Open Source Logic System With Trees

Dave Gilbert, Kyle Mas, and Tristan MacKinlay¹

Department of Philosophy, UBC

October 25, 2019

¹Financial support provided by BCcampus and the office of the Associate Provost for Teaching and Learning

Purpose

The project has two primary goals:

- Create a free, open-source, web-based, interactive logic text.
- Create an online homework system that, ultimately, can be used in online/DE courses.

Background and Motivation

- PHIL 220 is the largest core course in the Department of Philosophy.
- Between 2014 and 2018, 2471 students enrolled in a section of the course.
- 1348 were enrolled in DE sections.
- Current DE textbook cost: \$ 116 CAD (\approx \$156,368 CAD in total).
- Current use of TAs for in-person sections: marking midterms (sometimes homeworks).
- Common student feedback about the course: not enough interaction with TAs.

Resources and Existing Technology

This project will rely heavily on extent open education resources, supplementing each (and bringing them together).

- Prof. Jonathan Ichikawa's forall χ (UBC edition)
 - Based on a text by P.D. Magnus.
 - Offered under a Creative Commons License.
- Carnap: an open framework for in-browser formal reasoning exercises with automated marking support (Graham Leach-Krouse, Kansas State)

Why Trees?

Users

- Any student enrolled in PHIL 220, in-person or online (but also 120, 320, 322, and 323). (Online Text)
- General Public. (Online Text)
- Other Universities. (Text and Homework System)
- UBC DE students. (Text and Homework System)

Timeline

- Building the tree widget: Currently underway, nearing completion
- Integrating our widget with *Carnap* for proof-checking: *Beginning* now, through next summer
- Creating the online text: Summer 2020
- Extensive user testing: *Academic year 2020-2021*

Modus Ponens P→Q,P,~Q Declare Premises Continue Branch Split Branch Mark as Resolved

Modus Ponens

$$P \rightarrow Q, P, \sim Q$$

$$P \rightarrow Q \quad (A)$$

$$P \quad (A)$$

$$\sim Q \quad (A)$$
formula (rul) formula (rul)

10

De Morgen's Law

$$\begin{array}{c|c} \sim (\sim (P \lor Q) \leftrightarrow (\sim P \land \sim Q)) & \text{Declare Premises} \\ & \sim (\sim (P \lor Q) \leftrightarrow (\sim P \land \sim Q)) (\ A \) \checkmark \\ & \sim (P \lor Q) (\ \leftrightarrow \) \checkmark & \sim (P \lor Q) (\ \leftrightarrow \) \checkmark \\ & \sim (\sim P \land \sim Q) (\ \leftrightarrow \) \checkmark & \sim P \land \sim Q (\ \leftrightarrow \) \checkmark \\ & \sim P (\ \sim \lor \) & \sim P (\ \land \) \\ & \sim P (\ \sim \lor \) & \sim Q (\ \land \) \\ & \times P (\ \sim \land \) & \sim Q (\ \sim \land \) \\ & \times P (\ \sim \land \) & \sim Q (\ \sim \land \) \\ & \times P (\ \sim \land \) & \times P (\ \sim \land \) \\ & \times P (\ \sim \land \$$