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Abstract: Falls have been one of the main threats to people’s health, especially for the elderly.
Detecting falls in time can prevent the long lying time, which is extremely fatal. This paper intends
to show the efficacy of detecting falls using a wearable accelerometer. In the past decade, the fall
detection problem has been extensively studied. However, since the hardware resources of wearable
devices are limited, designing highly accurate embeddable models with feasible computational
cost remains an open research problem. In this paper, different types of shallow and lightweight
neural networks, including supervised and unsupervised models are explored to improve the fall
detection results. Experiment results on a large open dataset show that the lightweight neural
networks proposed have obtained much better results than machine learning methods used in
previous work. Moreover, the storage and computation requirements of these lightweight models are
only a few hundredths of deep neural networks in literature. In tested lightweight neural networks,
the best one is proved to be the supervised convolutional neural network (CNN) that can achieve an
accuracy beyond 99.9% with only 441 parameters. Its storage and computation requirements are only
1.2 KB and 0.008 MFLOPs, which make it more suitable to be implemented in wearable devices with
restricted memory size and computation power.

Keywords: accelerometer; fall detection; lightweight neural networks; Sisfall dataset

1. Introduction

The world is currently experiencing an unprecedented aging of the population [1]. It has been
estimated that the population of elder people aged 60 and over will keep increasing rapidly and exceed
three billion by 2100. Such a huge elder market will stimulate the development of the healthcare
industry. Hence, providing healthcare service to the elder to reduce living risks associated with their
daily life is increasingly being demanded.

Meanwhile, falls have been one of the main threats in elder people’s life [2]. Almost 80% of
reported accidents among elder patients are due to falls [3]. This situation is even worse in high
altitude areas that are usually covered with snow and ice for most of the year, such as Canada, North
America, and China. For instance, a living environment with a high risk of falling in Kelowna (Canada)
is shown in Figure 1.

Early detection of falls can minimize the time between a fall and the arrival of medical caretakers,
hence prevent long lying times that are potentially fatal. Therefore, fall detection has become a
hot research topic during the past decade and a large number of fall detection systems have been
proposed [4–7]. Based on the different sensors used in detection, these systems can be categorized
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into vision-based [8,9], and wearable sensor-based [10]. Vision-based fall detection has been an active
research topic for a long time [11]. Recently, interest in wearable sensor-based systems has increased
rapidly due to the emergence of low-cost physical sensors [12–15].

In literature, different methods have been proposed to detect falls using wearable sensors. Some of
them are threshold-based and others are machine-learning based [16]. In these methods, machine
learning methods have shown superior performance over threshold methods. Hence, they have been
widely explored in previous work. Methods including k-nearest neighbors (KNN), kernel Fisher
discriminant (KFD) and support vector machine (SVM) were used in [17] to detect falls based on an
integrated device attached to the waist of the human body. Five methods including logistic regression
(LR), naïve Bayes (NB), decision tree (DT), SVM and KNN were evaluated together by Aziz et al. [18]
in fall detection based on seven distributed accelerometers on the human body and the SVM is proven
to be the best.

Moreover, neural networks have been increasingly popular in the machine learning field due to
the improvement of computation force and the breakthrough of theory. Their more advanced modeling
capability has also attracted a large amount of attention in the fall detection field [19]. Different types of
neural networks including recurrent and convolutional neural networks have been used in literature.

In [20], a long short-term memory (LSTM) neural network, named LSTM-Acc and a variant
LSTM-Acc Rot were proposed to detect falls. The LSTM models consist of two LSTM layers and two
fully-connected layers with each layer consisting of 200 neurons. Experiment results have shown the
proposed LSTM models could achieve an accuracy of 98.57%. Furthermore, a gated recurrent units
(GRU) neural network was used in [21] to detect falls based on a smartwatch. The GRU model used
consists of three nodes at the input layer, a GRU layer, a fully connected layer, and a two-node softmax
output layer.

Some other researchers used convolutional neural networks in their work. A convolutional neural
network (CNN) composed of four convolution layers and four pooling layers was used to recognize
human falls in [22]. Experiment results have shown the proposed CNN model could achieve an
accuracy of 99.1%. Another CNN model composed of two convolutional and two max-pooling layers
was used in [23] to detect falls and the results proved the CNN could achieve an accuracy of 98.61%.
Furthermore, a CNN named CNN-3B3Conv was proposed in [24] to detect falls using acceleration
measurements. The experiment results proved that the CNN-3B3Conv model could obtain much
better results than recurrent neural networks with an accuracy near 99%.

Figure 1. The slippery living places in Kelowna (Canada), which are covered with snow and ice in winter.

Indeed, good results have been obtained by machine learning methods, especially the deep
learning techniques in literature in the context of fall detection. However, most of the neural networks
used are deep, complex and computationally intensive, and implementing them in wearable devices
with limited hardware resources is a challenge. One solution used to tackle this problem is to avoid
embedding these deep neural networks on the wearable device itself but on a base-station instead as
in [23]. Raw data (or preprocessed data) are sent via some wireless link from the wearable device to the
base station where these data are processed to detect falls. However, this solution is not appropriate
for outdoor environments as the distance between the wearable device and the base station is limited
in the considered technologies e.g., ZigBee in [23]. Therefore, developing highly accurate embeddable



Electronics 2019, 8, 1354 3 of 19

models with lightweight architectures and feasible computational cost is mandatory to achieve an
accurate wearable fall detector that could work in both indoor and outdoor environments.

In this work, different types of lightweight neural networks, including the supervised and
unsupervised models are explored in fall detection based on an accelerometer worn on the human
waist. The performance of these lightweight neural networks is evaluated against both the conventional
machine learning methods and the deep neural networks used in literature.

As shown in Figure 2, the standard process of machine-learning-based fall detection consists
of three main steps. Acquired sensor signals are firstly segmented into small data blocks and
then features that can reflect characteristics of human falls are extracted and fed into classifiers
for recognition. According to this process, the rest of this paper is organized as follows. The dataset,
signal pre-processing methods and classification protocol used in this work are first explained in
Section 2. Section 3 provides a brief introduction on classifiers used. Then, experimental results are
presented in Section 4. Finally, Section 5 draws conclusions.

Input Signal

Sampled Data 1

Feature vector 1 …

…

Feature Extraction

Sampled Data 2 Sampled Data 3

Feature vector 2 Feature vector 3

…

Segmentation

Machine Learning 
Classifiers

Figure 2. Recognition process of machine learning methods.

2. Datase and Pre-Processing

2.1. Dataset Description

To guarantee a reliable evaluation, a large public dataset known as the SisFall dataset is used in this
work [25]. This dataset has been used in previous work for its diversity and integrity [26]. The dataset
was recorded with a self-developed embedded device composed of a Kinets MKL25Z128VLK4
microcontroller (NPX, Austin, TX, USA), an Analog Devices (Norwood, MA, USA) ADXL345
accelerometer, a Freescale MMA8451Q accelerometer, an ITG3200 gyroscope, and a 1000 mA/h
generic battery. During data collection, the device was tethered on the waist of subjects as shown in
Figure 3a with a sampling rate of 200 Hz and then different activities listed in Table 1 were performed
in the classrooms and open spaces of a coliseum at the Universidad de Antioquia (Medellín, Colombia).
Some of the data collection scenarios are shown in Figure 4. In order to guarantee safety conditions,
falls were simulated using safety landing mats [25]. To collect the dataset, overall 38 volunteers
including 15 elder people and 23 young people were employed and the characteristics of these subjects
such as sex, age, height, and weight are summarized in Table 2.
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FEATURES:
Resolution: 13-bit
Measuring range: ±16 g
Supply voltage range: 2.0 V to 3.6 V
Temperature range: −40°C to +85°C
Size: 3 mm × 5 mm × 1 mm
Sensitivity: 3.9mg/LSB

APPLICATIONS:
Handsets 
Medical instrumentation
Gaming and pointing devices 
Industrial instrumentation 
Personal navigation devices 
Hard disk drive (HDD) protection 

Figure 3. Description of the device used in SisFall dataset including (a) the device setting and (b) the
accelerometer used in this work.

(a) Walking

(b) Going up stairs

(c) Fall forward while walking caused by a trip 

(d) Fall forward when trying to sit down 

Figure 4. Data collection scenarios in the SisFall dataset.

In this work, only acceleration data acquired from the three-axial accelerometer ADXL345 are
used as in [25]. As shown in Figure 3b, the ADXL345 is an energy-efficient accelerometer that has been
widely embedded in handsets, medical instrumentation, gaming, and pointing devices, industrial
instrumentation, and personal navigation devices. The ADXL345 used is configured with a measuring
range of±16 g and a resolution of 13 bits with a sensitivity of 3.9 mg/LSB. The supply voltage range of
ADXL345 is 2.0 V to 3.6 V and the temperature range is −40 ◦C to +85 ◦C. Moreover, the accelerometer
has a small size of 3 mm × 5 mm × 1 mm [27].

Since it has been found that there is no significant gain for having sampling frequency higher than
25 Hz in fall detection [26], the original acceleration measurements are first downsampled to 25 Hz.
In data downsampling, original acceleration measurements are decimated by an integer factor instead
of resampling sensing data, where artifacts and distortion may occur. When the original sensing data
S = {s1, s2, ..., sl} is downsampled by an integer of n, it would keep the first sample from every n
samples and starting with an integer offset of m as follows.

DSn
m = {sk|k = 1 + m + α× n} , (1)

where 0 ≤ m < n, DSn
m is the downsampled data, α is an integer and 0 ≤ α ≤ b l

n c. If the original
sampling rate is R Hz, the sensor data after downsampling is R

n Hz. In this work, an integer of eight is
used to downsample sensor signals to 25 Hz.

2.2. Data Pre-Processing

In this section, the segmentation, feature extraction and data oversampling methods used to
pre-process the acquired acceleration measurements are explained in detail.
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Table 1. Activities covered in the SisFall dataset.

Code ADLs Duration

D01
D02
D03
D04
D05
D06
D07
D08
D09
D10
D11
D12
D13
D14

D15
D16
D17
D18
D19

Walking slowly
Walking quickly
Jogging slowly
Jogging quickly
Walking upstairs and downstairs slowly
Walking upstairs and downstairs quickly
Slowly sit in a half height chair, wait a moment, and up slowly
Quickly sit in a half height chair, wait a moment, and up quickly
Slowly sit in a low height chair, wait a moment, and up slowly
Quickly sit in a low height chair, wait a moment, and up quickly
Sitting a moment, trying to get up, and collapse into a chair
Sitting a moment, lying slowly, wait a moment, and sit again
Sitting a moment, lying quickly, wait a moment, and sit again
Being on one’s back change to lateral position, wait a moment,
and change to one’s back
Standing, slowly bending at knees, and getting up
Standing, slowly bending without bending knees, and getting up
Standing, get into a car, remain seated and get out of the car
Stumble while walking
Gently jump without falling (trying to reach a high object)

100 s
100 s
100 s
100 s
25 s
25 s
12 s
12 s
12 s
12 s
12 s
12 s
12 s
12 s

12 s
12 s
25 s
12 s
12 s

Code Falls Duration

F01
F02
F03
F04
F05
F06
F07

F08
F09
F10
F11
F12
F13
F14
F15

Fall-forward while walking caused by a slip
Fall-backward while walking caused by a slip
Lateral fall while walking caused by a slip
Fall-forward while walking caused by a trip
Fall-forward while jogging caused by a trip
Vertical fall while walking caused by fainting
Fall while walking, with use of hands in a table to dampen fall,
caused by fainting
Fall-forward when trying to get up
Lateral fall when trying to get up
Fall-forward when trying to sit down
Fall-backward when trying to sit down
Lateral fall when trying to sit down
Fall-forward while sitting, caused by fainting or falling asleep
Fall-backward while sitting, caused by fainting or falling asleep
Lateral fall while sitting, caused by fainting or falling asleep

15 s
15 s
15 s
15 s
15 s
15 s
15 s

15 s
15 s
15 s
15 s
15 s
15 s
15 s
15 s

Table 2. Age, height and weight of the subjects.

Sex Age Height (m) Weight (kg)

Elderly
Female 62–75 1.50–1.69 50–72

Male 60–71 1.63–1.71 56–102

Adult
Female 19–30 1.49–1.69 42–63

Male 19–30 1.65–1.83 58–81
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2.2.1. Data Segmentation with Impact Point

To segment sensor signals for classification, most researchers in literature used a sliding window
method shown in Figure 5a, where sensor data are continuously segmented by a moving window
with an overlap. This method is simple but energy-intensive since the classifiers need to operate
continuously at a small interval. Moreover, it is also not accurate in extracting data blocks of falls since
a sliding window with an overlap may not locate exactly on the whole data block of a fall. The window
may only cover a part of the fall and another part of human activities happened before the fall such as
walking or running and this may cause bias in recognition.

To deal with this, an impact point-based data segmentation method is used in this work. It is
based on the fact that a fall is always associated with an extreme impact between the human body and
the ground. By detecting the impact, the sensor signals of falls can be accurately located. Moreover,
a large number of uninterested sensor data (e.g., data of activities without evident impact such as
sitting, standing or lying) can be excluded to avoid unnecessary recognition and save energy.

To detect the impact point, the acceleration magnitude (AM) that can reflect the energy contained
in the sensor signals is used with a threshold of 1.6 g according to [28,29]. The AM can be obtained
as following:

AM (a[n]) =
√

a[n]2x + a[n]2y + a[n]2z , (2)

where a represents the acceleration measurements on different axes of the accelerometer.
Figure 5b shows the process of data segmentation with an impact point in fall detection. Once an

impact is identified with the pre-defined threshold of AM, a window is centered on the impact point
to extract the complete fall process. In the experiment, a window of 3 s is used according to previous
work [18].

Sliding Window

Z

AM

X

Y
Z

1.5 s

(b)(a)

1.5 s

A
cc

el
er

at
io

n

X

Y

Impact point based method

Figure 5. Different segmentation methods.

2.2.2. Feature Extraction

Once sensor signals are segmented, meaningful features should be extracted for classification.
As for neural networks, features can be extracted automatically. However, human-design features
that can reflect the shape, energy, and dispersion of sensor signals are needed for other conventional
machine learning classifiers such as SVM and KNN. In this work, 13 types of statistical features that
have been used in literature [26] are extracted from acceleration measurements on each axis:

(1) Minimum values of acceleration measurements;
(2) Maximum values of acceleration measurements;
(3) Mean values of acceleration measurements;
(4) Median values of acceleration measurements;
(5) Interquartile range of acceleration measurements;
(6) Variance of acceleration measurements;
(7) Standard deviation of acceleration measurements;
(8) Mean absolute deviation of acceleration measurements;
(9) Root mean square of acceleration measurements;
(10) Entropy of acceleration measurements;
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(11) Energy of acceleration measurements;
(12) Skewness of acceleration measurements;
(13) Kurtosis of acceleration measurements.

2.2.3. Mitigating Effects of Class Imbalance

One issue with dataset generation that is frequently overlooked in previous work is class
imbalance. It is quite common in fall detection datasets, due to the difficulty of collecting fall trials and
practical constraints on collecting data from multiple subjects, that the number of data samples for
each class are not equal. Imbalance in the dataset can cause algorithms to be biased toward the classes
having more data. The data imbalance in the Sisfall dataset is larger than 50:1 (ADLs to falls).

To deal with this, the synthetic minority oversampling technique (SMOTE) is used on the training
dataset to prevent imbalanced learning and avoid overfitting. SMOTE solves the data imbalanced
problem by oversampling the samples in the minority class. In oversampling, new instances of
minority class are interpolated using the KNN within the feature space. A new synthetic data instance
X is generated as follows:

X = Xi + rand(0, 1)× (Xj − Xi), (3)

where Xi is a sample of minority class, Xj is one of the nearest neighbors of Xi of the same class.
This interpolation process is then repeated for the other nearest neighbors of Xi. As a result, SMOTE
generates more general regions from the minority class and many machine learning classifiers are able
to use the data set for better generalizations. Figure 6 shows some fall trails generated by the SMOTE
method in data oversampling.

a

x y z

b c

Figure 6. Fall trails generated using the synthetic minority oversampling technique (SMOTE).

2.2.4. Evaluation Metrics

In this work, the performance of different classifiers is presented with the confusion matrix,
accuracy (ACC), sensitivity (SEN) and specificity (SPE). Table 3 shows the confusion matrix in fall
detection. In the matrix, true-positive (TP) is the number of observations that are falls and were
predicted to be falls, false-negative (FN) is the number of observations that are ADLs but were
predicted to be falls, true-negative (TN) is the number of observations that are ADLs and were
predicted to be ADLs, and false-positive (FP) is the number of observations that are ADLs but were
predicted to be falls (false alarms). P is the number of falls, and N is the number of ADLs observations.

Table 3. Overview of a confusion matrix.

Confusion Matrix
Predicted Class

Falls ADLs

Actual Class
Falls (P) TP FN

ADLs (N) FP TN
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Based on the confusion matrix, ACC, SEN, and SPE are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(4)

SEN =
TP

TP + FN
(5)

SPE =
TN

TN + FP
(6)

In these metrics, ACC is a measure of the overall performance of a classifier. SEN can be used to
know how correct a classifier is and SPE can be used to assess the capability of a classifier to avoid
misclassifying. Since an accurate classifier with a large number of false alarms is still not acceptable in
daily use, both of the abilities to recognize falls and exclude false alarms of classifiers are important.
Generally, a classifier is deemed to have a higher level performance only when its accuracy, specificity,
and sensitivity are all higher than others.

2.2.5. Classification Protocol

In order to present the performance of different machine learning methods in a realistic way.
The SisFall dataset is divided into two parts: the first one contains the activities performed by young
adults Y1, . . . , Y12 and elderly E1, . . . , E8, while the second part contains activities performed by
the remaining young adults Y13, . . . , Y23 and elderly E9, . . ., E15. Then, a two-fold cross-validation
strategy is conducted on these two different datasets. In this way, activities performed by some subjects
are always tested with classifiers trained on different persons, which guarantees realistic evaluation.
Finally, the total numbers of TP, TN, FP, and FN are counted from the validation results and used to
assess the performance.

3. Machine Learning Methods

In this section, the background of machine learning classifiers used in this paper is introduced to
facilitate understanding. Overall eight machine learning approaches are used including four types of
conventional methods and four types of neural networks.

3.1. Conventional Machine Learning Methods

Conventional machine learning methods used in this work include SVM, decision tree (DT), KNN,
and extreme gradient boosting method (XGB).

3.1.1. SVM

The SVM theory was proposed by Vapnik and Chervonenkis [30] and it has been proven very
effective in addressing problems including handwritten digit recognition and face detection in images.
The principle of SVM is to find a boundary between two hyperplanes that can separate samples of
different classes.

Given the training data X = {X1, X2, ..., XN} and corresponding label Y = {y1, y2, ...yN , yi ∈
[1,−1]}, two hyperplanes can be found:

wTXi + b ≥ +1, yi = +1 (7)

wTXi + b ≤ −1, yi = −1, (8)

where w and b are the parameters that represent hyperplanes. SVM is to find a boundary between
these two hyperplanes meanwhile maximizing the distance d = 2

‖w‖ between them.
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3.1.2. KNN

KNN classifies an unseen feature vector based on the votes of its most similar samples in the
training dataset. Generally, a Euclidean distance function is first used to measure the similarity between
the target feature vector and training samples:

d(Xi, X j) =
√
(xi1 − xj1)2 + ... + (xin − xjn)2 (9)

RX
k = {X ∈ Rn, d(X, Xi) ≤ d(X, Xk)}, (10)

where d(Xi, Xj) means the distance between samples Xi and Xj, RX
k is the group of k nearest neighbors

of the new feature vector X. Then, the new feature vector is assigned to the class, to which the majority
of its k nearest neighbors belong.

3.1.3. DT

DT solves a classification problem through a series of cascading decision questions. A feature
vector, which satisfies a specific set of questions, is assigned to a specific class. This method is
represented graphically using a tree structure, where each internal node is a test on a feature compared
with the threshold, and the remaining values refer to the decided classes. Its implementation is based
on a loop of if/else conditions. Many types of DTs have been generated by different algorithms. In our
research, a C4.5 is used.

3.1.4. XGB

The XGB is a meta-algorithm. It is a method that can be used with other machine-learning
methods to improve recognition accuracy. It combines the outputs of plenty of “weak” classifiers into
a weighted sum that represents the final output. The individual learners can be weak, but as long as
the performance of each one is slightly better than random guessing, the final model can be proven to
converge to a strong learner. In this paper, XGB embedded with decision trees is used.

In the experiments, the performance of SVM was compared for two different kernels: linear and
radial basis function (RBF) kernel, between which the linear kernel was found to yield better results
and was finally selected. The parameter searching of k in KNN was performed in a wide range from 1
to 10 and a value of 1 was selected. Model parameters of the XGB were optimized using a grid search
over two parameters: the number of trees and maximum depth of the tree. The best results were
achieved based on 50 trees with a maximum depth of 3.

3.2. Neural Networks

Neural networks are a family of statistical learning models through replicating the working
principle of neurons in the human brain. Overall, four types of neural networks are used in this work
including supervised models such as multi-layer perceptron (MLP), convolutional neural network
(CNN) and unsupervised autoencoders.

3.2.1. MLP

An MLP that is also known as the feed-forward neural network is shown in Figure 7a. It is a model
that processes information through a series of interconnected computational neurons. The inputs
are fed directly to the outputs via a series of hidden neurons, which are grouped into layers and
associated with previous layers using weighted connections. Formally, neurons are defined as the
following function:

al+1 = σ
(

W lal + bl
)

, (11)
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where al is the value of neurons in layer l, (al
i denotes the value of neuron i in layer l), W is the weight

matrix between layer l and l + 1, bl is the bias associated with neurons in layer l and σ is the activation
function. For the first layer in the network, the neuron value is a(1) = x, which is the input to the neural
network (flattened sensor signal in this work). MLPs use a fully-connected topology, where each
neuron in the present layer is connected with every neuron in the previous one.

.................

....

(a) (b)

......... .......

........

Encoder Decoder

Code ....
..

DecoderEncoder

Conv1D Deconv1D

(c) (d)

Figure 7. Different types of neural networks. (a) multi-layer perceptron (MLP); (b) convolutional
neural network (CNN); (c) dense autoencoder (DAE); (d) convolutional autoencoder (CAE).

3.2.2. CNN

The architecture of the CNN is shown in Figure 7b. Different from the MLP, there are many
additional convolutional layers between the input and fully connected layers. These convolutional
layers can help to extract more meaningful feature maps for recognition by conducting convolutional
operation on the input signals with different kernels. In the convolutional operation, kernels act as
different filters or feature detectors. Formally, a feature map is generated by a kernel as following:

al+1
j (γ) = σ

(
bl

j +
n

∑
f=1

kl
j f (γ) ∗ al

f (γ)

)
, (12)

where al+1
j means the value of feature map j in layer l + 1, σ is the activation function, n is the number

of feature maps in layer l, kl
j f denotes the kernel that convolves over feature maps in layer l to create

the feature map j in layer l + 1, al is the value of feature maps in layer l, bl is the bias vector. Once
feature maps are generated with convolutional layers, they will be flattened and fed into subsequent
fully-connected layers for classification.

The training of MLP and CNN is based on optimizing their parameters including weights and
biases and the optimization can be realized by minimizing the following cross-entropy error function:

J (w, b) = − 1
N

N

∑
n=1

[yn log yn + (1− yn) log (1− yn)], (13)

where, w and b denote the weight and bias parameters, N means the number of samples, yn is the
real value of the sample n and yn is the prediction from neural networks. Given the training dataset
X = {X1, X2, ..., XN} and corresponding label Y = {y1, y2, ...yN , yi ∈ [1, 0]}, the optimal values of
parameters in MLP and CNN can be found based on gradient-descent approach.

3.2.3. Autoencoders

Autoencoders are neural networks that are trained in an unsupervised way. Autoencoders aim to
learn the representation (encoding) of sensor signals with the purpose to reconstruct themselves. Since
only sensor signals of different activities without labels are needed during training, autoencoders are
known as the unsupervised models. Figure 7c shows a dense autoencoder (DAE) that is built based
on an MLP. The MLP is used as an encoder δ in the DAE with another MLP that has a symmetrical
structure as a decoder ψ. Similarly, a convolutional autoencoder (CAE) can be built based a CNN as
shown in Figure 7d.

The aims of encoders and decoders in autoencoders are to learn how to condense input signals
into representative features and then use them to reconstruct the signal as follows:
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δ : hw(x)δ → c (14)

ψ : hψ
w(c)→ x

′
, (15)

where, x means the input signal, c means the condensed code and x
′

means the reconstructed signal.
Different from MLP and CNN, the training of DAE and CAE is based on minimizing the

construction error between the original and reconstructed signals and a mean square error function is
used during training:

δ, ψ = argmin||x− x
′ ||2 = argmin||x− hψ

w

(
hw(x)δ (x)

)
||2. (16)

In this work, the DAE and CAE are built based on the MLP and CNN used. After unsupervised
training, the encoders in DAE and CAE are extracted out and concatenated with a fine-turned fully
connected layer for recognition.

3.2.4. Neural Network Architectures

Overall, seven neural networks are evaluated in this paper. Three of them are the models that
have achieved superior performance in literature. They are used as the baselines to compare with the
lightweight neural networks proposed in this paper:

• (CNN-HE) [23]: CNN-HE consists of two convolutional layers (each appended with a
max-pooling layer) and two fully-connected layers. The first convolutional layer consists of
32 kernels and the second layer consists of 64 kernels. The size of kernels used is 1 × 5 with a
stride of 1. Furthermore, the first fully-connected layer consists of 512 neurons and the second
layer consists of 8 neurons (change to 1 in this work) for classification.

• (CNN-3B3Conv) [24]: CNN-3B3Conv consists of three-layer blocks. The first block consists of
three convolutional layers and one max-pooling layer. Each of the convolutional layer consists of
64 kernels with a size of 1 × 4. The second block also consists of three convolutional layers and
one max-pooling layer, but the kernel size is set to 1 × 3 empirically. The third block consists of
three fully-connected layers with 64 neurons, 32 neurons and two neurons (changed to one in this
work) respectively.

• CNN-EDU [22]: CNN-EDU consists of four convolutional layers composed by 16 kenerls,
32 kenerls, 64 kenerls and 128 kenerls (1 × 5) respectively. Each convolutional layer is also
appended with a pooling layer. Moreover, two fully-connected layers are appended in the end.

Another four neural networks are the lightweight neural networks used in this work. They are
designed based on the evaluation results in Tables 4 and 5. In Table 4, we compare the effect of filter
size, as well as the depth (layer number) and width (kernel number) of the CNN on the resulting
accuracy. Notably, the max-pooling layers and the additional fully-connected layers, which were often
appended after convolutional layers in previous work, are abandoned due to information loss [31] and
parameter redundancy.
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Table 4. Evaluation of different CNN architectures.

Filter Size Depth Width Acc.(%) Filter Size Depth Width Acc.(%) Filter Size Depth Width Acc.(%)

1 5 99.85% 1 5 99.89% 1 5 99.89%
1 10 99.90% 1 10 99.94% 1 10 99.91%
1 30 99.91% 1 30 99.94% 1 30 99.94%
2 5 99.77% 2 5 99.83% 2 5 99.91%
2 10 99.91% 2 10 99.93% 2 10 99.92%
2 30 99.93% 2 30 99.94% 2 30 99.94%
3 5 99.88% 3 5 99.91% 3 5 99.91%
3 10 99.89% 3 10 99.93% 3 10 99.92%

1×2

3 30 99.89%

1×5

3 30 99.94%

1×10

3 30 99.94%

Table 5. Evaluation of different MLP architectures.

Depth Width Acc.(%) Depth Width Acc.(%)

1 16 99.91% 2 16 99.90%
1 32 99.91% 2 32 99.91%
1 64 99.92% 2 64 99.91%

3 16 99.90% 4 16 99.88%
3 32 99.91% 4 32 99.92%
3 64 99.90% 4 64 99.92%

Based on Table 4, a simple CNN consisting of a single convolutional layer composed of ten
1 × 5 kernels with a stride of 3, and one fully-connected layer is chosen (as highlighted in bold in
Table 2). Similarly, a simple MLP consisting of a single hidden layer with 64 hidden neurons is selected
according to the results in Table 5. Meanwhile, a DAE and a CAE are built based on the lightweight
MLP and CNN selected.

In all of these neural networks, the rectified linear units (ReLU) is used as the activation function
except in the last fully-connected layers where a sigmoid function is used for classification. Moreover,
a learning rate of 0.001 and a batch size of 128 are proved the best and used with the ADAM
algorithm [32] in parameter optimizing.

4. Experiment Results and Discussion

4.1. Lightweight Neural Networks against Conventional Methods

To guarantee reliable experimental results, each of the classifiers used was run for 10 rounds
(detailed results see Appendix A), and the final average results are used for evaluation. Firstly,
the performance of lightweight neural networks are compared with conventional machine learning
methods in Table 6.

As we can see from the results, the XGB performs the best with an accuracy of 99.35% among
conventional methods. DT and KNN come next to XGB with an accuracy of 98.93% and 98.52%.
The SVM performs the worst with an accuracy of 98.30%. The improvement of the boosting method
over other conventional classifiers is evident, especially on the false positive samples (decrease 1309.4
of SVM, 1000.9 of KNN and 799.4 of DC to 496.7 of XGB).

As for the lightweight neural networks, much better results can be obtained. The accuracy of each
neural network was higher than 99.5% which was even higher than the best conventional method
(99.35% of XGB). The best results of neural networks were obtained from the CNN with an accuracy of
99.94%, a sensitivity of 98.71% and a specificity of 99.96%. These metrics show significant improvement
over conventional methods, especially on decreasing false alarms. Let us consider, as an example,
the specificity of CNN and XGB which shows a specificity of 99.36%. Now, comparing this result with
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that of CNN i.e., 99.96%, the latter improved the specificity only by 0.59%. However, this difference is
significant as it means reducing the number of false alarms from 497.7 to 26.9 only.

In our analysis, the better results of CNN were partly due to its advanced modeling ability,
but mainly due to the ability of CNN to extract local features. The convolutional kernels in the
CNN are visualized in Figure 8, where X, Y, and Z denote the kernels on each axis of acceleration
measurements. As we can see, these kernels were in different patterns and shapes and were also
different on every axis. Some of them were line segments with a big slope and some of them are line
segments fluctuating uniformly. These kernels act as various pattern detectors and move along the
input signals to identify certain signal patterns on different locations for classification. Compared to
other methods that depend on features extracted from the whole data segments, these automatically
learned kernels can help CNN to extract local features that can reveal the differences between signals
of falls and ADLs on a much smaller scale. In this work, kernels in the CNN can extract local features
on a scale as small as 0.2 s (1 × 5) at each step for recognition.

Table 6. Average detection results of lightweight neural networks against conventional machine
learning methods.

Classifiers→ Conventional Methods Leight Weight Neural Networks

Metrics ↓ XGB KNN SVM DT MLP DAE CAE CNN

SEN.(%) 99.32 90.91 98.27 97.77 98.31 99.07 99.20 98.71

SPE.(%) 99.36 98.70 98.30 98.96 99.96 99.83 99.93 99.96

ACC.(%) 99.35 98.52 98.30 98.93 99.92 99.81 99.91 99.94

TP 1777.8 1627.4 1759 1750.1 1759.7 1773.4 1775.6 1767.1

FN 12.2 162.6 31 39.9 30.3 16.6 14.4 22.9

FP 496.7 1000.9 1309.4 799.4 33.3 131.1 57.9 26.9

TN 76,428.3 75,924.1 75,615.6 76,125.6 76,891.7 76,793.9 76,867.1 76,898.1

X

Y

Z

Kernel1 Kernel2 Kernel3 Kernel4 Kernel5 Kernel6 Kernel7 Kernel8 Kernel9 Kernel10

Figure 8. Visulization of convolutional kernels in the CNN.

On the other hand, although autoencoders have been proved effective in learning the intrinsic
characteristics of data, their slightly poor performance over supervised neural networks proves the
efficacy of autoencoders is not evident in fall detection. This may due to the fact that sensor signals
used in fall detection are usually not complex that only last for many seconds. Hence, supervised
models are enough to learn effective features for recognition.

4.2. Leightweight Neural Networks against Baseline Models

The performance of lightweight neural networks is compared with baseline models used in
previous work in Table 7. Notably, to further compare the complexity of different neural networks,
the number of parameters (PARA) and the number of floating-point operations (FLOPs [33], detailed
calculation see Appendix B) of each neural network are also listed in Table 7.

As we can see from the accuracy metrics, even though the baseline models are much deeper
and more complex, they could only achieve a similar accuracy around 99.93% as the lightweight
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models. However, the number of parameters of baseline models are generally hundreds of times
the lightweight models, which also means hundreds of times the storage requirement. The simplest
models are the lightweight CNN and CAE with only 411 parameters and the most complex one is
CNN-HE with 60.1× 104 parameters.

Furthermore, the complex structure of baseline models also leads to more computational cost
during classification. In the baseline models, even the simplest mode (CNN-EDU) still requires 1.4
MFLOPs to make one decision (fall/no fall), which is hundreds of times the lightweight CNN and CAE.
Such large FLOPs mean higher power requirements and more frequent battery recharging that make
the wearable fall detector more obtrusive to use in daily life.

Table 7. Average detection results of lightweight neural networks against baseline models.

Classifiers→ Baseline Models Leight Weight Neural Networks

Metrics ↓ CNN-HE CNN-3B3 CNN-EDU MLP DAE CAE CNN

SEN.(%) 99.23 99.45 99.51 98.31 99.07 99.20 98.71

SPE.(%) 99.94 99.93 99.93 99.96 99.83 99.93 99.96

ACC.(%) 99.93 99.92 99.93 99.92 99.81 99.91 99.94

TP 1776.2 1780.2 1781.3 1759.7 1773.4 1775.6 1767.1

FN 13.8 9.8 8.7 30.3 16.6 14.4 22.9

FP 45.8 52.2 51.8 33.3 131.1 57.9 26.9

TN 76,879.2 76,872.8 76,873.2 76,891.7 76,793.9 76,867.1 76,898.1

PARA 60.1 × 104 10.6× 104 8.7 × 104 1.5× 104 1.5× 104 411 411

FLOPs 2 M 6.9 M 1.4 M 0.03 M 0.03 M 0.008 M 0.008 M

Even though many deep neural networks that consist of more than three layers with thousands of
neurons have been the focus in previous work, the experiment results prove that lightweight neural
networks which consist of only one hidden layer with less than 100 neurons are enough to achieve
satisfying accuracy in fall detection. These lightweight neural networks have fewer parameters and
smaller FLOPs that make them more suitable to be embedded in wearable devices that usually have
real-time requirements restricting the memory size and computation power. In this work, the most
simple and accurate neural network is the lightweight CNN used, which has only 411 parameters
(160 from the convolutional layer and 251 from the final fully-connected layer). The total storage
space needed is only 4 × δ = 1.2 KB (using 4-Byte floating-point numbers)and the FLOPs needed in
classification is 0.008 MFLOPs that is only a few hundredth of deep models used previously.

5. Conclusions

As the population of elderly people is increasing fast, providing healthcare service to the elderly
to reduce living risks associated with their daily life is increasingly demanded. Falls are one of the
main threats to the life of elder people that have caused a large number of accidents. The treatment
of falls has also been a huge financial burden to society. Since early detection of falls can prevent
the extremely fatal long lying time, the quest to detect falls of elder people with the highest possible
accuracy using wearable sensors has been a hot research topic in past decades.

Even though a large number of work has been done, developing highly accurate embeddable
models with lightweight architectures and feasible computational cost is still an obstacle to realize a
pervasive sensing fall detector using wearable devices. In this paper, different types of lightweight
neural networks are proposed including supervised and unsupervised models. Experiment results
prove the superior performance of proposed lightweight neural networks. The best results are obtained
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from a lightweight CNN. This model can provide an accuracy beyond 99.9% with a small size of only
1.2 KB and a low computational cost of 0.008 MFLOPs that is more suitable to be implemented on
wearable devices.

In the future, we plan to design different types of neural networks to detect human falls using
other wearable devices such as the smartphone to provide the fall detection service to the general
public. We also plan to improve our model to detect other human activities such as walking, running
and jumping to realize a cognitive wearable module to use in healthcare industry.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network
SVM Support vector machine
DT Decision tree
XGB Extreme gradient boosting
KNN K-nearest neighbor
MLP Mlti-layer perceptron
DAE Dense autoencoder
CAE Convolutional autoencoder
HAR Human activity recognition
ADLs Human activities in daily life
AM Acceleration magnitude
SMOTE Synthetic minority oversampling technique
ReLU Rectified linear unit
ACC Accuracy
SEN Sensitivity
SPE Specificity

Appendix A

To guarantee the reliability of experiment results, every classifier used in this work is run for
10 rounds. Detailed results are presented in this appendix.

Table A1. Classification results over 10 rounds of support vector machine (SVM).

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 98.16 98.27 98.21 98.16 98.21 98.32 98.38 98.21 98.38 98.38 98.27 0.86

SPE.(%) 98.23 98.33 98.20 98.30 98.37 98.37 98.47 98.25 98.19 98.27 98.30 0.08

ACC.(%) 98.23 98.33 98.20 98.30 98.37 98.37 98.47 98.24 98.19 98.28 98.30 0.08

TP 1757 1759 1758 1757 1758 1760 1761 1758 1761 1761 1759 1.55

FN 33 31 32 33 32 30 29 32 29 29 31 1.55

FP 1361 1281 1387 1305 1253 1255 1179 1350 1396 1327 1309.4 64.89

TN 75,564 75,644 75,538 75,620 75,672 75,670 75,746 75,575 75,529 75,598 75,615.6 64.89
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Table A2. Classification results over 10 rounds of k-nearest neighbor (KNN).

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 90.89 90.95 90.89 90.89 90.95 90.89 90.95 90.95 90.89 90.89 90.91 0.03
SPE.(%) 98.70 98.70 98.70 98.70 98.70 98.70 98.70 98.70 98.70 98.70 98.70 0
ACC.(%) 98.52 98.53 98.52 98.52 98.52 98.52 98.51 98.52 98.52 98.52 98.52 0

TP 1627 1628 1627 1627 1628 1627 1628 1628 1627 1627 1627.4 0.49

FN 163 162 163 163 162 163 162 162 163 163 162.6 0.49

FP 1001 998 1002 1000 1001 1001 1002 1001 1003 1000 1000.9 1.3

TN 75,924 75,927 75,923 75,925 75,924 75,924 75,923 75,924 75,922 75,925 75,924.1 1.3

Table A3. Classification results over 10 rounds of decision tree (DT).

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 97.82 97.77 97.82 97.88 97.65 97.82 97.82 97.71 97.71 97.71 97.77 0.07
SPE.(%) 98.93 98.93 98.93 98.93 98.94 99.04 98.93 99.02 99.01 98.94 98.96 0.04
ACC.(%) 98.91 98.90 98.91 98.91 98.91 99.01 98.90 98.99 98.98 98.92 98.93 0.04

TP 1751 1750 1751 1752 1748 1751 1751 1749 1749 1749 1750.1 1.22

FN 39 40 39 38 42 39 39 41 41 41 39.9 1.22

FP 822 823 822 822 817 741 823 751 760 813 799.4 32.32

TN 76,103 76,102 76,103 76,103 76,108 76,184 76,102 76,174 76,165 76,112 76,125.6 32.32

Table A4. Classification results over 10 rounds of extreme gradient boosting method (XGB).

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.32 99.33 99.33 99.39 99.39 99.22 99.33 99.27 99.33 99.27 99.32 0.05
SPE.(%) 99.34 99.43 99.39 99.19 99.29 99.41 99.34 99.43 99.40 99.33 99.36 0.07
ACC.(%) 99.34 99.43 99.39 99.20 99.29 99.40 99.34 99.42 99.40 99.33 99.35 0.07

TP 1778 1778 1778 1779 1779 1776 1778 1777 1778 1777 1777.8 0.87

FN 12 12 12 11 11 14 12 13 12 13 12.2 0.87

FP 509 435 471 622 548 457 506 442 460 517 496.7 54.19

TN 76,416 76,490 76,454 76,303 76,377 76,468 76,419 76,483 76,465 76,408 76,428.3 54.19

Table A5. Classification results over 10 rounds of MLP.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 98.66 98.72 97.99 98.27 98.04 98.04 98.71 97.82 98.49 98.32 98.31 0.31
SPE.(%) 99.94 99.95 99.96 99.96 99.96 99.96 99.96 99.96 99.95 99.96 99.96 0.01
ACC.(%) 99.91 99.92 99.92 99.92 99.91 99.92 99.93 99.91 99.92 99.92 99.92 0.01

TP 1766 1767 1754 1759 1755 1755 1767 1751 1763 1760 1759.7 5.57

FN 24 23 36 31 35 35 23 39 27 30 30.3 5.57

FP 46 39 30 31 32 30 29 28 35 33 33.3 5.22

TN 76,879 76,886 76,895 76,894 76,893 76,895 76,896 76,897 76,890 76,892 76,891.7 5.22

Table A6. Classification results over 10 rounds of CNN.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.05 98.44 98.60 98.82 98.99 98.60 98.04 98.83 99.11 98.66 98.71 0.30
SPE.(%) 99.95 99.97 99.96 99.96 99.96 99.97 99.98 99.96 99.96 99.97 99.96 0.01
ACC.(%) 99.93 99.94 99.93 99.94 99.94 99.94 99.93 99.94 99.94 99.94 99.94 0.01

TP 1773 1762 1765 1769 1772 1765 1755 1770 1774 1766 1767.1 5.49

FN 17 28 25 21 18 25 35 20 16 24 22.9 5.49

FP 35 21 30 27 30 26 18 31 28 23 26.9 4.83

TN 76,890 76,904 76,895 76,898 76,895 76,899 76,907 76,894 76,897 76,902 76,898.1 4.83
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Table A7. Classification results over 10 rounds of DAE.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 98.99 99.11 98.88 98.99 99.22 99.05 99.11 99.16 99.27 98.94 99.07 0.12
SPE.(%) 99.81 99.83 99.84 99.76 99.86 99.87 99.81 99.86 99.82 99.84 99.83 0.03
ACC.(%) 99.79 99.81 99.82 99.74 99.84 99.85 99.80 99.85 99.81 99.82 99.81 0.03

TP 1772 1774 1770 1772 1776 1773 1774 1775 1777 1771 1773.4 2.11

FN 18 16 20 18 14 17 16 15 13 19 16.6 2.11

FP 148 132 121 184 109 102 145 107 139 124 131.1 23.26

TN 76,777 76,793 76,804 76,741 76,816 76,823 76,780 76,818 76,786 76,801 76,793.9 23.26

Table A8. Classification results over 10 rounds of CAE.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.39 99.05 99.22 99.22 99.27 99.16 99.27 98.83 99.11 99.44 99.20 0.17
SPE.(%) 99.94 99.90 99.94 99.93 99.91 99.93 99.91 99.93 99.94 99.93 99.93 0.01
ACC.(%) 99.92 99.88 99.92 99.92 99.89 99.91 99.89 99.90 99.92 99.92 99.91 0.01

TP 1779 1773 1776 1776 1777 1775 1777 1769 1774 1780 1775.6 2.97

FN 11 17 14 14 13 15 13 21 16 10 14.4 2.97

FP 49 77 48 52 71 57 70 57 45 53 57.9 10.43

TN 76,876 76,848 76,877 76,873 76,854 76,868 76,855 76,868 76,880 76,872 76,867.1 10.43

Table A9. Classification results over 10 rounds of CNN-HE.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.22 99.44 98.49 99.27 99.16 99.55 98.88 99.44 99.44 99.38 99.23 0.3
SPE.(%) 99.94 99.95 99.98 99.95 99.93 99.97 99.96 99.82 99.95 99.95 99.94 0.04
ACC.(%) 99.93 99.94 99.94 99.94 99.91 99.96 99.94 99.81 99.94 99.94 99.93 0.04

TP 1776 1780 1763 1777 1775 1782 1770 1780 1780 1779 1776.2 5.47

FN 14 10 27 13 15 8 20 10 10 11 13.8 5.47

FP 43 39 19 37 55 22 30 138 39 36 45.8 32.24

TN 76,882 76,886 76,906 76,888 76,870 76,903 76,895 76,787 76,886 76,889 76,879.2 32.24

Table A10. Classification results over 10 rounds of CNN-3B3Conv.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.33 99.55 99.55 98.83 99.33 99.72 99.50 99.50 99.66 99.55 99.45 0.24
SPE.(%) 99.93 99.97 99.94 99.97 99.96 99.88 99.94 99.90 99.87 99.96 99.93 0.03
ACC.(%) 99.92 99.96 99.93 99.95 99.95 99.88 99.93 99.89 99.87 99.95 99.92 0.03

TP 1778 1782 1782 1769 1778 1785 1781 1781 1784 1782 1780.2 4.28

FN 12 8 8 21 12 5 9 9 6 8 9.8 4.28

FP 52 25 46 21 30 90 48 75 101 34 52.2 26.31

TN 76,873 76,900 76,879 76,904 76,895 76,835 76,877 76,850 76,824 76,891 76,872.8 26.31

Table A11. Classification results over 10 rounds of CNN-EDU.

Run 1 2 3 4 5 6 7 8 9 10 AVG STD

SEN.(%) 99.72 99.66 99.83 99.44 99.11 99.05 99.50 99.61 99.66 99.55 99.51 0.24
SPE.(%) 99.94 99.96 99.85 99.96 99.93 99.95 99.95 99.90 99.95 99.93 99.93 0.03
ACC.(%) 99.94 99.95 99.85 99.95 99.91 99.93 99.94 99.89 99.95 99.93 99.93 0.03

TP 1785 1784 1787 1780 1774 1773 1781 1783 1784 1782 1781.3 4.34

FN 5 6 3 10 16 17 9 7 6 8 8.7 4.34

FP 46 34 112 31 52 40 41 76 35 51 51.8 23.52

TN 76,879 76,891 76,813 76,894 76,873 76,885 76,884 76,849 76,890 76,874 76,873.2 23.52
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Appendix B

To compute the number of floating-point operations (FLOPs), we assume convolution is
implemented as a sliding window and that the nonlinearity function is computed for free.
For convolutional layers and fully-connected layers we compute FLOPs respectively as:

ΓCONV =
(2× Cin × K)× I × Cout

s
(A1)

ΓFC = 2× I ×O, (A2)

where I is the dimension of input feature vector; Cin is the number of channels of the input feature
vector; K is the kernel width; Cout is the number of channels of the output feature vector; s is the stride
of kernels; O is the output dimensionality [33].
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