
minerals

Article

The Environmental Significance of Sediment Surface
Area as a Controlling Factor in the Preservation of
Polychlorinated Dibenzo-P-Dioxins and
Dibenzofurans (PCDD/PCDF) in Sediments Adjacent
to Woodfibre Pulp Mill, Howe Sound,
British Columbia

Gareth Chalmers 1,*, Rupert Adams 2, Amanda Bustin 1 and Marc Bustin 1

1 Department of Geology, Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road,
Vancouver, BC V6T 1Z4, Canada; abustin@eoas.ubc.ca (A.B.); mbustin@eos.ubc.ca (M.B.)

2 Geocon Incorporated, San Diego, CA 92121, USA; adams@geoconinc.com
* Correspondence: garethchalmers@gmail.com

Received: 3 October 2019; Accepted: 15 November 2019; Published: 18 November 2019
����������
�������

Abstract: A sediment core was retrieved from an area adjacent to a Pulp and Paper Mill in Howe
Sound, British Columbia, in order to examine the accumulation dioxins (PCDDs) and furans (PCDFs).
Downcore distribution of TOC in the bulk samples is relatively uniform (0.5–1.7 wt. %). Bulk PCDD/F
concentration shows selective enrichment and depletion at specific sediment horizons, and a low to
moderate correlation with surface area (r2 = 0.23–0.54). TOC in size fractionated sediments ranges
from 0.3–11 wt. % and shows a moderate correlation with surface area (r2 = 0.51). The relationship
between PCDD/Fs and surface area is congener specific, ranging from no significant correlation
(TCDD; r2 = 0.05), to a good correlation (i.e., OCDF; r2 = 0.74). Results indicate that both dioxin
and furan concentrations are related to organic matter concentration, molecular chlorination and
sediment surface area.
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1. Introduction:

Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are serious threats to the
environment due to their ubiquitous nature, toxicity and strong resistance to biodegradation [1–3]. It is
known that these compounds have a strong affinity for sediment particles, particularly ab/adsorption
onto high surface area sediments like organic rich particulates [4,5], making coastal sediments an ideal
repository. PCDD/Fs occur in the sediments of most industrialized waterways in the United States,
Europe and Asia [6–9]. The relationship between inorganic particle surface area and organic matter
concentration has been established in uncontaminated sediments [10–15]. It also considered probable
that surface area adsorption may be responsible for the preservation and distribution of organochlorine
compounds in marine sediments [16]. This research has investigated the distribution of organochlorine
compounds in organic rich marine sediment in Howe Sound, British Columbia, Canada to understand
how the characteristics on the sediment influence the preservation of these toxins.

There are 75 PCDD congeners and 135 PCDF congeners, each with a different arrangement/quantity
of chlorine atoms in the chemical structure. 2,3,7,8-terachlorodibenzo- p-dioxin (2378-TCDD) has
received wide attention due to its carcinogenic nature, and has been shown to kill 50% of laboratory
guinea pigs when administered at a dosage of 0.6 µg/kg of body mass [17,18], although such high

Minerals 2019, 9, 711; doi:10.3390/min9110711 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
http://www.mdpi.com/2075-163X/9/11/711?type=check_update&version=1
http://dx.doi.org/10.3390/min9110711
http://www.mdpi.com/journal/minerals


Minerals 2019, 9, 711 2 of 31

fatality rates are not observed in all species. Data show that the toxicity of individual congeners is
related to the positioning of chlorine atoms in the chemical structure, and that congeners with chlorine
atoms at the 2,3,7 and 8 positions are the most toxic [19]. PCDD/F toxicity in marine and fresh water
sediments is measured against national guidelines set out by the Canadian Council of Ministries of
the Environment (CCME). Values for PCDD/F of 0.85 ng/kg TEQ (Toxic Equivalency; ISQG-Interim
Sediment Quality Guidelines) [20] and 21.5 ng/kg TEQ (PEL—Probable Effect Level) were chosen,
based upon the degree of adverse biological effects resulting from exposure to contaminated sediments.
TEQ is calculated by multiplying the measured sediment concentration in ng/kg by a TEF value (Toxic
Equivalency Factor); 2,3,7,8-TCDD is known to be the most toxic and, therefore, has a TEF of 1.0.
Since the more chlorine atoms present in the molecular structure, the lower the TEF value, OCDD
(Octachlorodibenzodioxin) has a TEF of 0.0001. Sources of PCDD/Fs in the environment are numerous,
although they usually originate as unwanted trace contaminants in industrial processes, and not
from direct manufacture [21]. Atmospheric sources include combustion of wood and waste from
incinerator plants [21,22], and coal fired power stations [23]. Effluent wastes from industrial processes,
most notably from solid waste incineration [24] and from the pulp and paper industry, also contain
PCDDs and PCDFs [25]. Chlorinated pesticides, dry cleaning distillation residues, automobile exhaust
emission and combustion of landfill gases are also known sources of PCDD/Fs [21]. There are a number
of distinct sources of PCDD/Fs, which contribute to the total contamination from pulp and paper
mills. Prior to 1992, wood chips treated with tetra- and penta-chlorinated phenols to prevent fungal
growth were supplied to pulp mills [26]. The tetra- and penta-chlorinated phenols were subsequently
transformed into PCDD/Fs during the bleaching process and then carried through into mill effluent [25].

The use of polychlorinated phenol-treated chips was banned in Canada by the Canadian
Environmental Protection Act (CEPA) in 1992 [26,27]. The bleaching process is the main source
of PCDD/Fs in pulp mills, although since the ban on the use of elemental chlorine during bleaching by
the CEPA, levels have fallen sharply [25]. Also banned under the CEPA was the use of defoamers,
which contained PCCD/F precursor chemicals.

The strong chemical resistance of PCDD/Fs to biodegradation and their relatively low solubility in
water (PCCD/Fs 10−6–10−12 mol/L) [28,29] means that both chemical families have long residence times
in the marine environment, and the potential to accumulate in sediments [30]. The organochlorine
record in sediments from around the world is well documented in the literature [25,31–38], and generally
exhibits a steady increase since the "industrial revolution” (approx. 1880–1910), rising to a maximum
in the 1950’s and 1960’s when unchecked industrial emissions reached a peak [33,39]. The most likely
pathway by which these organochlorine chemicals reach the sediments is via adsorption onto higher
surface area, finer grained minerals and organic matter particulates which settle to the sediment
interface [16]. As a result, grain size and total organic carbon (TOC) concentration, which are strongly
related, are anticipated to correlate with PCDD/F concentrations. As with TOC, highest concentrations
of PCDD/Fs should be found in fine silt and clay sized sediment fractions, where surface areas are
large (≈15–40 m2/g). Previous studies have also shown coarse grained sediments to have high TOC
concentrations [40]. However, TOC in coarse silt and sand sized sediment fractions is considered to be
independent of surface area, because it is mainly found as discrete macroscopic particles. Adsorption
of PCDD/Fs may occur in the effluent itself, which can have a high inorganic content and often contains
fine-grained particulate material that does not settle out in sludge ponds. Adsorption may also occur
after effluent discharge in the receiving waters, or in the sediments themselves.

The aim of this project is to examine the partitioning of PCDD/Fs in sediments adjacent to the
Woodfibre Pulp and Paper Mill, in a core retrieved from an area exposed to effluent discharge by the
mill. The relationship between grain size and TOC, PCDD/F concentrations are assessed to ascertain
if sediment surface area is a significant, contributing factor in the preservation of organochlorine
compounds in marine sediments.
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2. Methods:

2.1. Sample Preparations and PCDD/Fs Analyses

A sediment core was taken using a Kasten box corer (gravity corer) from the Canadian Coast
Guard vessel CCGS Vector and sampling was conducted adjacent to the Woodfibre Pulp and Paper
Mill (Figure 1) in Howe Sound, BC. The core was subsampled on deck at 1 cm intervals to a depth of
10 and 2 cm thereafter (core length, 52 cm). Samples were frozen onboard in pre-cleaned glass jars with
Teflon lined lids by a 6 h soak in Extran 300 TM, triple rinsed in distilled water and baked overnight at
300 ◦C. Samples were kept frozen until subsampling.
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Sample preparations were carried out in the regional dioxin laboratory at the Institute of Ocean
Sciences (IOS), Sidney, BC, Canada. in order to reduce any potential sample contamination prior to
organochlorine analysis. Bulk sediment samples were firstly analyzed to determine the PCDD/PCDF
concentrations. Bulk sediment samples were homogenized unfrozen and 2 g aliquots were removed
for moisture determinations. Analytical samples, approximately 10 g wet weight (w.w.), were dried
with 125 g Na2SO4 in a mortar and transferred into the glass thimble of the Soxhlet where they were
spiked with a mixture of 13C12-labeled PCDD/Fs, a surrogate internal standard supplied by Cambridge
Isotope Laboratories (Andover, MA, USA). The composition of the surrogate internal standard mixture
and the concentrations are given in Table 1. The spiked samples were Soxhlet extracted for 16 h with
350 mL of toluene/acetone (80:20); washed with 40 mL of KOH, 80 mL of high performance liquid
chromatography (HPLC) grade water and subsequently with 10 mL of H2S04. The solvents were
finally removed by rotary evaporation and the samples were reconstituted in 10 mL of DCM/hexane
(1:1). This analytical procedure was repeated for size fractionated sediment samples.

Table 1. Composition of internal standard surrogate mixtures used to spike all samples analysed.

PCDD/PCDF Surrogates Spike Volume (pg) PCDD/PCDF Surrogates Spike Volume (pg)
13C12-2,3,7,8-TCDD 1000

13C12-1,2,3,7,8-PeCDD 1000
13C12-1,2,3,6 7 8-HxCDD 1000

13C12-1,2,3,4,6,7,8-HpCDD 1000
13C12-OCDD 2000

13C12-2,3,7,8-TCDF 1000
13C12-1,2,3 7 8-PeCDF 1000

13C12-1,2,3,4,7,8-HxCDF 1000
13C12-1,2,3,4,6,7,8-HpCDF 1000

Sample clean-up took place in four stages. In the first step, aliquots were passed through a
multilayer silica column packed with successive layers of silica gel (basic, neutral, acidic, neutral) and
eluted with DCM/hexane (1:1). Sulphur was removed from the samples during the second step by
passing the silica extract through a column filled with copper fillings and eluted with 25 mL of hexane.
This column was also packed with 25 g of Na2SO4 to remove any residual water. The third clean-up
step was via a neutral alumina-activated column capped with anhydrous Na2SO4. The column was
first washed with hexane to remove interfering compounds. Further elution with 1:1 DCM/hexane
recovered the analytes of interest. Fractionation of the latter mixture was accomplished with an
automated HPLC system utilizing a carbon fiber column packed with a 1:12 mixture of activated
carbon/filter paper homogenate. With this arrangement the PCDD/Fs are separated from PCBs and
other potentially interfering compounds and thus the detection limits of the method are enhanced
significantly. The fractionation was performed successively with: (A) 20 mL of 5% DCM/hexane; (B)
44 mL of 50% DCM/hexane; (C) 50 mL of 50% ethyl acetate/benzene; and (D) back flushed with 60
mL of toluene. All three fractions collected from the carbon fibre system were concentrated to less
than 10 µI and spiked with the corresponding 13C12-labeled method performance standards prior
to gas chromatography/high-resolution mass spectrometry analysis (GC/HRMS). The performance
standards added to PCDD/F fraction were: 13C12-l,2,3,4-TCDD and 13C12-1,2,3,7,8,9-HxCDD. For this
study, only the PCDD/F fraction was analyzed by GC/HRMS and the PCBs fractions were collected for
future studies.

The mass spectrometer was operated at 10,000 resolution under positive EI conditions (35 eV
electron energy) and data were acquired in the Single Ion Resolving Mode (SIR). Two or more ions,
M+ and M2+ in most cases, of known relative abundances, were monitored for each molecular ion
cluster representing a group of isomers, and two for each of the 13C12-labeled surrogate standards.
Compounds were identified only when the GC/HRMS data satisfied all of the following criteria: (1)
two isotopes of the specific congeners were detected by their exact masses with the mass spectrometer
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operating at 10,000 resolving power or higher during the entire chromatographic run; (2) the retention
time of the specific peaks was within three seconds to the predicted time obtained from analysis of
authentic compounds in the calibration standards; (3) the peak maxima for both characteristic isotopic
ions of a specific congener coincided within two seconds; (4) the observed isotope ratio of the two ions
monitored per congener were within +15% of the theoretical isotope ratio; (5) the signal-to-noise ratio
resulting from the peak response of two corresponding ions was greater or equal to three for proper
quantification of the congener.

The concentrations of identified compounds and their minimum detection limits (MDLs) were
calculated by the internal standard method using mean relative response factors determined from
calibration standard runs made before and after each batch of samples were run. The specific
compounds analyzed are listed in Table 2. The criteria for identification and quantification, and the
quality assurance and quality control measures undertaken for the sample workup and the GC/HRMS
analysis of all the analytes of interest were based on procedures described in the Environment
Canada [41,42] protocols.

Table 2. Polychlorinated Dibenza-p-dioxins (PCDDs) and Polychlorinated Dibenza-p-furans (PCDFs)
determined in each sediment sample analysed.

PCDD Congeners PCDF Congeners

2,3,7,8-TCDD 2,3,7,8-TCDF
Total TCDD Homologue Total TCDF Homologue

1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF

Total PeCDD Homologue Total PeCDF Homologue

1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF
Total HxCDD Homologue Total HxCDF Homologue

1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF

Total HpCDD Homologue Total HpCDF Homologue
OCDD OCDF

Fractionation was carried out using a combination of wet sieving and settling techniques
based on Stokes law [43]. Selected samples were chosen, based on highest bulk PCDD/PCDF
concentration, for size fractionation into five size fractions (<2 µm, 2–10 µm, 10–20 µm, 20–63 µm
and >63 µm). These selected samples for geochemical analyses are from the core depths of 14–16 cm,
20–22 cm, 34–36 cm and 46–48 cm. Three other sediment intervals, of similar depth to those used for
organochlorine analysis, were separated using wet sieving techniques [43] in order to examine down
core mass distribution, and to choose suitable size fractions that contained a mass sufficient for all
the analyses. Samples were sieved at 63 µm, and the remainder was analysed using a Micromeritics®

Sedigraph 5100 (Micromeritircs, GA, U.S.A) and results were combined to produce mass profiles for
the four samples (Figure 2).

The sieve and spatulas used for sample fractionation were all stainless steel, and were triple
solvent rinsed (Acetone 3 times, Toluene 3 times, Hexane 3 times) and baked at 150 ◦C for 1 h etween
samples. All glassware used during the settling procedure was washed, triple solvent rinsed, baked
overnight at 350 ◦C, and triple solvent rinsed again and dried inside a fume hood. All equipment
used was covered/sealed in hexane rinsed aluminum foil immediately after cleaning. Narrow bore,
flexible Teflon tubing (internal diameter of 2 mm), in conjunction with a disposable Pasteur pipette
connected via rubber tubing to a water aspirator and was used to siphon off different size fractions
during settling. The coarsest fraction, >63 µm, was sieved off, and the remaining solids, suspended
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in distilled water, were transferred to 2 L glass beakers for settling. Once separated, sediment size
fractions were stored in 250 mL solvent rinsed glass jars with Teflon lined lids, and frozen prior to
analysis. To remove particles from suspension in the <2 µm fraction, the water was centrifuged at
3500 rpm using a Beckman 64R centrifuge (Beckman Coulter, Indianapolis, IN, U.S.A). Four, 1 liter
polycarbonate centrifuge bottles were adapted by removing the neck of the bottle, so that they could be
lined with hexane rinsed aluminum foil to prevent contamination (the polycarbonate centrifuge bottles
could not be solvent cleaned in the same manner as glassware). Any leakage through the foil was
discarded. The water was then stored in solvent rinsed 4 liter bottles and stored in the fridge at 4 ◦C.
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PCDDs, PCDFs were analyzed by GC/HRMS. The instrument was a VG Autospec high resolution
mass spectrometer (Micromass, Manchester, UK) equipped with a Hewlett-Packard model 5890 Series
II gas chromatograph and a CTC A200S autosampler (CTC Analytics, Zurich, Switzerland). The GC
was operated in the splitless injection mode with a 60 m DB-5 fused silica capillary column (0.25 mm
I.D. with 0.1 µm film thickness) from J&W Scientific (Folsom, CA, USA). The temperature program
for the PCDD/PCDF analysis was as follows the initial column temperature was held at 100 ◦C for
2 min after injection and increased at 20 ◦C/min to 200 ◦C, then at 1 ◦C/minute to 215 ◦C, held for 7 min
followed by a ramp of 4 ◦C/minute to 300 ◦C where it was held for 3 min.

2.2. Carbon and Nitrogen Analyses

Total carbon (TC; wt. %) and total nitrogen (TN; wt. %) of bulk and fractionated sediment
samples was determined using a Carlo Erba NA-1500 CHN analyzer [44]. The standard error was
+/− 1%. Macroscopic organic debris was removed prior to analysis under a binocular microscope.
Total organic content (TOC) was determined by difference after the subtraction of inorganic carbon in
carbonate form.

The amount of carbon in carbonate form in each sample was determined using a coulometric
titration technique on a CO2 coulometer (Coulometrics Incorporated, Model 5010, Chattanooga, TN,
U.S.A.). The standard error was +/− 5%.
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2.3. Surface Area

Samples were first oxidized using a combination of hydrogen peroxide (30%) and sodium
pyrophosphate (0.1 M) [45] in order to remove organic matter from the samples. This process was
carried out in a water bath (70–80 ◦C) for 48–96 hrs; aliquots of H2O2 were added twice daily until
oxidation was complete as marked by the cessation of CO2 evolution. Samples were then rinsed twice
in distilled water to remove any residual inorganic salts and dried. Freeze drying, oven drying and
oven drying under vacuum were tested as methods of sample drying prior to analysis; good agreement
was found between all three methods.

A Micromeritics ASAP 2010 surface area analyzer was used to measure surface area by N2

adsorption, using both single and multi-point BET (Brunauer, Emmett, Teller) methods [10,46]. Prior
to analysis, samples were degassed at 350 ◦C for a minimum of 6 hrs. The standard error of the surface
area ranged from 2–4%.

2.4. 210Pb Dating

Dating of the sediment core was carried out using the 210Pb method of [47] modified after [48].
One to two grams of sediment was weighed out into acid cleaned microwave digestion vessels and
spiked with 208Po to allow for normalization of differences between samples during counting and
plating [49]. The samples were then microwave digested using a combination of HNO3, HCl and
HF, to remove organic material, aluminosilicates and silica, and to liberate 210Po from the sediment
matrix [49]. The digested residue was dried overnight under heat lamps, resuspended in 10% HCl
and digested again. The pH was then brought up to 6–9 using NH4OH, forming an iron precipitate
containing 210Po, which was stored in 210 mL Nalgene bottles until plating (HDPE).

To plate the samples, the iron precipitate was redissolved in 10% HCI, centrifuged, and the
supernatant decanted into acid cleaned 250 mL glass beakers. Sodium citrate (25%, 2 mL), NH2OH.HCl
(20%, 5 mL) and Bi(NO3)3 (10%, 1 mL) were added to the supernatant and the pH was raised to 1.5–2.5
using NH4OH. The solution was stirred and heated to a temperature range of 90–100 ◦C, and a polished
silver disk in a Teflon holder was inserted into the solution. Plating of 210Po onto the disks occurred
for 4–5 hrs, after which the silver disks were cleaned with concentrated HCl to improve counting
efficiency, washed in double distilled water and allowed to air dry. The disks were counted for at least
24 h in an Ortec 576A Multi-channel Analyser (Ortec, Oak Rdige, TN, U.S.A) and Alpha-counter.

The initial 210Pb dating of the homogenized bulk samples taken from the study core failed to
yield a linear chronology. The dating procedure was modified slightly, changing the ratio of sample to
208Po spike, and repeated. Unfortunately, significant fluctuation in age was found with increasing core
depth, which ultimately prevented meaningful temporal correlation with other data.

This dating technique has been successfully applied to other samples recovered from different
areas in Howe Sound [33], and reasons for the apparent failure in this case are unclear, but are further
discussed in later sections.

3. Results:

The result section has been subdivided based on analyses performed on bulk samples and size
fractionated samples. Size fractions are <2 µm, 2–10 µm, 10–20 µm, 20–63 µm and >63 µm.

3.1. Bulk Analyses

3.1.1. Organic Carbon and Nitrogen Analyses

Total organic carbon (Corg) concentrations range from 0.5–1.7 wt. % and TN ranges between
0.04–0.1 wt. %. (Table 3). The highest concentrations of organic carbon occur at the base of the cored
sediments (50 cm below the sediment-water interface) and Corg concentrations decline to the middle
of the cored sediment at 30 cm depth (Figure 3A). The total nitrogen (TN) shows a similar trend of
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decreasing concentration from 50 cm to 30 cm depth (Figure 3B). The Corg and TN concentrations both
increase from 30 cm to 18 cm depth and no clear down-core trends exist between the depths of 0–18 cm.

Table 3. Organic Carbon (Corg), Total Nitrogen (TN), Carbon/Nitrogen Ratio (Cor/N) and Surface Area
for bulk sediment samples from the core taken adjacent to Woodfibre Pulp Mill, Howe Sound, British
Columbia, subsampled every centimeter for the first ten centimeters and every two centimetres thereafter.

Sediment Interval (cm) Corg (wt. %) TN (wt. %) Corg/N Surface Area (m2/g)

DF0–1 1.00 0.08 12.88 4.21
DF1–2 1.38 0.10 13.78 6.13
DF2–3 0.93 0.07 13.43 4.90
DF3–4 0.57 0.05 11.99 2.43
DF4–5 0.71 0.05 14.04 3.17
DF5–6 0.49 0.04 12.61 2.88
DF6–7 1.09 0.08 13.34 8.47
DF7–8 0.96 0.06 15.25 3.32
DF8–9 1.17 0.08 15.43 3.34

DF9–10 1.11 0.09 12.41 5.80
DF10–12 1.21 0.08 15.15 2.49
DF12–14 0.82 0.05 16.03 2.53
DF14–16 1.52 0.09 17.42 5.86
DF16–18 1.24 0.09 13.11 10.94
DF18–20 1.18 0.08 14.66 9.33
DF20–22 0.91 0.06 14.08 6.74
DF22–24 0.95 0.06 16.08 5.94
DF24–26 0.51 0.04 11.83 4.05
DF26–28 0.79 0.06 12.55 3.65
DF28–30 0.73 0.06 13.16 5.44
DF30–32 0.68 0.05 12.52 4.60
DF32–34 0.75 0.05 14.99 3.92
DF34–36 0.92 0.06 16.08 4.20
DF36–38 1.32 0.08 17.43 5.67
DF38–40 1.56 0.08 19.07 5.45
DF40–42 0.80 0.05 16.67 3.36
DF42–44 1.16 0.07 16.39 5.67
DF44–46 1.33 0.08 17.24 7.63
DF46–48 1.65 0.09 18.10 7.14
DF48–50 1.71 0.07 23.86 11.96
DF50–52 1.40 0.07 20.37 N/A

Corg/N values range from 12–24, with a mean of 15 (Table 3). When plotted against depth (Figure 4),
a similar increasing trend from 50 cm to 30 cm to that seen in Figure 3 is evident. There is no clear
trend seen in Corg/N values from 0 to 30 cm depth. The spread of values for Corg/N is relatively narrow,
and a slight overall increase in ratio can be seen with increasing depth (Figure 4). Figure 5 shows a
moderate positive correlation (r2 = 0.7) between TOC and TN. The positive y-intercept suggests the
presence of inorganic nitrogen within the sediment profile.
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the sediment-water interface (0 cm depth).
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Figure 5. Plot of Organic Carbon (Corg) versus Total Nitrogen (TN) for bulk sediment samples.
A positive correlation exists between the two parameters, modeled by a linear regression (r2 = 0. 7).

3.1.2. Organochlorine Compounds

Total PCDD concentrations remains low and constant throughout the cored sediment (Figure 6a)
with the exception of two concentration spikes at 14–16 cm (200 pg/g) and at 46–48 cm (700 pg/g)
horizons (Table 4). TCDD (Tetra-), PeCDD (Penta-), HxCDD (Hexa-), HpCDD (Hepta-) and OCDD
(Octa-) homologues all share the same concentration profile as total PCDD (Figure 7). HxCDD is
present at significantly higher concentrations than the other dioxin homologues (Figure 7, Inset). If
HxCDD is ignored, a positive relationship exists between increasing homologue concentration and
the number of chlorine atoms present in the homologue molecular structure (Figure 7). Total PCDF
(Figure 6) has an identical depth profile to TCDF (Figure 8 Inset). Overall concentrations of furan
homologues are on the order of four times lower than their dioxin counterparts (Table 4). TCDF is the
most concentrated furan homologue, present in concentrations approximately six times that of the next
most concentrated homologue, HpCDF (Table 4). Unlike the dioxin homologues, furan homologues do
not show the same relationship between relative concentration of a given homologue and its molecular
chlorination (Figure 8). The downcore concentration profiles of individual PCDD/F (Figures 7 and 8)
homologues as well as those for total PCDD/F (Figure 6) concentration are similar to that of TOC
(Figure 3A), with corresponding peaks in concentration at 15, 35 and 45 cm.

3.1.3. Total Organic Carbon and Surface Area

Surface area values for bulk sediment samples range from 2.5–12 m2/g (Table 3). Although peaks
in surface area values do correlate with some increased TOC concentrations at certain depth intervals, a
plot of TOC versus surface area (Figure 9) shows a moderate positive correlation (r2 = 0.4) with surface
area increasing with organic carbon concentration. Data scatter above and below the regression line,
suggests the inorganic component (i.e., mineral grains) does influence the surface area characteristics
of the sediments.
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Figure 6. Downcore variation in Total Polychlorinated Dibenzo-p-dioxin (PCDD; A) and Total
Polychlorinated Dibenzo-p-furan (PCDF; B) for bulk sediment samples.

Table 4. Homologue and total homologue (PCDD, PCDF) concentration (pg/g) for dioxins and furans
in bulk sediment samples from selected depth intervals.

Sediment
Interval (cm) TCDD PeCDD HxCDD HpCDD OCDD Total

PCDD TCDF PeCDF HxCDF HpCDF OCDF Total
PCDF

DF0–1 3.13 3.84 15.78 7.29 11.76 41.8 3.72 1.48 1.44 2.32 1 9.96
DF4–5 0.45 0.91 7.51 5.13 8.69 22.69 1.04 0.74 2.57 4.93 1.5 13.78

DF9–10 1.47 2.52 17.68 9.58 16.39 47.64 3.56 1.37 1.85 3.3 1.55 11.63
DF14–16 16.86 24.05 108.35 24.68 26.34 200.28 23.5 5.51 3.23 3.95 1.55 37.74
DF20–22 1.52 3.89 66.75 14.11 19.52 105.79 14.19 2.46 2.42 4.45 1.78 25.3
DF24–26 0.4 0.87 10.96 4.4 7.46 24.09 3.74 0.73 0.91 2.23 1.27 8.88
DF30–32 0.13 1.47 14.06 6.32 8.23 30.21 2.27 0.89 0.98 1.26 0.46 5.86
DF34–36 0.64 2.27 32.4 9.56 13.45 58.32 6.69 1.74 1.88 2.44 1.1 13.85
DF40–42 0.13 0.45 14.58 4.54 7.31 27.01 3.42 0.4 0.65 1.44 0.49 6.4
DF46–48 6.88 22.3 517.76 62.71 87.95 697.6 129.25 13.75 13.8 23.33 8.58 188.71Minerals 2019, 9, x FOR PEER REVIEW 13 of 34 
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Figure 7. Downcore variation in dioxin homologue concentration for bulk sediment samples. Inset
shows HxCDD, which is present at significantly higher concentrations than the other homologues.
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Figure 8. Downcore variation in furan homologue concentration for bulk sediment samples. Inset
shows TCDF, which is present at significantly higher concentrations than the other homologues.
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>63 10.94 0.21 52.99 9.17 

Figure 9. Plot of Surface Area (m2/g) versus Organic Carbon (Corg) for bulk sediment samples, showing
a moderate positive linear regression, r2 = 0.4.

3.1.4. PCDD/Fs and Surface Area

When plotted against surface area, total PCDD, total PCDF and the five homologues analysed for
each sample show a low to no correlation with r2 varying from 0.23 to 0.54.
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3.2. Size Fractionated Organic Analyses

3.2.1. Carbon and Nitrogen

TOC values for the four samples selected for size fractionation, ranged from 0.3–11 wt. % (Table 5).
TN concentrations range from 0.03–0.2 wt.% (Table 5). For the four samples analyzed, the >63 µm fraction
contains the highest concentration of both TOC (5–11 wt. %) and TN (0.15–0.2 wt. %; Figure 10a). The <2
µm fraction contains the second highest concentration of TOC and TN, ranging from 1–3 wt. % and
0.8–0.2 wt. % respectively (Table 5; Figure 10a,b).

Table 5. Organic Carbon (Corg), Total Nitrogen (TN), Carbon/Nitrogen Ratio (Corg/N) and Surface Area
(SA) for sediment samples from selected depth intervals, size fractionated into five fractions: <2 µm,
2–10 µm, 10–20 µm, 20–63 µm and >63 µm.

Sediment
Interval (cm)

Size Fraction
(Micrometres) Corg (wt. %) TN (wt. %) Corg/N

Surface Area
(m2/g)

DF 14–16

<2 1.51 0.11 13.43 16.68
2–10 0.91 0.06 16.04 5.20

10–20 0.88 0.05 19.10 2.72
20–63 0.70 0.03 21.48 1.49
>63 4.90 0.18 26.77 2.64

DF 20–22

<2 1.12 0.08 13.44 16.37
2–10 0.28 0.02 14.41 3.92

10–20 0.35 0.02 16.76 2.37
20–63 0.78 0.04 20.27 1.78
>63 5.45 0.15 35.78 5.60

DF 34–36

<2 1.59 0.10 15.29 21.80
2–10 0.67 0.04 16.36 6.61

10–20 0.42 0.03 17.01 3.55
20–63 0.69 0.03 21.50 2.08
>63 5.43 0.17 31.14 1.53

DF 46–48

<2 3.15 0.17 19.00 20.75
2–10 1.68 0.07 23.55 8.62

10–20 1.71 0.06 27.87 6.58
20–63 1.36 0.03 41.21 2.34
>63 10.94 0.21 52.99 9.17

Corg/N values for size fractionated samples range from 13–53, with a mean of 23, indicating a
dominant terrestrial signature for the organic matter present in the samples. The Corg/N ratio increases
with increasing grain size (Table 5). A significant increase in Corg/N values occurs between the 20–63 µm
fraction and the >63 µm fraction. Figure 11 shows TOC plotted against TN with the >63 µm fraction
grouped separately from the remaining size fractions. The separation of the >63 µm data from the other
size fractions, which all fall on a single regression line (r2 = 0.8; Figure 11), is the result of significantly
higher organic carbon contents in that fraction due to particulate organic matter (OM).

The intermediate size fractions, 2–10 µm, 10–20 µm and 20–63 µm contain varying amounts of
TOC and TN at lower concentrations to those observed in the <2 µm and >63 µm fractions (Table 5;
Figure 10a,b). Both DF 14–16 and DF 46–48 have approximately equal amounts of TOC and TN in
the 2–10 µm and 10–20 µm fractions and the lowest concentrations of TOC and TN in the 20–63 µm
fraction. DF 20–22 shows the opposite, approximately equal amounts of TOC and TN in the 2–10 µm
and 10–20 µm fractions, and higher concentrations in the 20–63 µm fraction, whilst DF 34–36 shows
the lowest concentrations of TOC and TN in the 10–20 µm fraction and approximately equal amounts
in the 2–10 µm and 20–63 µm fractions.
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Figure 10. Distribution of Organic Carbon (A) and Total Nitrogen (B) for four selected samples, size 
fractionated into five fractions: <2µm, 2–10µm, 10–20µm, 20–63 µm and >63µm. 
Figure 10. Distribution of Organic Carbon (A) and Total Nitrogen (B) for four selected samples, size
fractionated into five fractions: <2 µm, 2–10 µm, 10–20 µm, 20–63 µm and >63 µm.
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Figure 11. Plot of Organic Carbon (Corg) versus Total Nitrogen (TN) for size fractionated samples. 
Note, the 63 µm fraction falls on a separate regression (r2 = 0.6) than the other four fractions (r2 = 0.8). 

3.2.2. Surface Area of Size Fractionated Samples 

Surface area values for size fractionated samples range from 1.5–22 m2/g, with highest values 
found in the <2 µm fraction (16–22 m2/g) and lowest values in the 20–63 µm fraction (1.5–2.4 m2/g; 
Table 5). 

The TOC concentrations for individual size fractions plotted against surface area show data 
clustering occurs amongst each size fraction (Figure 12a). Two end members exist, the <2 µm 
fraction which has high surface area values compared to TOC content (Table 5), and the >63 µm 
fraction which has high TOC content and low surface area values (Table 5). The remaining size 
fractions, 2–10 µm, 10–20 µm and 20–63 µm, cluster between the two end members. Figure 12a 
suggests that no relationship between surface area and TOC content exists (r2 < 0.1), and that 
organic matter is not adsorbed to sediment particle surfaces. However, if data from the >63 µm 
fraction is considered as outliers (because organic matter in this fraction is probably detrital, 
occurring as discrete particles, and therefore independent of surface area), then the correlation 
between TOC content and surface area is significantly improved. Figure 12b shows the same data 
with the >63 µm fraction omitted, producing and r2 value of 0.51 which suggests a relationship 
between surface area and TOC concentration via adsorption of organic matter. 

Figure 11. Plot of Organic Carbon (Corg) versus Total Nitrogen (TN) for size fractionated samples.
Note, the 63 µm fraction falls on a separate regression (r2 = 0.6) than the other four fractions (r2 = 0.8).

3.2.2. Surface Area of Size Fractionated Samples

Surface area values for size fractionated samples range from 1.5–22 m2/g, with highest values
found in the <2 µm fraction (16–22 m2/g) and lowest values in the 20–63 µm fraction (1.5–2.4 m2/g;
Table 5).

The TOC concentrations for individual size fractions plotted against surface area show data
clustering occurs amongst each size fraction (Figure 12a). Two end members exist, the <2 µm fraction
which has high surface area values compared to TOC content (Table 5), and the >63 µm fraction
which has high TOC content and low surface area values (Table 5). The remaining size fractions,
2–10 µm, 10–20 µm and 20–63 µm, cluster between the two end members. Figure 12a suggests that
no relationship between surface area and TOC content exists (r2 < 0.1), and that organic matter is not
adsorbed to sediment particle surfaces. However, if data from the >63 µm fraction is considered as
outliers (because organic matter in this fraction is probably detrital, occurring as discrete particles, and
therefore independent of surface area), then the correlation between TOC content and surface area is
significantly improved. Figure 12b shows the same data with the >63 µm fraction omitted, producing
and r2 value of 0.51 which suggests a relationship between surface area and TOC concentration via
adsorption of organic matter.

3.2.3. Organochlorine Compounds

The majority of trends observed in individual dioxin and furan congeners with respect
to grain size and concentration are represented by their parent homologues (Table 2). Thus,
concentrations are discussed here with reference to homologues rather than to each individual
congener. The concentrations of each homologue and total homologue (PCDD, PCDF) for both dioxins
and furans are shown for a selection of sample depths (DF 14–16 cm; DF 20–22 cm; DF 34–36 cm and
DF 46–48 cm) and their size fractionated samples (Table 6 and Figures 13–16).
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Figure 12. (A) Plot of surface area versus organic carbon (Corg) for size fractionated samples. The >63
µm fraction plots to the right of the graph due to its high Corg content and low surface area. (B) Plot of
surface area and Corg for size fractionated samples with the >63 µm fraction removed. The plot has a
moderate positive correlation, r2 = 0.5.
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Table 6. Homologue and total homologue (PCDD, PCDF) concentration (pg/g) for dioxins and furans, in selected size fractionated sediment samples.

Sediment
Interval (cm)

Size Fraction
(Micrometres) TCDD PeCDD HxCDD HpCDD OCDD TOTALPCDD TCDF PeCDF HxCDF HpCDF OCDF Total

PCDF

DF 14–16

<2 2.75 8.06 82.87 23.08 33.77 150.5 9.11 3.99 3.72 5.56 1.91 24.27
2–10 23.8 24.61 107.8 22.56 23.56 202.3 19.61 5.62 2.9 4.6 1.78 34.52
10–20 51.51 52.19 133.8 26.27 20.9 284.4 26.59 6.5 3.05 3.05 0.98 40.17
20–63 18.94 16.77 51.11 14.6 16.6 118.7 14.38 2.74 1.19 2.47 0.86 21.64
>63 42.81 42.58 243.3 76.49 93.69 498.9 76.9 17.94 9.51 11.09 4.2 119.65

DF 20–22

<2 2.17 6.43 141.7 28.42 37.55 216.2 18.4 3.82 4.75 9.46 3.54 39.97
2–10 1.82 3.88 65.4 10.56 13 94.66 12.28 2.11 2.1 5.11 2.15 23.81
10–20 3.13 4.54 56.15 9.37 10.67 83.87 13.03 2.28 l.44 2.21 0.67 19.63
20–63 4.53 6.79 76.55 17.53 23.77 129.2 19.74 3.7 2.79 4.6 1.74 32.57
>63 19.87 22.81 240.1 122.0 133.6 538.4 84.81 11.86 8.02 12.79 5.4 122.9

DF 34–36

<2 0.64 3.25 50.01 15.06 19.72 88.74 6.15 2.07 2.65 3.7 1.24 15.8
2–10 1.2 3.21 39.55 10.54 12.01 66.51 6.73 1.19 1.76 2.32 0.74 13.34
10–20 1.45 3.37 32.44 8.73 9.97 55.96 7.14 1.73 1.46 2.01 0.61 12.97
20–63 1.46 3.67 36.41 10.07 11.77 63.37 8.29 2.19 2.17 1.95 0.56 15.17
>63 4.83 9.22 110.0 30.19 29.42 183.7 33.07 5.61 4.35 5.43 1.63 50.09

DF 46–48

<2 9.47 37.29 1257 159.9 214.1 1678 135.3 22.85 28.6 48.11 18.14 253.0
2–10 6.63 23.59 654.8 62.9 74.81 822.8 103.4 12.52 12.95 22.84 6.67 158.3
10–20 9.73 26.47 551.3 49.88 58.37 695.8 121.2 13.48 10.51 14.59 4.01 163.8
20–63 11.05 25.34 515.7 42.99 52.77 647.8 119.3 12.72 6.92 13.98 5.28 158.2
>63 45.23 99.19 1480 170.3 200.9 1996 476.7 57.23 38.41 44.36 13.97 630.6
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Figure 13. Plot showing the changes in concentration of dioxins (A), furans (B) and total 
homologues (C) between different size fractions at the 14–16cm depth interval. The overall trend is 
of decreasing concentration with progressively finer grain size. 

Figure 13. Plot showing the changes in concentration of dioxins (A), furans (B) and total homologues
(C) between different size fractions at the 14–16 cm depth interval. The overall trend is of decreasing
concentration with progressively finer grain size.
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Figure 14. Plot showing the changes in concentration of dioxins (A), furans (B) and total 
homologues (C) between different size fractions at the 20–22cm depth interval. Peak concentrations 
occur in the coarsest fraction. Dioxin concentration increases in the finest two size fractions, whilst 
furan concentration remains relatively constant throughout. 

Figure 14. Plot showing the changes in concentration of dioxins (A), furans (B) and total homologues
(C) between different size fractions at the 20–22 cm depth interval. Peak concentrations occur in
the coarsest fraction. Dioxin concentration increases in the finest two size fractions, whilst furan
concentration remains relatively constant throughout.
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Figure 15. Plot showing the changes in concentration of dioxins (A), furans (B) and total 
homologues (C) between different size fractions at the 34–36 cm depth interval. Peak concentrations 
occur in the coarsest fraction. Some dioxin and furan homologues increase in concentration in the 
finest two size fractions, whilst other homologues show steady decrease in concentration. 

Figure 15. Plot showing the changes in concentration of dioxins (A), furans (B) and total homologues
(C) between different size fractions at the 34–36 cm depth interval. Peak concentrations occur in the
coarsest fraction. Some dioxin and furan homologues increase in concentration in the finest two size
fractions, whilst other homologues show steady decrease in concentration.
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Figure 16. Plot showing the changes in concentration of dioxins (A), furans (B) and total 
homologues (C) between different size fractions at the 46–48cm depth interval. The majority of 
dioxin and furan homologues show significant increase in concentration in the finest three fractions. 
Insets show homologues, HxCDF and TCDF, present at concentrations significantly higher than 
other homologues. 

Figure 16. Plot showing the changes in concentration of dioxins (A), furans (B) and total homologues
(C) between different size fractions at the 46–48 cm depth interval. The majority of dioxin and furan
homologues show significant increase in concentration in the finest three fractions. Insets show
homologues, HxCDF and TCDF, present at concentrations significantly higher than other homologues.
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The selected sediment intervals presented in Table 6 show similar trends in homologue
concentrations for both PCDDs and PCDFs. Majority of samples show the highest concentration of
dioxins and furans in sediment size fractions of >63 µm. The majority of samples show the second
highest concentration of all homologues in the <2 µm size fraction with the exception of the size
fractionated samples of DF 14–16 cm that show higher concentrations of homologues in the 10–20 µm
size fraction compared to <2 µm size fraction. There are a few other exceptions where the 20–63 µm
size fraction has the second highest concentration of TCDD, PeCDD, TCDF or PeCDF in DF 20–22, DF
34–36 and DF 46–48 samples.

3.2.4. Organochlorine Compounds and Surface Area

Relationships between surface area and homologue concentration in size fractionated samples are
highly variable with majority of size fractionated samples and homologues showing no correlation
to surface area (Table 7). Only sample DF 46-48, shows a (positive) correlation between OCDF,
HpCDF, OCDD and HpCDD with surface area (Figure 17), however the remaining homologues or
total dioxin/furan concentrations do not show any correlation with surface area at this depth. DF 46–48
does have the highest concentration of homologues in the sample suite and this be a factor in showing
a relationship with surface area. The lack of correlation within the entire sample suite illustrates that
surface area of mineral matter does not appear to be a significant factor in the accumulation of dioxins
or furans in this sediment.

Table 7. Regression co-efficient (r2) values for dioxin/furan/total homologue concentration (pg/g) versus
surface area (m2/g). Negative values indicate a negative correlation between the two parameters.
The number of size fractions indicates how many data points were used to generate the regression
coefficient; r2 values using four size fractions exclude the >63 µm fraction from the calculation, r2

values using five size fractions include all the fractions.

Sediment
Interval (cm) TCDD PeCDD HxCDD HpCDD OCDD Total

PCDD TCDF PeCDF HxCDF HpCDF OCDF Total
PCDF

DF 14–16 −0.52 −0.39 −0.08 −0.05 −0.007 −0.13 −0.18 −0.09 −0.004 0.002 0.00005 −0.11

DF 20–22 −0.01 0.0004 0.15 0.01 0.02 0.05 0.01 0.004 0.15 0.29 0.21 0.01

DF 34–36 −0.03 −0.16 −0.03 −0.01 0.008 0.02 −0.18 −0.12 −0.004 0.01 0.06 −0.11

DF 46–48 −0.002 0.02 0.41 0.52 0.62 0.4 0.0003 0.03 0.35 0.66 0.74 0.03
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3.2.5. PCDD/Fs and Organic Matter

A good correlation exists between PCDD/F and total organic carbon (Corg) concentration in both
bulk and size fractionated sediments. Figure 18 shows TCDD through OCDD plotted against Corg

concentration for size fractionated samples. TCDD has the weakest correlation, r2 = 0.28, whilst
HpCDD has the strongest correlation, r2 = 0.63. Figure 19 depicts the same relationship, without the
>63 µm fraction, which was omitted based on previous data that suggested that unlike finer fractions, it
is not related to mineral surface area. Regression co-efficient (r2) values are higher for HxCDD through
OCDD (r2 = 0.8; Figure 19), whilst the strength of the relationship decreased for TCDD and PeCDD.
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concentrations in size fractionated sediments. Inset plots are those congeners, the HxCDD and TCDF,
with concentrations that are significantly higher than other congeners.
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4. Discussion: 

Figure 19. Plot of dioxin and Furan concentration versus organic matter concentration with the >63 µm
fraction removed. Note the increase in r2 value for HxCDD through OCDD dioxin and the decrease in
r2 value for TCDD and PeCDD.
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4. Discussion

4.1. Organic Matter, Total Nitrogen and Surface Area

The concentration of TOC and TN (0.5−1.7 wt. % TOC; 0.04−0.1 wt. % TN; Table 3) in the bulk
sediment samples is typical for a paralic environment such as Howe Sound, and is similar to TOC and
TN concentrations found to the north in the Squamish Delta sediments [40]. However, the range of
TOC concentrations is smaller than values obtained in other cores of comparable length taken further
south along Howe Sound [33]. Unlike the cores taken by [33], the core sample taken in this study does
not show a progressive decrease of TOC to a background concentration with increasing sediment depth
(Figure 3A), as is often the case [11]. Reasons for this are unclear. Upon visual inspection, the core
did not seem to be significantly affected by bioturbation, and this was confirmed during subsampling.
The location of the core, chosen based upon its proximity to the Woodfibre Pulp Mill, could also be a
contributing factor to the observed TOC profile. The area receives not only sediments from the north,
supplied from the distal reaches of the Squamish Delta, but also from the south. A return gyre affects
this area, supplying sediments from other areas in the Sound [50]. The proximity of the core to the
Woodfibre Pulp Mill might result in a TOC signature that is directly linked to temporal changes in the
discharge and composition of mill effluent. As a result, it is likely that a combination of these factors
may be the cause of the irregular downcore changes in TOC concentration. This may also explain the
ambiguity that arose from 210Pb dating, where multiple sediment sources could have disrupted the
steady accumulation and decay of 210Pb from a single sediment source [47].

The TOC and TN trends observed in the size fractionated sediments are identical (Figure 10a,
b), with the >63 µm fraction containing 55–70% of the TOC and 40–50% of the TN in each sample.
The <2 µm fraction contains 15–20% of the TOC and 25–30% of the TN in each sample, with the
remainder being distributed between the three intermediate size fractions. The enrichment of TOC
in the >63 µm fraction is attributed to the presence of particulate rather than adsorbed OM on the
surfaces of mineral grains, and is therefore independent of surface area [40]. However, the OM in the
<2 µm fraction, which probably represents approximately one fifth of the OM present in the sample, is
most likely adsorbed to mineral surfaces [40] and represents the recalcitrant portion of the sample that
is no longer susceptible to remineralization [11].

The Corg/N ratio trend for the bulk sediment samples shares a similar downcore profile as TOC
(Figure 3A). Corg/N values change from 13 to 23 over the length of the core (Figure 4), which suggests a
dominant terrestrial source for the organic matter [51]. However, minor scatter around the regression
line in Figure 5 suggests the presence of either an additional type of OM, or a secondary source. Corg

versus TN relationship for the size fractionated sediments is also variable (Figure 11), particularly
in the >63 µm fraction, which appears to have consistently higher TOC than TN concentrations, as
shown by the >63 µm regression. This is similar to results from sediment samples collected from
the Squamish Delta [40], where the >106 µm fraction falls on a more “carbon rich” regression line.
This is attributed to the dominance of particulate or “detrital” OM over adsorbed OM in the coarsest
fraction [40]. However, in this study, the >63 µm fraction probably contains both detrital OM and some
adsorbed OM due to the larger variation in grain size within this fraction.

Linear regression of surface area and TOC for bulk sediment samples (Figure 9) explains 40%
of the variance. Many studies have found significantly better correlation between these parameters,
especially with samples collected from continental shelves [11,52]. Larger degrees of variation between
surface area and TOC content is not uncommon in paralic settings [40], and is attributed to variable
proportions of detrital OM, and a much larger range of grain sizes in the bulk samples. The relationship
between surface area and TOC in size fractionated samples highlights the effects of detrital OM and
grain size on the correlation (Figure 12a,b). There is little relationship between surface area and TOC
when all size fractions are considered, primarily due to the four samples from the >63 µm, which have
higher than expected TOC contents for their surface areas (Figure 12a). These samples also have high
surface area values (Table 5) when compared to intermediate size fractions, which may be the result of
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macroscopic mica flakes (probably muscovite) that are more common in this fraction. The remaining
size fractions show a stronger relationship between surface area and TOC (r2 = 0.51; Figure 12b).
However, three of the four <2 µm fraction samples have lower than expected TOC contents than the
regression predicts, a phenomenon not uncommon in paralic settings where TOC loadings are often
lower than sediments of similar grain size from continental shelf regions [11,53]. Excluding these
outliers from Figure 12b further improves the regression, but is probably not representative of the
actual relationship between TOC and surface area in the samples.

4.2. Controls on Organochlorine Concentrations

As this study is focussed on a single cored interval within the Howe Sound, the discussion on
spatial distribution is limited to stratigraphic distribution and will not discuss lateral distribution of
the pollutants within the sediments.

Downcore concentration trends in polychlorinated organic pollutants show selective enrichment
at specific horizons rather than gradual enrichment or depletion with increasing depth, as is usual
with organic-rich sediments [11,54,55]. Thus, concentrations of total PCDD and PCDF are relatively
constant except for the 10–25 cm interval and below 42 cm, where large increases in concentration occur
(Figure 6a,b). Unfortunately, problems with 210Pb dating prevented derivation of a chronology for
the core. Previously published data [33] from other parts of Howe Sound shows peak concentrations
of 8 pg/g, 65 pg/g, and 30 pg/g (TCDF) and 660 pg/g, 480 pg/g and 340 pg/g circa 1970, 1982 and
1989 respectively, but without more accurate information on sedimentation and accumulation rates,
and potential surface mixing within the sediments, it is impossible to correlate these dates with peak
concentrations in the core. Bioturbation was observed in a similar core retrieved from the eastern
arm of Howe Sound [33], suggesting that the sediments in the study core may have been mixed, but
visual inspection upon retrieval and subsampling did not reveal evidence of bioturbation. It is also
possible that any mixing that may have occurred resulted from the coring procedure and subsequent
subsampling, although every effort was made to minimize disturbance during retrieval and processing.
However, the complex sedimentary environment that was the likely cause of the disrupted 210Pb
results may also be the reason for the unusual response observed in the organochlorine compounds.
This is likely, especially if the organochlorine compounds are related to surface area in the same manner
as TOC. Without accurate temporal data it is not possible to relate current concentration levels of
dioxins and furans with the initial concentrations in either effluent discharged from the Woodfibre
Pulp Mill or atmospheric inputs from other sources. Thus, any change in concentration from the time
of initial input cannot be taken into account when assessing preservation of dioxins and furans and
their relationship with surface area.

Downcore trends in individual homologues (Figures 7 and 15) are very similar to those of PCDD
and PCDF. In both the dioxin and furan families, hexachlorinated homologues are present in much
higher concentrations than other homologues. When HxCDD is considered separately, a correlation
between chlorination and increasing concentration is observed (Figure 7), suggesting that preservation
potential may also be a function of the number of chlorine atoms present in the molecule. This
phenomenon is not observed in furans (Figure 15), where the abundances of TCDF and OCDF are
reversed, OCDF being the least concentrated of the five homologues, and TCDF being the most
concentrated. The lipid content of the TOC may also be a factor in the concentration of homologues as
increasing chlorination of PCDD and PCDF increases their lipophilicity [5]. Higher polychlorinated
organic compounds may be preferentially concentrated in the sediments due to higher lipid content of
the organic matter in the sediment. More research is needed on the composition of the organic matter
to determine if this is the case.

There is evidence in the size fractionated sediment data to suggest that organochlorine compounds
are selectively adsorbed to inorganic particle surfaces, and that their concentration in the <2 µm
fraction increases with depth. A commonality that exists in all four of the size fractionated samples
is the high abundance of organochlorine compounds in the >63 µm fraction (Figures 13–16). This is
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attributed to the presence of particulate OM that is not adsorbed to particle surfaces. DF 14–16 shows
depletion of both total and individual homologues in both dioxins and furans with progressively
finer grain size, which strongly suggests that surface area adsorption is not the mechanism by which
OM and organochlorine compounds are associated at this sediment depth (Figure 13). However,
other homologues from sample DF 14-16 show an opposite trend, with increasing concentrations in
finer size fractions. OCDD, HxCDF, HpCDF and OCDF all show minor enrichment in the <2 µm
fraction versus the 2–10 µm fraction (Figure 13a,b). Samples DF 20–22 and DF 34–36 show progressive
enrichment from the 10–20 µm through to the <2 µm fraction in total PCDD and PCDF, and in a
number of individual homologues as well (Figures 14 and 15). This suggests an increasing association
of organochlorine compounds with finer sediment fractions and thus increasing importance of surface
area as the mechanism by which these compounds are preserved. This trend is more pronounced in
sample DF 46–48, which shows increasing concentrations of total PCDD, HxCDD, HpCDD, OCDD,
and all of the furan homologues except for TCDF, from the 20–68 µm fraction to the <2 µm fraction
(Figure 16). The increase between the 2–10 µm and <2 µm fractions is significantly greater than
increases between coarser fractions, which highlights the significant increase in surface area in the <2
µm fraction compared to coarser fractions. DF 46–48 has the largest concentration of organic carbon,
compare the other samples and this organic matter would contain large internal surface area which
would adsorb organochlorine compounds.

It is evident from Table 4 (Figures 6–8) that neither a downcore enrichment nor depletion
trend exists for homologue or total homologue concentration in dioxins of furans. However, when
concentrations are compared to surface areas, the highest concentrations, which are found in the 14–16
cm, 20–22 cm, 34–36 cm and 46–48 cm intervals, do correspond to the highest observed surface area
values in three of the four intervals, which suggests some link between surface area and concentration.
Correspondingly, depth intervals 4–5 cm, 24–26 cm and 40–42 cm which contain the lowest measured
concentrations for the majority of the compounds analysed also have the lowest surface area values.
Regression analyses of the concentration of organochlorine compounds and surface area are poor and
mineral surface area is not the only controlling factor in concentration of these pollutants.

The relationship between organochlorine compound concentrations and surface area are poor in
all samples. The relationship does improve for sample DF 46–48 which may be due to the higher dioxin
and furan concentrations. The majority of the homologues from the 46–48 cm interval have a moderate
positive correlation with surface area (Table 7; Figure 17). There are strong positive correlations that
exist between the TOC (Corg) content and dioxin and furan concentrations (Figure 18) with some
homologues preferentially absorbing in this fraction (Tetra-Pentachlorinated PCDD/F). The r2 values
also increase for hexa- through octachlorinated dioxin/furan when the >63 µm was removed (0.4/0.6
to 0.8 dioxins, 0.4/0.7 to 0.8, furans; Figure 19). Correspondingly, r2 values decreased in tetra- and
pentachlorinated dioxin/furan when the >63µm was removed (0.6/0.3 to <0.2, Dioxins, 0.7 to 0.6, Furans;
Figure 19). This suggests an intrinsic relationship between tetra- and pentachlorinated dioxin/furan
and the >63 µm fraction, whilst other homologues appear to be directly related to finer fractions.
The improvement of the relationship between OM and homologue concentration in sediments <63
µm (Figure 19), as well as the strength of the relationship (r2

≈ 0.8, PCDD/F) suggests a strong link
between OM and homologue concentrations. Similarities in downcore concentration profiles of dioxins
and furans to that of TOC (Figures 3A, 7 and 8) also support this conclusion. When placed in the
context of surface area, which is a significant factor in controlling homologue preservation in sediments
(Table 7; Figure 17), it appears likely that the relationship is somewhat symbiotic. The organochlorine
compounds adsorb to the OM, which can be adsorbed to inorganic particle surfaces or as discrete
particles within the sediment.

Although sediment toxicity was not the focus of this study, it is interesting to note that the toxicity
of bulk sediment samples ranges from 0.4 ng/kg TEQ to 20.6 ng/kg TEQ, with only four of the bulk
samples analysed exceeding the ISQG value of 0.85 ng/kg TEQ. These four samples were those selected
for size fractionation: 14–16 cm, 20–22 cm, 34–36 cm and 46–48 cm. None of the TEQ values for these
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four samples exceeded the PEL value of 21.5 ng/kg TEQ. TEQ values for size fractionated samples fell
above the ISQG value, but were usually less than the PEL value. However, several size fractions did
exceed the PEL value, most notably in the 46–48 cm depth interval, where the >63 µm fraction and
<2 µm fraction had TEQ values of 67 and 40 respectively, suggesting significant contamination.

5. Conclusions

Analysis of bulk sediment samples taken from a core in Howe Sound, adjacent to the Woodfibre Pulp
and Paper Mill, showed organic matter concentrations typical for a paralic environment. The average
Corg/N ratio of 15 suggests that the dominant source of sedimentary organic matter is terrestrial.
Further analyses revealed the presence of tetra- through octachlorinated dioxins and furans, which
were likely sourced directly from Woodfibre Pulp Mill via effluent discharge into Howe Sound.

The primary source of organic and inorganic sediments for the Woodfibre area is the Squamish
River, which discharges into the north end of Howe Sound via the Squamish Delta. However, complex
currents in this area often rework sediments, and can also transport sediments from secondary sources
further south in Howe Sound. Other sources of organic and inorganic sediments include the Woodfibre
Mill effluent, the barges that deliver unprocessed woodchips to the mill and material directly from the
steep terrestrial slopes surrounding Howe Sound. This complex sedimentary setting is the main causal
factor in the unusual down core trends seen in TOC and TN concentration, Corg/N ratio, chlorinated
organic compound concentration, and the failure of 210Pb dating in producing a reliable chronology
for the core.

Surface area values for bulk sediments were typical of a paralic environment, show moderate
correlation with organic carbon and organochlorine pollutants, suggesting in turn that sediment surface
area is a factor in the retention of both naturally occurring organic material and man-made organic
pollutants in the sedimentary record.

Results from the analysis of selected size fractionated samples showed significant enrichment
of both TOC and industrial pollutants in the coarsest and finest sediment fractions. Organic matter
and associated pollutants present in coarse grained sediments is likely particulate in nature and not
adsorbed to particle surfaces. A strong relationship between OM and dioxin/furan concentrations also
occurs which supports the theory that pollutants absorb onto organic matter surfaces and remain as
discrete particles of both the pollutant and OM adsorption on to mineral surfaces. Some homologues
(tetra- and pentachlorinated) are directly related to the coarsest sediment fraction (> 63 µm), whilst
other homologues (hexa- through octachlorinated) are concentrated in the finer sediment fractions
(<63 µm).

The strength of the relationship between surface area and dioxin and furan concentration is
governed by organic matter concentration and relative chlorination. Increasing organic matter
concentration increases the concentration of pollutants; while dioxin and furan compounds with higher
numbers of chlorine atoms in their molecular structure e.g., hex-octachlorinated PCCD/F, appear to
be better preserved through adsorption to particle surfaces. The lack of variation observed in the
geochemical composition and mineralogy of sediments in the upper reaches of Howe Sound [40]
indicates that the composition of the inorganic sediment fraction is not a factor in the adsorption
of organic matter or pollutants on to particle surfaces. This observation was also found by other
workers [56,57].

The fate of industrial pollutants in inland waterways and paralic environments has been the
focus of intense scrutiny over the past four decades. The relationship between sediment surface area
and pollutant concentration demonstrated in this study is intrinsically related to the relationship
between OM and surface area which is also observed by other workers [11,13]. It is unlikely that
this relationship is confined only to dioxins and furans, but is probably ubiquitous throughout many
other industrial chemical classes such as PCBs, polychlorinated insecticides et cetera, as well as other
types of pollutants such as heavy metals from the mining industry. It is not clear, however, as to the
extent of surface area preservation within other chemical classes, or whether there is any potential for
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desorption and release of pollutants back into the environment following changes in sedimentological
or redox conditions within the sediments.
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