 0, (26)

with

c = Ab, a′ = Bb, b′′ − 2a′b = Hb, 2a′c− c′′ = Gb, AH + G = 0. (27)

Solving the first equation, we get

f (u) = k(u + A)µ − H
2B

(u + A), with µ = 1− 2B 6= 0, (28)

and

f (u) = k− Hu, with 2B− 1 = 0, (29)

for arbitrary constant k.
It easily proves that the compatibility condition of Equation (27) for case Equation (28) of f (u) is

B = −1, i.e., µ = 3. Meantime, the a = a(x) satisfies 3a′′ − 2aa′ = 0 which further determines b and c
from the equations in Equation (27). Consequently, we obtain nonclassical symmetries of Equation (19)
as follows.

ξ = a(x), η = (u + A)b(x), (30)

with b(x) = −a′(x), c(x) = −Aa′(x) and

a(x) = k1 tanh((x + 3c1)k1/3), for f (u) = k(u + A)3 + H(u + A)/2;

a(x) = −3/(x + 3c2), for f (u) = k(u + A)3, (31)

where c1 and c2 are arbitrary constants and k2
1 = −9H/4 6= 0.

In case Equation (29), the Equation (19) becomes a linear equation. The determining equations for
nonclassical symmetries of the linear equation yield

ξ = c(t, x), η = a(t, x)u + b(t, x), (32)



Mathematics 2020, 8, 524 13 of 16

where the functions a = a(t, x), b = b(t, x) and c = c(t, x) satisfy

bt − bxx + 2(b− k)cx + ka + Hb = 0,

at − axx + 2(a + H)cx = 0,

ct − cxx + 2ccx + 2ax = 0.

It may be not possible to find the general solutions of the above PDE system. In the following, we
give some special solutions.

Solving the system under the condition b(t, x) = (−k/H)a(t, x), we obtain two groups of solutions:

a(t, x) =
2c2

2(c1 + 2c2c4) tanh(T) + 2c2(c4c1 − 2c2H) + c2
1

4c2
2

,

c(t, x) = c4 − c2 tanh(T); (33)

and

a(t, x) =
4c4

2 − 4Hc2
2 − c2

1 − 6c2
2(2c2

2 tanh(T)2 + c1 tanh(T))
4c2

2
,

c(t, x) = −
3c2

2 tanh(T) + c1

c2
, (34)

with T = c1t + c2x + c3 in terms of arbitrary constants c1, c2 6= 0 and c3.
In the special case where the functions a = a(x), b = b(x) and c = c(x) are independent of t,

we have a additional group of solutions to the determining equations given by

a(x) =
c′(x)− c2(x)

2
− H, b(x) = − k

H
a(x), c(x) =

3x2

3k1 − x3 , (35)

in terms of an arbitrary constants k1.
Summarizing the above procedure, we obtain a nonclassical symmetry classification of

Equation (19). We have proven that the equation admits nontrivial nonclassical symmetry when
f (u) is a polynomial with degree less than four in u and g is linear in u. The symmetries (30) with (31)
and (32) with (35) were given in [11]. The symmetries (21), (22), (32) with (33) and (34) are new ones.
The symmetries (23) are more general than those given in [11].

Moreover, here in the case g = 0, we recovered the symmetry classification results in [11]
obtained by P. A. Clarkson and E. L. Mansfield who directly treat the system of determining equations
by the Gröebner basis method. In the case g(u) = λu, we recovered the results in [22] given by
Roman Cherniha who dealt with the determining system by direct calculation. Here, we solve
the problem for Equation (19) by an alternative method using Theorems 2 and 3 and Corollaries 1
and 2 in general sense for arbitrary f (u) and g(u) and show that only in the case when g is linear
and f (u) is cubic polynomials in u, the class of Equations (19) admits a nontrivial nonclassical
symmetry. In particular, compared with the ways for symmetry classification problem existing in
literatures [10–12,22], our method avoids a lot calculations for dealing with the determining equations.

Of physical interest is that there are many important equations, such as the Huxley equation,
the Chaffee–Infante or Newell–Whitehead equation, the generalized Fisher’s equations with k = 3
or p = 2, the generalized KPP equation, the Fitzhugh–Nagumo equation, Burgers equation,
the Burgers–Huxley equation, that admit nontrivial nonclassical symmetries. Nevertheless, equations
such as the generalized Burgers–Fisher equation, the generalized Burgers–Huxley equation (c 6= 1),
the Fisher’s equation, the generalized Fisher’s equations with k 6= 3 and p 6= 2 do not admit nontrivial
nonclassical symmetries.
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4.2. Nonclassical Symmetry of a KdV-Type Equations

Consider a KdV-type equations in soliton theory [6,12] given by

ut + 3vvx = 0, vt + 2vxxx + 2uvx + uxv = 0. (36)

The system of determining polynomials for the classical symmetry X ′ = τ′∂t + ξ ′∂x + η′∂u + φ′∂v

of the equations is given by

D′ =


τ′v, τ′u, τ′x, 3η′ + 2uτ′t ,
η′v, η′x, η′t, η′ − uη′u, uφ′ − vη′,
ξ ′v, ξ ′u, ξ ′t, η′ + 2uξ ′x.

and it has Z(D′) = {τ′, ξ ′, η′, φ′}, where

τ′ = c2 − 3c1t, ξ ′ = c3 − c1x, η′ = 2c1u, φ′ = 2c1v,

and c1, c2, c3 ∈ R are arbitrary constants. It yields classical symmetries

X ′1 = −1
2
(3t∂t + x∂x) + u∂u + v∂v, X′2 = ∂t,X ′3 = ∂x

of Equations (36). By our given algorithm, we have the set C = {r1, · · · , r9}, where

r1 = 3ηξ − 2uξt,
r2 = 2uξx + η,
r3 = uφ− vη,

r4 = 3η2 − 2uηt,
r5 = η − uηu,
r6 = ξu, r7 = ξv, r8 = ηx, r9 = ηv.

(37)

The system D of determining polynomials of the nonclassical symmetry of the equations is
consists of 11 strongly nonlinear equations, variable coefficients and long expressions for differential
polynomials. We can establish the identities Equation (10) between the system D and C by our given
algorithm. Due to complexity and massive scale, we here omit the expressions of the connections.
The system D is difficult to deal with directly. Nevertheless, we can get some specific nonclassical
symmetries of Equation (36) by using Corollaries 1 and 2.

We notice that there are three identities in Equation (10) that only involve the r6 and r7. In order
to reduce the system, we deliberately set r6 = r7 = 0. In addition, we take some analysis on nonclassical
symmetry of the equations. From the set D′′ = {τ′v, τ′u, τ′x, 3η′ + 2uτ′t} ⊂ C′, we see that Z(D′′) = ∅
if one of ηt, ηx, ηuu and ηv is not zero. Hence they may provide sufficient conditions for existence of
nonclassical symmetries of Equations (36) by Theorem 2. With considering the sufficient conditions and
for further simplifying the determining equations, we take Dur2 = 2uξx + ηu, Dvr2 = ηv, Dur5 = −uηuu

and Dvvr3 = φvv as more conditions by Corollary 2. Under these conditions the infinitesimal functions are
simplified as

ξ = B(t, x), η = −2Bx(t, x)u + B(t, x), φ = G(t, x)v + H(t, x).

With symbolic computations, substituting the solutions into the system of determining equations
D = 0 and setting the coefficients of u and v as zero, we obtain solutions

ξ = 1
3 x (ct(t) + 1) c1 + ec1tcs(t)c3,

η =
(

1
3 x (ct(t) + 1) c1 + ec1tcs(t)c3 − 2

3 u (ct(t) + 1)
)

c1,

φ = 1
3 v (1− 2ct(t)) c1;

ξ = c2e2c1t,
η = c1c2e2c1t,
φ = c1v,
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in which (ct(t), cs(t))=(tanh(c1t− c2), sech(c1t− c2)) and (ct(t), cs(t))=(coth(c1t −c2), csch(c1t− c2) ),
and c1 6= 0, c2, c3 are arbitrary constants. Obviously, these solutions are not in Z(D′) since ηt 6= 0.

These recovered the results in [12]. Compared with the calculation of the method in [12],
the calculation here is simpler.

5. Conclusions

Some relationships (Theorems 2–4 and Corollaries 1 and 2) between the classical and nonclassical
symmetries of a PDE are given. An important innovation idea presented in the connections is that
additional information on the nonclassical symmetry to be determined is obtained directly from the
inconsistence of the determining system of classical symmetry of the PDE. Another more interesting
point is the use of the equivalent transformation Equation (7) and deriving the set C. The set C connects
such symmetries of the PDE in terms of their determining polynomials. In addition, Wu’s reduction
formula and algorithm play fundamental rules in deriving these results. In particular, an algorithm
based on the reduction algorithm is given for constructing connections Equation (10).

These obtained connections efficiently yield sufficient conditions on the existence of the
nonclassical symmetries of a PDEs, which make it easier to solve the system of nonlinear determining
equations. Because these connections provide further information for the nonclassical symmetry,
it is not necessary to calculate the characteristic set of the system of the determining equations at
the beginning. Hence the computation is much more cheaper. Consequently, the connections give
an alternative way to obtain nontrivial nonclassical symmetry of a PDE and improve the efficiency
of the algorithms given in literatures. Moreover, the connections yield a way to better understand
the relationship between classical and nonclassical symmetries of given PDEs. The higher efficiency
applications of the obtained results for determining nontrivial nonclassical symmetries yielded new
nonclassical symmetries for a class of the generalized Burgers equations.
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