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Abstract: This study investigated urban water consumption complexity using chaos theory to improve
forecasting performance to help optimize system management, reduce costs and improve reliability.
The objectives of this study were to (1) investigate urban water distribution consumption complexity
and its role in forecasting technique performance, (2) evaluate forecasting models by periodicity
and lead time, and (3) propose a suitable forecasting technique based on operator applications and
performance through various time scales. An urban consumption dataset obtained from the City of
Kelowna (British Columbia, Canada) was used as a test case to forecast future consumption values
using varying lead times under different temporal scales to identify models which may improve
forecasting performance. Chaos theory techniques were employed to inform model optimization.
This study attempted to address the paucity of studies on chaos theory applications in water
consumption forecasting. This was accomplished by applying non-linear approximation, dynamic
investigation, and phase space reconstruction for input variables, to improve the accuracy in various
periodicity and lead time. To reconstruct the phase space, lag time was calculated using average
mutual information for daily resolution as 17 days to reconstruct the phase space. The optimum
embedding dimension and correlation exponent for the phase space were 18 and 3.5, respectively.
Comparing the results, the non-linear local approximation model provided the best performance. The
forecasting horizon for the models was 122 days. Moreover, phase space reconstruction improved the
accuracy of the models for the different lead times. The findings of this study may improve forecasting
performance and provide evidence to support further investigation of the chaotic behaviour of water
consumption values over different time scales.

Keywords: water consumption; chaos theory; local approximation; Kelowna; gene expression
programming

1. Introduction

Global water scarcity concerns are increasing due to climate change, urban development,
population growth, industrial development, economic expansion, and the cost of drinking water [1].
It is imperative that governments invest in integrated management plans that address consequences
of water problems such as scarcity of available water resources, sufficient distribution and pipeline
maintenance. Conflicts resulting from water scarcity are becoming more prevalent and severe than
other natural resource scarcity due to rapid increases in population without access to reliable sources of
fresh water in recent decades [1,2]. There were 153 water-related conflicts reported in the 19th century
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while 279 conflicts have been reported within the last decade [3]. Therefore, we highlight the necessity
of a management plan that improves water consumption efficiency.

A robust operation of urban drinking water supply systems requires future water consumption
values to inform the development of an efficient water consumption management plan to mitigate
anticipated stressors on the system. The reliability of water distribution systems may be improved
through the accurate simulation of hydraulic conditions in pipeline systems based on future water
consumption forecasting. In other words, water consumption forecasting provides public suppliers
with the necessary future consumption information to ensure consumption needs can be met [4,5]. Water
consumption forecasting is a dynamic process as predictions are essential for the optimum operation
and sustainable growth and development of urban water supply [6]. The reason for categorizing water
consumption forecasting as a dynamic process is because of the influential variables in forecasting that
are not stable and can change under varying conditions. Therefore, considering reliable forecasting
horizon can be beneficial in any management plan. Moreover, forecasting consumption values in
short-, mid-, and long-term (i.e., less than a week, a week to a month, a month to a year or more,
respectively) time periods play a crucial role in water distribution systems’ (WDS) daily operation basis
by informing important factors such as optimized pumping, pipeline maintenance, minimizing energy
and water supply cost, improving system reliability and the quality of allocated water [7–9]. Recent
studies have improved the understanding of the nonlinearity and complexity of water consumption
factors; however, more study on these concepts is required. The available studies related to these
factors are limited and require (1) accurate estimation and forecasting of water consumption and (2)
determination of the degree of nonlinearity among the influential variables in water consumption.
Accurate estimation and forecasting data are influenced by the availability of high-resolution temporal
scale datasets (e.g., daily and hourly). Additionally, data availability for other influential factors,
such as holidays, humidity, peak consumption duration in a 24-h period, air temperature, population
growth, and consumers’ income, is important to accurately forecast consumption data.

Over the past three decades, two thoughts of deterministic and probabilistic methods have
been proposed to forecast urban water consumption. The deterministic approach is solely based
on input variables and their initial conditions, whereas a probabilistic model relies on modeling
uncertainties and randomness of input variables. Researchers have confirmed the ability of nonlinear
deterministic approaches in modeling the events with complexity in effective variables [10,11].
Individual consumption habits are an important factor in modeling and forecasting future consumption.
However, there are a few studies that aimed to forecast water consumption at the individual household
scale which is a technique to analyze consumption habits [12]. The authors are not aware of any recent
studies that considered consumers’ habits in total recorded consumption values when modeling urban
water consumption in large scale of an urban district.

However, an individual’s habits will influence consumption and thus, future values in the system
will be highly influenced by individual consumer habits, resulting in a highly complex system. In a
complex system, “the behavior of the integral part of the system is simple, but the behavior of the
overall system is complex” [13]. Given the significant challenges and complexity of probabilistic
methods, deterministic methods can provide a useful approximation to their probabilistic counterparts.
Therefore, investigation of the complexity of effective variables that are used as input variables of
water consumption models can provide information towards employing a reliable modeling technique.
Therefore, this study investigates both the dynamic characteristics, and dynamic explanatory variables
in water consumption within the City of Kelowna (British Columbia, Canada). Furthermore, this
research focuses on a deterministic approach to forecast short-term and mid-term lead times under
different temporal scales. To calibrate the forecasting models, urban dimension of the test data is
considered (i.e., the whole urban scale, rather than neighborhoods or single buildings). This decision
may have implications on usability of the model information for consumption and supply management.
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1.1. Background

Information about future water consumption helps related authorities develop an integrated,
efficient plan that reduces long-term supplier and consumer water stress. Accurate estimation of
drinking water consumption and availability of resources is considered one of the solutions to reduce
water stress [9,14–16]. Moreover, having an accurate estimation of future consumption values improves
sustainability for planning purposes. Unlike forecasting for other water resources-related parameters
of interest (e.g., river discharge, sedimentation, rainfall, etc.), where influential factors in forecasting the
goal values are mostly correlated (e.g., rainfall factors in modeling and simulating of river discharge),
influential variables in forecasting water consumption are more complex with a weaker correlation.
Moreover, applying large datasets with many input variables can lead to overfitting issues, which can
misrepresent model performance through overly confident forecasting model predictions in addition
to adding model complexity without improving accuracy. Hence, consumption forecasting requires
a balance of optimizing the quantity of input variables with improvements in forecasting accuracy.
It can improve the accuracy of the models while reducing the number of input variables by defining
the model’s input with active variables. Input variable selection techniques (e.g., Garson Equation,
Influential correlation) are employed to highlight the active variables in a system [17].

There are different types of variables affecting consumption values such as climatic (e.g.,
temperature, relative humidity, rainfall, etc.) and socioeconomic (e.g., population and income) [18].
Commonly climatic variables are used in short-term and mid-term forecasting while socioeconomic
variables are used to forecast long-term consumption values [19–21]. Common climatic factors
considered in recent studies are temperature, precipitation, and previously recorded consumption
values [20,22,23]. The number of studies on short- and mid-term forecasting of water consumption
is considerable; however, limited studies have specifically investigated impact of climatic factors on
consumption forecasting in the same period [24–26].

The literature enlists implementation of different statistical and probabilistic approaches for
forecasting consumption values. Generally, conventional techniques were reportedly prevalent for
a better understanding of chosen variables in the modeling of water consumption [27–29], which
consider linear relationships between functional variables and the value of water consumption,
while observation indicates that these relationships exhibit nonlinear behavior. The literature is
mostly categorized into physical-based and black box models. Physical-based models approximate
the general internal sub-process and physical mechanism by fundamental laws of mass, energy,
and momentum. Black box models implement artificial intelligence, fuzzy based and nonlinear
deterministic methods (e.g., artificial neural networks, genetic programming, support vector machine,
nonlinear local approximation, etc.) to ascertain the relationship between the input and output
variables. The physical-based and black box models include conventional regression models [9],
artificial neural networks (ANN) [14,20,30,31], feedforward neural networks (FNN) [22,32], general
regression neural networks (GRNNs) [33,34], deep belief neural network (DBNN) [35], support vector
machines (SVMs) [16,18,36–38], gene expression programming (GEP) [39,40], adaptive neural fuzzy
inference system (ANFIS) [41], Fourier analysis [7], hybrid models (e.g., combined wavelet) [23,42,43],
fuzzy regression [44], fuzzy cognitive map learning method [45], epidemiology-based forecasting
framework [46], temporal disaggregation [47], harmonic analysis [48], and wavelet de-noising [49].

Influential factors in complex water consumption systems may benefit from chaos theory
techniques to improve forecasting methods. As mentioned above, characteristics of influential
factors in water consumption are characterized as complex systems. Chaos theory techniques may
improve the application of forecasting models to estimate future values in complex systems and
improve the prediction of nonlinearity within dynamic systems [13,50]. Descriptions of chaotic behavior
have been used in various engineering applications. Chaotic systems are defined and characterized by
large changes in behavior resulting from small changes in initial conditions of the system [51]. Using
the ‘extent of complexity’ of a chaotic system (defined primarily in the context of the variability of
relevant data), chaotic systems are classified as low-, medium- or high-dimensional [52]. Moreover, the
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availability of noise in time series increases the complexity of the data and results in a high embedding
dimension [53]. In water distribution systems, factors such as temperature, humidity, precipitation, the
economic condition of consumers, population size, holidays, etc., have an impact on water consumption.
By aggregating data at increasing temporal scales, the effects of scaling time series on deterministic
chaos can be found [54,55] and any missing data can be generated [56,57]. This approach has been used
in solving problems in various fields of study such as river discharge [58–60], sedimentation [61–63],
climate [64], lake level variability [65,66], rainfall [67–70], traffic speed [71], finance [72], image
processing [73] and ship motion prediction [74]. However, there is a paucity of study on the application
of chaos theory on water consumption forecasting methods. Oshima [13] developed a real-time
forecasting system for water consumption based on the chaos theory. To support operations with
labor saving, facility maintenance and efficient use of energy, he introduced “information integration
type chaos theory-based consumption forecasting”. The report showed the application of chaos-based
techniques in improving the accuracy of the results.

Evolutionary techniques became popular in modeling and optimizing fields. Genetic programming
(GP) and gene expression programming (GEP) place on heuristic algorithms that are found in Darwin’s
evolution theory [66]. Evolutionary techniques adjust the population of a specific solution. In each
stage, individuals are selected randomly from the current population. Then, the chosen individual
plays the parent’s role to be reproduced for another population for the next generation of solutions.
This reproduction goes toward an optimal answer which has been defined as the goal values.
The evolutionary techniques are used for optimization problems where standard methods are not
suitable, such as discontinuity, nondifferentiable, stochastic, or highly nonlinear objective functions.
Among evolutionary techniques, GP and GEP are used for modeling problems with the same abilities
as GA such as informing data gaps and forecasting time series [18,75–77]. Aytek and Kishi [78] used
the GP technique to model suspended sediment load in the Tongue River (United States) and reported
better performance from GP compared to sediment rating curves and multiple linear regressions (MLR).
Since GEP provides a tree-structure scheme, it makes GEP more convenient to interpret the results
in comparison with GP. Moreover, GEP presents mathematical equations that clarify the relationship
between input and output variables by a factor of 100-10000 [63,79,80]. The superiority of GEP and the
advantages of this technique interested researchers to develop more sophisticated models with hybrid
methods such as combining the extended Kalman filter [81], clustering the consumption values [82],
Wavelet decomposition [39], and phase space reconstructed GEP (PSR-GEP) [42] in forecasting urban
drinking water consumption. The results showed that GEP models are highly sensitive to wavelet
decomposition when attempting to improve the performance of the models.

1.2. Problem Statement

Growth in peak water consumption, which overburdens urban water resources [30], requires an
efficient management plan. This importance motivated the application of soft-computing techniques
into urban water consumption forecasting methods to develop methods that are applicable in forecasting
problems. Many techniques have been proposed to forecast water consumption under differing time
scales; however, there has been limited investigation on performance comparisons between models
to inform model selection under various conditions [5]. Moreover, non-stationary, non-linear, and
inherent stochasticity of water consumption data makes forecasting problems more challenging in
this field [83]. Donkor et al. [84] reported that periodicity and forecasting horizon influence the
performance of the methods in short-term and long-term forecasting, such as artificial neural networks
and econometric models, respectively. Therefore, understanding the forecasting horizon, which is
dependent on the dataset considered, will help to categorize the performance of the developed models.
It can be considered as a classification for short-, mid-, and long-term forecasting models, which
help operators select the appropriate model to implement considering the available dataset [9,20,85].
Forecasting horizon can improve the reliability of consumption forecasting methods by informing
which method is most useful for consumption forecasting under specified time frames; however,
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in general, there is currently no acknowledgement of time frame for these forecasting horizons [84].
This study focuses on the forecasting horizon for the considered models to inform performance under
various periodicity (daily, 2-day, 4-day, weekly, bi-weekly, and monthly) and lead time.

Based on previous studies, common influential variables in water consumption forecasting include
observed consumption values (e.g., historical recorded consumption values over various periodicity),
climatic variables (e.g., temperature, humidity, levels of snow and rainfall) and socioeconomic
variables (e.g., population growth rate, economic factors such as income and water cost) [5]. Although
these variables are used in the literature, there are fewer studies that used socioeconomic variables
in long-term forecasting than studies that employed the above-mentioned variables. Moreover,
extrapolation models in water consumption forecasting are based on the recorded data and its error
terms [84]. The limitation of these models is based on their dependence of past trends that will likely be
observed in the future, but do not consider the role socioeconomic variables and consumer habits may
play in influencing future consumption values. Recently published studies investigating these factors
are limited and require (1) accurate estimation and forecasting of water consumption considering
different periodicity and forecasting horizons to classify the models based on their performance, and
(2) determination of the degree of nonlinearity among the influential variables to consider exogenous
variables (e.g., socioeconomic). The role of these factors in the value of water consumption in the future
is highlighted. Therefore, investigating the complexity of input data can be helpful in employing
different techniques with various abilities to model forecasting water consumption problems.

1.3. Objective

The techniques presented in the literature are often considered for short-term forecasting, which
is based on one-day-ahead lead time. In light of the previous discussion on model limitations, it has
been reported that the weaknesses of the forecasting models are related to the lack of consideration
for the complex behavior of water consumption datasets. Much of the existing research ignores the
importance of dynamic behavior of consumption datasets although many pre-processing techniques
have been introduced to improve model accuracy. This study investigates the dynamics of a dataset to
detect chaotic behavior of water consumption time series. Then, a non-linear approximation technique
is applied to forecast water demand consumption. The objective of this study was to (1) investigate
system complexity and its role in forecasting technique performance, (2) evaluate selected forecasting
models by periodicity and lead time, and (3) propose a suitable forecasting technique based on operator
applications and performance through different time scales.

This study improves the understanding of nonlinear local approximation (NLA) performance
in comparison with previously introduced methods in water consumption forecasting. Moreover,
forecasting horizon is introduced as a factor to evaluate the performance of forecasting models.
This study attempts to address gaps in previous studies by applying NLA, dynamic investigation,
phase space reconstruction for input variables, and improving the accuracy in various periodicity and
lead times.

2. Materials and Methods

Figure 1 provides a schematic description of the research methodology. Average mutual
information (AMI) is used to calculate the lag time. Then, the existence of chaotic behavior in
the test case is investigated by the correlation dimension method. Four different methods are employed
to forecast the short- and mid-term consumption values. Non-Linear local approximation method
is considered as the forecasting method in the condition of the test data that has chaotic behavior.
The performance of selected models is evaluated in different lag and lead times.
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Figure 1. Research process scheme and methodology.

2.1. Phase Space Reconstruction

This research employed the phase-space concept to better understand the dynamic nature of a
municipal water consumption dataset for the City of Kelowna. The dynamics of a water consumption
system are represented by data points along a trajectory, whereby each position in time represents a
system state. The lag-embedding technique can be used on deterministic, dynamic systems such as
the present water consumption dataset to reconstruct phase-space from time series. The fundamental
dynamics of a system can be studied by reconstructing an m-dimensional phase-space of Dt that is
defined by [86,87]:

Dt =
{
dt, dt−τ, dt−2τ, . . . , dt−(m−1)τ

}
, t = 1, 2, 3, . . . , N (1)

where Dt is a vector of the consumption data of {dt}t=1, . . . ,N, N is the number of recorded consumption
data points, τ is the lag time and m is the number of embedding dimension that generally varies from 1
to 10 or 1 to 20 [61,66,88,89]. In the case when m is greater than the minimum embedding dimension,
the trajectory of reconstructed vectors can display the true state of the chaotic system. Indeed, the lag
time (τ) is arbitrary as the data are often assumed to have infinite precision. The lag time should not
be too small given the difference between various elements of the delay vectors and, it should not be
too large as this can result in low coordinate correlation [90]. If the dynamics of the system can be
reduced to a set of deterministic laws, trajectories will converge towards a subset of the phase-space
with a fractional dimension called the attractor [89]. The lag-embedding method is sensitive to both
embedding parameters of τ and m. Average mutual information (AMI) is a well-known method for
estimating the lag time [91,92]. This research employed AMI to estimate the lag time [91]:

I(dt, dt+τ) =
∑

dt

∑
dt+τ

P(dt, dt+τ) log2
P(dt, dt+τ)

P(dt)P(dt+τ)
(2)

where the sum is extended over the total number of samples in the time series, P(dt) and P(dt+τ)
are the marginal probabilities for measurements dt and dt+τ and P (dt, dt+τ) is their joint probability.
The optimal τ minimizes the value of the function I (dt, dt+τ) for t = τ. AMI considers the first local
minimum as the lag time [91,93].

2.2. Correlation Dimension

The dimension of a system informs its complexity and indicates the number of required variables
that specify a deterministic system. Kermani [59] classified different dimensions in a system including
topological, Hausdorf, box counting, point-wise, and correlation dimensions. Additionally, the
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correlation dimension is used as an indicator of a deterministic or stochastic process [59,94]. The function
below calculates the correlation integral value [95]:

Cm(r) =
2

N(N − 1)

N∑
j=1

N∑
i=1

H
(
r− ‖Xi −X j‖

)
(3)

where N is the number of data points, H is the Heaviside step function (H (u) = 1 for u > 0, H (u) = 0 for
u ≤ 0 and u = r− ‖Xi −X j‖, Xi is the ith state vector, and r is the radius of a sphere with the content of
Xi or Xj as the center. Cm(r) is proportional to r for stochastic time series, whereas for chaotic time
series, it scales with r as

Cm(r) ∝ rce (4)

where ce is the correlation exponent defined by approximating the slope of log Cm(r) versus log (r) in
logarithmic scale. If the calculated ce is unchanged by increasing the number of embedding dimensions,
Ce can be considered as the correlation dimension of the attractor in the system. But, if ce is not stable
as a function of embedding dimensions, this system can be considered non-chaotic [54,96,97].

2.3. Nonlinear Local Approximation

Nonlinear local approximation (NLA) can forecast a system’s future without development of an
analytical model [51]. This research applied NLA to (1) test the chaotic nature of consumption data
and (2) forecast the consumption in the case study. This was done by reconstructing the phase space
of the dataset. It is critical in a chaos analysis to reconstruct the multi-dimensional phase space that
provides a conceptual pattern for the time series. The presence of attractors in phase space indicates
the possibility of chaos in the dataset. A phase-space reconstruction in a dimension m facilitates an
interpretation of the underlying dynamics in the form of an m-dimensional map, fT, by

X j+T = fT
(
X j

)
(5)

where Xj is the vector of dimension m at the current state of the system at time j and Xj+T is the vector
of dimension m at the future state of the system at time j + T. NLA entails the subdivision of the fT
domain into many subsets. In other words, the dynamics of the system were described step-by-step
locally in the phase-space [98]. In an m-dimensional space, estimating the change of trajectory with

time would lead to forecasting. Considering the relation between two states
→

Xt and
→

Xt+p, the behaviour

at a future time (p) on the attractor was forecasted by the mapping
→

F as [66]:

→

Xt+p �
→

F
(
→

Xt

)
(6)

where the evolving dynamic of state
→

Xt is influenced by nearby states. The future state
→

Xt+p was

determined by the first-order polynomial mapping
→

f [99]:

→

Xt+p �
→

F
(
→

Xt

)
=
→
a +

→

f (
→

Xt,
→

Xt−τ, . . . ,
→

Xt−(m−1)τ) (7)

While the mapping
→

f is linear, the forecasted value is nonlinear [100]. This is because every state

on the trajectory belongs to a different subset defined by different expressions for
→

F .

2.4. Largest Lyapunov Exponent

The rate of convergence or divergence in different dimensions is measured using the Lyapunov
exponent. A deterministic system contains at least one positive Lyapunov exponent [101]. This research
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employed the approach proposed by Rosenstein et al. [101] to extract the value of Lyapunov exponent
for the test case. After reconstruction of phase-space, a point Yn0 was selected and all the points in the
neighborhood of Yn, with the closer distance of r to that point were found. r is the radius of a sphere
with the content of Yn as the center. The procedure was repeated for N points in the route to find a
stretch factor S:

S =
1
N

N∑
n0=1

ln

 1∣∣∣uYn0

∣∣∣ ∑|Yn0 −Yn|

 (8)

where
∣∣∣uYn0

∣∣∣ is the number of neighbors to point Yn0. The plot of S verses N consists of linear and
nonlinear components. The literature provides two methods for calculating the largest Lyapunov
exponent (λmax). Shang et al. [102] determined λmax as the slope of the linear part of the curve, while
Rosenstein et al. [101] determined λmax as the average of the slope of the first part and that of the
second part [89,102]. This research applied the second approach to study different temporal scales.
The prediction horizon (∆t) is a time in which the consumption dataset sustains its dynamics in the
most accurate forecasting; ∆t was obtained as the inverse of the largest Lyapunov exponent:

∆t =
1

λmax
(9)

2.5. Gene Expression Programming

Evolutionary soft computing techniques may be applied to solve engineering problems. Among
these evolutionary techniques, genetic algorithm (GA), genetic programming (GP), and gene expression
programming (GEP) are considered, which were originally inspired from Darwin’s theory of
evolution [79,80,103,104]. GA and GP work with a string of numbers and a specific length that
is known as a “chromosome.” GEP defines an equation that shows the relationship between input
and output values. Moreover, the process of the algorithm’s learning starts with the generation of
chromosomes for a given random raw dataset that works with chromosomes and expression trees.
Expression trees demonstrate the relationship among variables connecting with arithmetic operators.
Chromosomes contain genes that provide a series of symbols of two parts, head and tail, which have
functions, terminals, and only terminals, respectively. GEP follows the genome restructuring process
by mutation, recombination, transposition, and gene duplication randomly. This random reputation
will deliver the best model to be selected. This cycle will be continued by the reproduction of randomly
generated chromosomes to reach the model with satisfying results based on defined evaluation criteria.
In this research, 30 chromosomes with the head size of 8 and 3 genes are reproduced with the linking
functions of

{
+,−,×, x, x2,

√
x, log x

}
. The fitness functions used as the selection criteria are root mean

square error (RMSE), correlation coefficient (CC) and mean absolute error (MAE). All models were
selected with a fair assessment by considering stopping condition of 5000 generations. Figure 2 shows
the scheme of the process with GEP method.
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2.6. Multiple Linear Regression

The common application of the linear regression (LR) modeling method is to model the goal
variable (Y) with a single input variable (X). Multiple linear regression (MLR) describes the relationship
between the goal value (Y) and the number of input variables (X1, X2, . . . , Xn). In other words,
MLR finds a relationship with a linear combination of independent explanatory variables (e.g.,
reconstructed phase space with a different number of embedding dimensions for recorded values of
water consumption) and response variable (time ahead values of water consumption) by

Yi = α0 + α1Xi1 + α2Xi2 + · · ·+ αpXip + ε (10)

For i = n recorded values. Yi is the output consumption value, Xi is the explanatory input variables,
dependent upon the number of embedding dimensions, where α0 is constant, αp are slope coefficients
for each input variables and ε is the unexplained residual value.

2.7. Models Selection Criteria

Correlation Coefficient (CC), root mean square error (RMSE) and mean absolute error (MAE) are
fitness functions considered in this study to evaluate model performance and accuracy.

CC =

∑Nt
i=1

(
Ri −R

)(
Fi − F

)
√∑Nt

i

(
Ri −R

)2
√∑Nt

i

(
Fi − F

)2
(11)

RMSE =

√∑Nt
i=1(Ri − Fi)

2

Nt
(12)

MAE =
1
n

n∑
i=1

|Ri − Fi| (13)

Variables in the above equations include the number of values, Nt, and the recorded and forecasted
values, R and F, respectively. R and F are the mean values of the recorded and forecasted water
consumption, respectively. The range of CC is −1 and 1, where larger positive value of CC and smaller
value for RMSE and MAE indicates better model performance in forecasting accuracy.

2.8. Test Case

Water consumption data from the City of Kelowna (British Columbia, Canada) were considered
as a test case for this study. The water supply for the region comes from various resources, which
include Lake Okanagan, Mission Creek, Mill Creek, Scotty Creek, Hydraulic Creek and numerous
wells [105]. There is one primary distribution system that services 99% of the population via Poplar
Point, Eldorado (seasonal intake uses only utilized during peak consumption) and Cedar Creek pump
stations [105] plus Swick road pump station which services approximately 300 residents. This study
considered Poplar Point, Eldorado and Cedar Creek stations. The SCADA system obtains information
remotely from sensors installed at the intake locations. The software platform facilitates tracking of
historical system performance for auditing and future decision making to optimize the system [105].
This study used six temporal scales of the consumption, including daily, 2-, 4-, 7-, 14- and 30 days from
1st of January 2010 to 30th December 2016. The test data are the whole scale of consumption values as
the spatial scale for City of Kelowna. Table 1 shows the characteristics of the dataset in the test case.
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Table 1. Characteristics of the temporal water consumption values in test case in whole urban scale.

Property Daily 2-Day 4-Day 7-Day 14-Day Monthly

Number of Data 2186 1092 552 312 156 72
Max. value (m3) 114,597.2 210,740.3 410,428.3 656,173.6 1,255,211 2,475,026
Min. value (m3) 14124 31,477.3 69,655.5 124,112.9 252,704.1 557,066.8

Average (m3) 43,046.4 86,102 170,332.4 301,357.3 602,714.7 1,291,944
Standard deviation (m3) 20,074.5 39,897 79,304.3 136,626.8 268,733.2 552,701.5
Coefficient of variation 0.46 0.46 0.46 0.45 0.44 0.42

Skew 0.73 0.71 0.72 0.66 0.63 0.54
Kurtosis −0.38 −0.45 −0.51 −0.63 −0.79 −0.91

3. Results

Lag Time: Figure 3a,b presents the time variation of water consumption dataset for a six-year
period (from January 2011 to December 2016) and the average 24-h consumption based on City of
Kelowna’s Utility report. The data were parsed into hourly maximum, minimum, and mean values
for a 24-h period (Figure 3b). Figure 3b also presents a boxplot of the total mean, minimum, and
maximum consumption value distributions for the six years period. Figure 3b indicates that the
average consumption and minimum values have low frequency, demonstrating the highly deterministic
behavior of the data. To calibrate the models, the data splinted into two folds; (1) 80% for training
period (1st January 2016 to 31st December 2015); (2) 20% for test period (1st January 2016 to 31st
December 2016). Water consumption estimation and forecasting of the average and minimum values
are not as complex as compared to the peak consumption values. However, the maximum values
exhibit a non-linear behavior which does not follow a specific pattern (i.e., appears to be random) unlike
average and minimum values. Further, the maximum consumption values in a water distribution
system are very important. This is because of estimation of peak consumption to supply customers’
consumption and optimize WDS pipeline to make WDS more reliable, such as managing pipeline
failures, improving peak pressure, reducing leakage, etc.
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24-h period.

Average mutual information (AMI) was used to identify the proper lag time in this study. Figure 4a
presents the first local minimum lag time of τ = 17 days for daily time series as a function of lag time.
The first minimum values of AMI were at lag times of 17, 12, 10, 6, 3 and 2 for daily, 2-, 4-, 7-, 14- and
30-days (monthly) data series of the water consumption, respectively. Table 2 summarizes the results
for all other timescales. By using the lag time of τ = 17 days, the phase-space was reconstructed, as
presented in Figure 4b for daily scale. The vertical axis shows the time series and the other two axes
show the same time series delayed by 17-(τ) and 34-days (2τ). This figure shows reconstructions in three
dimensions; the projection attractor on the plane

{
xi, xi+τ, xi+2τ

}
with the lag time of 17 days. When

comparing the two PSR graphs in Figure 4b, the presence of attractors becomes clear for τ = 17 days
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(black line) comparing to τ = 1 (blue dots). Indeed, the phase space is more spread for 1-day lag
time and more concentrated on attractors for 17-days lag time. Based on the figure, PSR can make a
consistent set of inputs for the model that makes better results in comparison with other sets having
less consistency (e.g., peak consumption represented in Figure 3b).
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Table 2. Average mutual information and correlation exponent values in different temporal resolutions.

Time Scale AMI Ce 2LogN > Ce

Daily 17 3.50 6.67
2-Day 12 3.37 6.07
4-Day 10 3.74 5.48
7-Day 6 3.94 4.98
14-Day 3 3.83 4.38
30-Day 2 3.49 3.71

Correlation Dimension: Figure 5a plots the results for correlation integral versus log (r) for
different dimensions (m) in the range of 1 to 20 for daily consumption time series. The correlation
exponents, Ce (m), were determined and the results were plotted in Figure 5b to evaluate the presence
of chaos in the dataset. As demonstrated in Figure 5b, the correlation exponent increases with the
embedding dimension up to a certain value and then remains steady. The figure reveals that the slope
of larger embedding would become constant for all temporal scales.
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The embedding dimension of 17 appears to explain the dynamics of the system (1- and 2-day
consumption). The correlation exponents of 3.5, 3.37, 3.74, 3.94, 3.83 and 3.49 were determined for
daily, 2-, 4-, 7-, 14- and 30-day, respectively. Regarding the concept of PSR, rounding up the correlation
exponent to the nearest integer informs the number of dominant variables. Thus, it can be interpreted
as the number of variables that dominantly govern the temporal dynamics of water consumption,
which is approximately 4 for all temporal scales. Table 2 presents the results of lag time and correlation
exponent for all temporal scales. Moreover, the condition of Ce < 2 logN (with N as the number of data
point) was satisfied for the chaotic temporal scales [106].

Nonlinear Local Approximation and Largest Lyapunov Exponent: The first objective in this
research was to investigate the impact of PSR in the accuracy of forecasted values. Forecasted values
were evaluated for the embedding dimensions (ranging from 2 to 10) at lag times 1 and 17 days to
forecast 1-day-ahead and highlight the effect of embedding dimension and performance of models.
For m = 2, for a lag time of 1 day, two variables Dt and Dt−1, and for m = 2, for a lag time of 17 days,
two variables Dt and Dt−17, were used as input variables to forecast 1-day ahead (Dt+1). For m = 3, for
the lag time of 1 and 17 days, three variables Dt, Dt−1, Dt−2 and Dt, Dt−17, Dt−34 were used as input
variables to predict 1-day-ahead. Moreover, phase space was reconstructed for m > 3. Table 3 presents
a summary of the 1-day ahead forecasted values that reconstructed phase-space in dimensions ranging
from 2 to 20 for τ = 1 and 17 days. The overall average of fitness values for all embedding dimensions
CC > 0.96, RMSE < 4200 (m3/day) (8% of average daily consumption) and MAE < 49. These results
can be considered as reasonable performance of the model. Table 3 reveals the optimum embedding
dimension for the most accurate forecasted value in bold. Using CC, RMSE, and MAE, the optimum
embedding dimension (mopt) was found to be 18 and 19 for the lag time of 1 and 17 days, respectively.
The results of nonlinear local approximation (NLA) identify the closest results of correlation exponent
in optimum embedding dimension (m = 17 for correlation dimension of daily value). The similar
values for the embedding dimension of daily values imply that m = 17 or 18 is the optimum dimension
of the system to be used as the models’ input. The second objective was to evaluate the performance
of selected m and τ. The optimum models for m = 18, τ = 1 and m = 19, τ = 17 have been applied to
forecast 2-, 4-, 7-, 14-, 30- and 60-day lead time water consumption. Figure 6 compares the NLA with
observed data using bolded values in Table 3.
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consumption values time series (b) scatter pilot.

Figure 7a plots the stretching factor (S) versus the number of points (N = 100). The figure shows
an overall increase in S by increasing N. Furthermore, the figure reveals two components: the first part
reveals a sudden increase in S, while the second part (after N = 25) shows a more gradual increase in S.
Figure 7a also indicates the best line (dashed line) fitted to the second part. Following Rosenstein et
al. [101], the present study revealed λmax of 0.014, 0.0102 and 0.0082 for m = 17, 18 and 19, respectively.



Water 2020, 12, 753 13 of 22

Three different values of λmax are considered because of the embedding dimensions range that were
determined by CD, FNN, NLA and PSR-NLA, which were between 17 and 19. Note that m = 18
and 19 were determined by NLA and PSR-NLA, respectively, which gave a higher accuracy than the
other embedding dimensions (see Table 3). The forecasting horizons (∆t = 1/λmax) were 72, 98 and 122
days for m = 17, 18 and 19, respectively. Moreover, m = 17 with forecasting horizon value of 72 was
determined by CD. Figure 7b shows the frequency of the data is smooth from day 1 to 72. Even with
the high data frequency between days 98 and 122, PSR-NLA increased the forecasting horizon from 98
days (NLA) to 122 days. Considering the results of CD, NLA, PSR-NLA, and forecasting horizon, it is
reasonable to select m = 17 as the system’s optimum dimension.

Table 3. Fitness values for NLA and PSR-NLA methods in different embedding dimension lag time
and lead time.

NLA, τ = 1, T = 1 PSR-NLA, τ = 17, T = 1 τ = 1, m = 18

m CC RMSE * MAE m CC RMSE * MAE T CC RMSE * MAE

1 1 0.9842 2855.6 43.07
2 0.9759 3532.1 47.85 2 0.9751 3581.7 49.09 2 0.9783 3351.6 48.02
3 0.9771 3424.8 47.34 3 0.9773 3425.3 48.01 4 0.9331 5883.5 63.03
4 0.9762 3495.5 47.74 4 0.9789 3302.9 47.30 7 0.8932 7445.8 72.49
5 0.9785 3332.0 47.08 5 0.9785 3331.7 47.10 14 0.7877 10555.0 87.76
6 0.9795 3248.6 46.13 6 0.9795 3257.8 46.79 30 0.6735 13307.6 100.44
7 0.9802 3187.3 45.49 7 0.9829 2967.1 45.80 60 0.2523 20189.1 129.71

8 0.9805 3176.4 45.65 8 0.9838 2887.9 45.22 τ = 17, m = 19

9 0.9806 3164.1 45.65 9 0.9849 2792.8 43.95 T CC RMSE * MAE

10 0.9803 3193.6 45.09 10 0.9846 2828.2 44.52 1 0.9852 2772.8 43.83
11 0.9813 3098.7 44.56 11 0.9850 2792.2 43.95 2 0.9898 2295.7 39.59
12 0.9763 3495.1 48.11 12 0.9804 3189.4 46.69 4 0.9415 5504.2 61.47
13 0.9752 3578.0 48.11 13 0.9768 3457.4 48.32 7 0.9002 7211.2 71.46
14 0.9779 3378.9 47.14 14 0.9788 3303.6 47.65 14 0.8048 10147.5 86.61
15 0.9806 3169.7 46.06 15 0.9790 3290.2 47.23 30 0.6776 13265.1 95.31
16 0.9765 3491.0 47.24 16 0.9796 3250.2 46.70 60 0.4363 17784.9 118.53

17 0.9810 3139.6 45.21 17 0.9825 2995.5 45.95
18 0.9842 2855.6 43.07 18 0.9838 2894.0 45.21

* m3
19 0.9685 4088.5 44.69 19 0.9852 2772.8 43.83
20 0.9661 4209.2 45.29 20 0.9846 2833.1 44.43

Tot 0.9775 3394.2 46.30 Tot 0.9807 3142.9 46.34

Best 0.9842 2855.6 43.07 Best 0.9852 2772.8 43.83
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Phase Space Reconstructed GEP (PSR-GEP) and Multiple Linear Regression (MLR) Models:
One of the most important steps in developing an accurate model is the selection of the input
variables. Input variable selection challenges the effect of the number of inputs in models’ performance.
In other words, there are diminishing returns on performance based on the number of input variables
selected [42]. The combinations were selected in a way that included daily consumption data with lag
times of τ = 1 and 17 days. Different combinations of the time series of daily consumption were used
to structure a policy for input dataset criteria. Combinations of Dt, Dt−1, Dt−2, . . . , Dt−20 variables
were used as input data with Dt+1 (1-day time ahead) as output of the GEP and MLR model and
combinations of Dt, Dt−τ, Dt−2τ, . . . , Dt−20τ variables were used as input data with Dt+1 as output of
the PSR-GEP and PSR-MLR model (forecasting of 1 day time ahead). The combinations of arithmetic
functions of

{
+,−,×, x, x2,

√
x, log x

}
and {+,−,×,} were used for PSR-GEP and PSR-MLR models,

respectively. Ultimately, the best combination was selected using the criteria of CC, RMSE, and MAE.
Table 4 reveals the 20 combinations of inputs and their performance with GEP and PSR-GEP models.
In the table, the three criteria indicate the fourth combination of inputs (m = 4) with the lag time of
1-day, and (m = 8) with the lag time of 17 days as the best combinations of input data (reconstructed
phase space) for GEP and PSR-GEP. The study reveals the following relationship for both GEP and
PSR-GEP, respectively:

Dt = Dt−1 + log[log(log(9.58Dt−4)) × (Dt−2Dt−3)] + 8.253 (14)

Dt = Dt−τ − 0.04Dt−4τ + 8.03
√

Dt−4τ + 0.623 (15)

Table 4. Fitness values for GEP (gene expression programming) and PSR-GEP (phase space reconstructed
GEP) methods in different embedding dimension lag time and lead time.

GEP, τ = 1, T = 1 PSR-GEP, τ = 17, T = 1 τ = 1, m = 4

m CC RMSE * MAE m CC RMSE * MAE T CC RMSE * MAE

1 1 0.9764 3486.6 47.83
2 0.9757 3543.7 48.14 2 0.9789 3636.9 48.57 2 0.9494 5112.2 57.92
3 0.9761 3517.8 47.91 3 0.9788 3644.6 48.59 4 0.9130 6716.4 67.48
4 0.9764 3486.6 47.83 4 0.9789 3647.1 48.56 7 0.8652 8376.4 76.57
5 0.9760 3519.0 47.95 5 0.9789 3635.5 48.68 14 0.7810 10,734.8 88.95
6 0.9760 3520.5 48.37 6 0.9788 3649.5 48.71 30 0.6548 13,649.0 97.03
7 0.9760 3500.9 47.91 7 0.9788 3649.0 48.70 60 0.2345 20411.3 130.23

8 0.9760 3521.4 47.97 8 0.9789 3631.6 48.62 τ = 17, m = 8

9 0.9760 3511.9 47.89 9 0.9788 3653.9 48.63 T CC RMSE * MAE

10 0.9760 3514.7 47.89 10 0.9788 3650.6 48.73 1 0.9789 3631.6 48.62
11 0.9760 3514.6 47.88 11 0.9788 3656.6 48.65 2 0.9553 5267.3 58.52
12 0.9760 3514.7 47.89 12 0.9787 3657.4 48.69 4 0.9227 6894.5 68.47
13 0.9760 3510.1 47.91 13 0.9789 3645.4 48.55 7 0.8713 8848.2 78.11
14 0.9760 3516.6 47.91 14 0.9787 3655.7 48.69 14 0.7782 11,571.8 91.84
15 0.9760 3510.4 47.86 15 0.9788 3650.5 48.61 30 0.6334 14,631.5 105.98
16 0.9760 3498.7 47.88 16 0.9789 3644.4 48.54 60 0.3864 18,670.2 126.20

17 0.9759 3515.1 47.89 17 0.9789 3638.9 48.56
18 0.9760 3509.7 47.85 18 0.9789 3646.6 48.57

* m3
19 0.9759 3514.8 47.93 19 0.9787 3650.6 48.74
20 0.9759 3514.2 47.90 20 0.9789 3642.5 48.51

Tot 0.9759 3519.0 47.96 Tot 0.9788 3646.5 48.62

Best 0.9764 3486.6 47.83 Best 0.9789 3631.6 48.51

EM 4 4 4 EM 8 8 20

The results were not found to be more sensitive to lag time calculated by AMI (17 days) than to
the 1-day lag time. However, PSR made the performance of the model better than m = 4 with 1-day lag
time. Equation (14) used all four variables made by m = 4 (Dt−1, Dt−2, Dt−3, Dt−4), while equation (15)
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only used two of the variables out of 8 variables (m = 8; Dt−τ, Dt−4τ). Table 4 compares further details
for GEP and PSR-GEP models for different lead times forecasted values. However, the results of both
GEP and PSR-GEP are satisfactory, although they do not forecast as accurately as NLA and PSR-NLA.
Table 5 presents the results for the MLR model that was used as a test to compare the results of the
techniques studied. The application of PSR in improving accuracy is shown in the table. Surprisingly,
the best embedding dimension for MLR is 17, which was identified by CD and NLA. Additionally,
as expected, PSR-MLR results are more accurate than MLR when forecasting for different lead times.

Table 5. Fitness values for MLR and PSR-MLR methods in different embedding dimension lag time
and lead time.

MLR, τ = 1, T = 1 PSR-MLR, τ = 17, T = 1 τ = 1, m = 17

m CC RMSE * MAE m CC RMSE * MAE T CC RMSE * MAE

1 1 0.9789 3638.9 48.56
2 0.7825 11658.6 92.37 2 0.9758 3763.4 50.48 2 0.9494 5139.4 58.65
3 0.9790 3762.3 49.89 3 0.9809 3336.0 48.17 4 0.9130 6701.6 68.26
4 0.9790 3792.3 50.19 4 0.9811 3443.9 49.41 7 0.8595 8511.9 77.68
5 0.9790 3814.1 50.42 5 0.9766 3905.5 52.04 14 0.7595 11204.4 91.66
6 0.9790 3958.0 52.11 6 0.9148 22846.5 145.73 30 0.6447 13707.5 101.02
7 0.9790 4133.6 54.24 7 0.9765 3568.2 48.60 60 0.2282 20211.2 129.01

8 0.9790 4187.1 54.85 8 0.9764 3811.2 51.08 τ = 17, m = 3

9 0.9791 4432.7 57.65 9 0.9766 3568.2 48.71 T CC RMSE * MAE

10 0.9792 5024.0 63.46 10 0.9766 3680.4 49.81 1 0.9809 3336.0 48.17
11 0.9792 5576.0 68.14 11 0.9767 3610.6 49.13 2 0.9555 5336.5 59.61
12 0.9792 5921.4 70.92 12 0.9767 3603.9 49.04 4 0.9232 6889.3 69.17
13 0.9793 6276.8 73.59 13 0.9766 3601.4 49.13 7 0.8723 8841.9 78.12
14 0.9793 7267.0 80.61 14 0.9767 3584.5 48.92 14 0.7790 11549.8 91.70
15 0.9794 9128.5 92.30 15 0.9769 3560.6 48.79 30 0.6344 14504.2 104.84
16 0.9794 10115.3 97.81 16 0.9769 3550.4 48.73 60 0.3859 18351.2 125.12

17 0.9789 3638.9 48.56 17 0.9769 3550.5 48.73
18 0.9794 10114.2 97.80 18 0.9769 3560.4 48.81

* m3
19 0.9794 10115.3 97.81 19 0.9768 3561.6 48.87
20 0.9795 9618.8 95.07 20 0.9769 3610.5 49.39

Tot 0.9595 6709.6 72.00 Tot 0.9738 4579.2 54.20

Best 0.9795 3638.8 48.56 Best 0.9811 3336.0 48.17

EM 20 17 17 EM 4 3 3

4. Discussion

A steady value of the correlation exponent in a certain embedding dimension is an indication of
chaotic behavior in all six temporal scales. The correlation exponent became steady after an embedding
dimension of 17 for the temporal scales. The correlation exponent results show that the 17th embedding
dimension may be considered the optimum embedding dimension for this system; however, we
conducted an additional investigation to better understand the optimum embedding dimension for the
test case. Moreover, the saturation and constant slope of correlation exponent for all temporal scales
revealed a highly chaotic behaviour exhibited by the whole system. Many studies that investigated
the chaotic behaviour of the system concluded that high-resolution timescales demonstrate chaotic
behaviour while the low-resolution timescale of the same time series does not exhibit chaotic behaviour.

Regarding the fractal law, it remains uncertain whether a chaotic system should have chaotic
behaviour in all temporal scales; we speculate that this is an important factor to consider under this
application. Based on the presented results, this study suggests that to investigate the availability of
chaos in any dataset, investigation for different temporal scales is needed to indicate if the system
has a chaotic behaviour, as this conclusion supports the findings presented by other researchers [54].
The present investigation of chaotic behaviour in different time scales using the test case provides
enough information to evaluate the objectives of this research. However, additional study is required
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to make definitive conclusions regarding the findings of this study and more generally, the chaotic
behaviour of consumption data. Nevertheless, the study findings provide encouraging evidence to
further investigate the chaotic behaviour of water consumption values over different time scales of
a dataset.

The results indicate that forecasting was more sensitive to optimum embedding dimension and
lag time calculated by AMI than to the reconstructed phase space by 1-day lag time. However,
the difference between the results of NLA and PSR-NLA was not considerable; the performance of
PSR-NLA was better than NLA to forecast consumption values in different lead time. Moreover,
mopt = 19 provided more accurate predictions than mopt = 18 (Table 3). Figure 8 compares observed
values to the forecasted results, which highlights the negligible error in the results of PSR-NLA and
GEP during the test period. Regarding the average fitness results for all dimensions, the performance of
GEP is better than PSR-GEP, while the application of PSR is shown in forecasting with equal dimension
and different lead times. Figure 8a shows the greatest accuracy from the results shown by PSR-NLA
compared to the other models. Figure 8b shows the value of residual for forecasted consumption by
PSR-NLA in two forecasting horizons. The performance of PSR-NLA in forecasting high-frequency
values is shown in Figure 8b. The figure reveals that the optimum embedding dimension of 19
was more acceptable than the embedding dimension of 17 determined by the correlation function
(Figure 5b).
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The results in Figure 8b cannot reject the optimum embedding dimension that was determined
from other methods in this study. It can be concluded that the results of the 17th dimension are more
reliable than those of the 19th dimension. However, the 19th dimension will offer a longer forecasting
horizon. Therefore, based upon the primary goal of modeling, either dimension may be a candidate
for optimum forecast modeling. The importance of embedding dimension is demonstrated when
considering the small difference among the forecasted values by different embedding dimensions in all
models. Therefore, it is recommended to test the optimum embedding dimension by various methods.
However, the model results are quite similar; the overview of approximation for all the techniques for
multiple dimensions concluded that the optimum embedding dimension is between m = 17 and m = 19,
demonstrating reliability of the methods. To compare the models, Table 6 shows the comparison of
statistics of each forecasted value with observed data. The check marks belong to the models where the
results are closer to the observed values’ statistics. The results reveal the PSR technique had a positive
impact on the accuracy of all models at all temporal scales, especially in high forecasting horizons.
As Figure 9 shows, the performance of NLA and PSR-NLA was approximately similar for daily and
2-days ahead forecasting, but when considering the lead time with longer period, PSR-NLA was more
accurate than NLA in lead time of 1- and 2-months ahead. The value of correlation coefficient for NLA
and PSR-NLA shows 43% improvement. Following CC, the values of RMSE and MAE showed the
performance of PSR-NLA was better than NLA in forecasting for longer lead time. Nevertheless, the
slope of the fitted line for the fitness functions shows that PSR-NLA can forecast more accurate values
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in comparison with NLA. The results of this application of PSR may also serve useful for application in
long-term forecasting, which was previously identified in the literature as a topic requiring further
study in drinking water consumption modeling.

Table 6. Statistics comparison of observed and forecasted consumption in test period by the
selected models.

Property Observed NLA
τ = 1, m = 18

PSR-NLA
τ = 17, m = 19

GEP
τ =1, m = 4

PSR-GEP
τ = 17, m = 8

MLR
τ = 1, m =1 7

PSR-MLR
τ = 17, m = 3

Max. value 75,620.26
√

Min. value 21,313.72
√

Average 42,500.82
√

Standard deviation 16,117.34
√

Coefficient of variation 0.38
√

Skew 0.43
√

Kurtosis −1.13
√Water 2020, 12, x FOR PEER REVIEW 18 of 23 
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5. Conclusions

This study presented a novel approach to improve the accuracy of models in forecasting residential
daily water consumption values. The residential water consumption dataset from the City of Kelowna
(British Columbia, Canada) was used as a test case to forecast future consumption values using
varying lead times under different temporal scales to identify models which may improve forecasting
performance. A chaos approach based nonlinear local approximation was compared with previously
studied forecasting methods to assess and consider the applicability of the chaotic behavior of urban
consumption values to better improve forecasting performance. To investigate the existence of chaos
in test data, different temporal scales were considered. The results showed all temporal scales, daily
at 2-, 4-, 7-, 14- and 30-days, have chaotic behavior with similar correlation exponent values for all
scales. The value of the largest Lyapunov Exponent showed the reliable time period for the models as a
forecasting horizon. Dynamic investigation of explanatory variables and phase space reconstruction of
the input variables based on optimum correlation dimension was considered to improve the accuracy
in various periodicity and lead-times. The findings suggest that considering the chaotic behavior
of consumption values by taking the forecasting horizon into account, will give insight about the
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behavior of data. It was recommended to investigate the performance of the models in forecasting
future values with different lead-times. Considering the fitness values for the models by different
lead-times within the forecasting horizon, substantial unstudied criteria remain to organize different
techniques based on the behavior of the models input data. Moreover, the high results of the optimum
embedding dimension in reconstructed phase space revealed that to improve the models, considering
a high number of input variables is not beneficial. Therefore, this research suggested investigating
the dynamic behavior of explanatory variables in modeling and forecasting problems to improve the
reliability and accuracy of the water consumption models.
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