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Abstract Computing explicitly the ε-subdifferential of a proper function amounts to computing the level
set of a convex function namely the conjugate minus a linear function. The resulting theoretical algorithm
is applied to the the class of (convex univariate) piecewise linear-quadratic functions for which existing
numerical libraries allow practical computations. We visualize the results in a primal, dual, and subdif-
ferential views through several numerical examples. We also provide a visualization of the Brøndsted-
Rockafellar Theorem.
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1 Introduction

Subdifferentials generalize the derivatives to nonsmooth functions, which makes them one of the most
useful instruments in nonsmooth optimization. The ε-subdifferentials, which are a certain relaxation of
true subdifferentials, arise naturally in cutting-plane and bundle algorithms and help overcome some
limitations of subdifferential calculus of convex functions. As such, they are a useful tool in convex
analysis.

We begin by defining the central concept of this work, the ε-subdifferential of a convex function.

Definition 1.1 Let f : Rn→ R∪{−∞,+∞} be convex, x ∈ dom( f ) and ε ≥ 0. The ε-subdifferential of
f at x is the set

∂ε f (x) = {s ∈ Rn : f (y)≥ f (x)+ 〈s,y− x〉− ε for all y ∈ Rn}.
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The elements of ∂ε f (x) are known as the ε-subgradients of f at x. We define ∂ε f (x)= /0 when x /∈ dom( f ).
(Historically, [4] used the term “approximate subgradients”, but we adopt the more common terminology
of ε-subgradient to make the distinction with the approximate subdifferential introduced in [16].)

In Figure 1.1, we visualize the ε-subdifferential of a convex function for ε = 2 and ε = 0. The ε-
subdifferential is the set of all vectors that create linearizations passing through f (x)− ε that remain
under f .

Fig. 1.1: An illustration of the construction of the ε-subdifferential of an example convex function at x= 2
for ε = 2 (left) and ε = 0 (right).

Notice that, for ε = 0 we obtain the classical subdifferential of a convex function

∂ f (x) = {s ∈ Rn : f (y)≥ f (x)+ 〈s,y− x〉 for all y ∈ Rn}.

It immediately follows from the definition that ∂ f (x)⊆ ∂ε f (x) for any ε ≥ 0. Thus, the ε-subdifferential
can be regarded as an enlargement of the true subdifferential.

In the context of nonsmooth optimization, various numerical methods have been developed based
on the notion of subdifferentials. One group of foundational methods of particular interest to this work
are Cutting Planes methods. Cutting Planes methods work by approximating the objective function by a
piecewise linear model based on function values and subgradient vectors:

f̌m(x) = max
i=1,2,...,m

{ f (xi)+ 〈si,x− xi〉} (1)

where si ∈ ∂ f (xi) = ∂0 f (xi). This model is then used to guide the selection of the next iterate. Various
methods based on cutting planes models exist. For example, proximal bundle methods [8,13,18,20], level
bundle methods [6,23,19], and hybrid approaches [24] (among many more).

In Figure 1.2 we illustrate 2 iterations of a very basic cutting planes method.
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Fig. 1.2: An illustration of a simple Cutting Planes method

In Figure 1.2, we begin with points x1 and x2 whose function values and (sub)gradients are used to
build the model f̌2. The next iterate, x3, is the minimizer of the model f̌2, and the function value and a
(sub)gradient at x3 is used to refine the model and create f̌3.

While this very basic method is generally considered ineffective [2, Example 8.1], it has lead to
the plethora of methods mentioned above, and helps provide insight on how the ε-subdifferential arises
naturally in nonsmooth optimization. Specifically, suppose model f̌k is constructed via equation (1) and
used to select a new iterate xk+1 via the simple rule xk+1 ∈ argmin f̌k. By equation (1) and the definition
of the subdifferential, we have f̌k(x)≤ f (x) for all x. Thus,

f̌k(xk+1)≤ f̌k(x)≤ f (x) for all x,

which yields

f (xk+1)+ 〈0,x− xk+1〉− ( f (xk+1)− f̌k(xk+1))≤ f (x) for all x ∈ R. (2)

That is,
0 ∈ ∂εk f (xk+1) for εk = f (xk+1)− f̌k(xk+1)≥ 0.

This insight can lead to a proof of convergence (by proving εk→ 0) and provides stopping criterion for the
algorithm. When the simple rule xk+1 ∈ argmin f̌k is replaced by more advanced methods, convergence
analysis often follows a similar path, first showing 0 ∈ ∂εk f (xk+1) for some appropriate choice of εk and
then showing εk→ 0. Thus we see one example of the ε-subdifferentials role in nonsmooth optimization.

The ε-subdifferential has also been studied directly, and a number of calculus rules have been devel-
oped to help understand its behaviour [15,5]. In this work, we are interested in the development of tools
to help compute and visualize the ε-subdifferential, at least in some situations. We feel that such tools
will be of great value to build intuition and broader understanding of this important object in nonsmooth
optimization.

In this paper, we focus on finding the ε-subdifferential of univariate convex piecewise-linear quadratic
(plq) function. Such functions are of interest since they are computationally tractable [9,10,11,22,31] (see
also Section 3), arise naturally as penalty functions in regularization problems [1], and arise in variety
of other situations [1,7,12,25,26,28]. Moreover, any convex function can be approximated by such a
convex plq function.

The present work is organized as follows. Section 2 provides some key definitions relevant to this
work. Subsection 3.1 presents a general algorithm for computing the ε-subdifferential of any proper
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convex function along with a few numerical examples. Subsection 3.2 presents an implementation of the
general algorithm for the class of univariate convex plq functions. It also discusses the data structure and
the complexity of the algorithm. Section 4 illustrates the implementation with some numerical examples,
including a visualization of the classic Brøndsted-Rockafellar Theorem. Section 5 summarizes the work
we have done and contains a discussion on the limitations of extending the required implementation. It
also provides some directions for future work.

2 Key Definitions

In this section, we provide few key definitions required to understand this work. We assume the reader is
familiar with basic definitions and results in convex analysis.

Definition 2.1 Given a function f : Rn → R∪ {+∞} (not necessarily convex), the convex conjugate
(commonly known as the Fenchel Conjugate) of f denoted by f ∗ is defined as

f ∗(s) = sup
x∈Rn
{〈s,x〉− f (x)}.

We denote dom f = {x ∈ Rn : f (x) ∈ R}.

Definition 2.2 A set S⊆ Rn is called polyhedral if it can be specified as finitely many linear constraints.

S = {x : 〈ai,x〉 ≤ bi , i = 1,2, . . . , p}

where for i = 1,2, . . . , p, ai ∈ Rn and bi ∈ R.

Definition 2.3 A function f : Rn→ R∪{−∞,+∞} is piecewise linear-quadratic (plq) if dom( f ) can be

represented as the union of finitely many polyhedral sets, relative to each of which f (x) =
1
2
〈Ax,x〉+

〈b,x〉+ c where A ∈ Rn×n is a symmetric matrix, b ∈ Rn and c ∈ R.
Note that a plq function is continuous on its domain.

3 Algorithmic Computation of the ε-subdifferential

In this section, we propose a general algorithm that enables us to compute the ε-subdifferential for any
proper function. While the algorithm would be difficult (or impossible) to implement in a general setting,
we shall present an implementation specifically for univariate convex plq functions (Section 3.2). We then
illustrate the implementation with some numerical examples (Section 4).

3.1 The Appx Subdiff Algorithm

We now prove elementary results that will justify the algorithm. Note that the function m defined next is
only introduced because it is already available in the CCA numerical library; it is not necessary from a
theoretical viewpoint.

Proposition 3.1 Let f : Rn → R∪ {+∞} be a proper function, x̄ ∈ dom( f ) and ε > 0. Note lx̄ : s 7→
ε− f (x̄)+ 〈s, x̄〉 and m(s) = min{ f ∗(s), lx̄(s)}. Then

∂ε f (x̄) = {s ∈ Rn : m(s) = f ∗(s)}. (3)
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Proof Applying the definition of m, lx̄, and f ∗ we obtain

{s ∈ Rn : m(s) = f ∗(s)}= {s ∈ Rn : f ∗(s)≤ lx̄(s)},
= {s ∈ Rn : 〈s,x〉− f (x)≤ ε− f (x̄)+ 〈s, x̄〉, ∀x},
= ∂ε f (x̄).

ut

Applying Proposition 3.1 immediately produces the following algorithm for computing the ε-subdifferential
of a proper function.

Algorithm 1 Appx Subdiff Algorithm
Input: f (proper function), x̄ ∈ dom( f ), ε > 0
Output: X

1: Compute f ∗(s)
2: Define lx̄(s) = ε− f (x̄)+ 〈s, x̄〉
3: Define m(s) = min{ f ∗(s), lx̄(s)}
4: Output X = {s ∈ dom( f ∗) : m(s) = f ∗(s)}

To shed some light upon the algorithm we consider the following example.

Example 3.1 Consider the function f (x) =
‖x‖p

p
, x ∈ Rn where 1 < p < ∞. From [3, Table 3.1] we have

f ∗(s) =
‖s‖q

q
, s ∈ Rn where

1
p
+

1
q
= 1. We also have lx̄(s) = ε− ‖x̄‖

p

p
+ 〈s, x̄〉. Thus, we have

∂ε f (x̄) = {s ∈ Rn : f ∗(s)≤ lx̄(s)}

=

{
s ∈ Rn :

‖s‖q

q
≤ ε− ‖x̄‖

p

p
+ 〈s, x̄〉

}
. (4)

In particular, for x̄ = 0, Equation (4) becomes

∂ε f (0) =
{

s ∈ Rn :
‖s‖q

q
≤ ε

}
= {s ∈ Rn : ‖s‖q ≤ qε}

=

{
s ∈ Rn : ‖s‖ ≤

(
pε

p−1

)(p−1)/p}
.

The particular case of p = 5 and ε = 1 is illustrated in Figure 3.1.
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Fig. 3.1: The primal view (left) depicts the graph of f (x) = |x|5
5 (red curve) along with the black dashed

lines passing through the point (x̄, f (x̄)− ε) = (0,−1) (red dot) having slopes −1.195 and 1.195 respec-
tively (the lower and upper bounds of ∂ε f (x̄)). The dual view depicts the graphs of f ∗(s) = 4

5 |s|
5/4 (red

curve) and lx̄(s) (solid black line). The green curve shows when the graphs of m(s) and f ∗(s) coincide.

Given the framework of Algorithm 1, a natural question to ask is whether there exists a collection of
functions which allows for a general implementation. As mentioned, we consider the well-known class
in Nonsmooth Analysis of plq functions.

3.2 Implementation: Convex univariate plq Functions

Our goal in this research is to develop a software that computes and visualizes ∂ε f (x̄) at an arbitrary point
x̄ and ε > 0 for a proper convex plq function. As visualization is a key goal, we shall focus on univariate
functions.

Remark 3.1 Suppose f : R→ R∪{+∞} is a proper function. Then, f is a plq function if and only if it
can be represented in the form

f (x) =



q0(x) = a0x2 +b0x+ c0, if −∞ < x < x0

q1(x) = a1x2 +b1x+ c1, if x0 ≤ x≤ x1

q2(x) = a2x2 +b2x+ c2, if x1 ≤ x≤ x2

...
...

qN−1(x) = aN−1x2 +bN−1x+ cN−1, if xN−2 ≤ x≤ xN−1

qN(x) = aNx2 +bNx+ cN , if xN−1 < x <+∞,

(5)

where, ai ∈ R for i = {0,1, · · · ,N}, bi ∈ R for i = {0,1, · · · ,N}, ci ∈ R for i = {1, · · · ,N− 1} and ci ∈
R∪{+∞} for i = {0,N}.
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An interesting property of plq functions is that they are closed under many basic operations in con-
vex analysis: Fenchel conjugation, addition, scalar multiplication, and taking the Moreau envelope [22,
Proposition 5.1].

Remark 3.2 Even though the minimum of two plq functions is not necessarily a plq function (see Ex-
ample 3.2), we can still compute the ε-subdifferential from the plq data structure explained in Section
3.2.1.

Example 3.2 Consider f1(x) = 0 if x ∈ [−1,1] and +∞ otherwise; and f2(x) = x. Clearly f1 and f2 are
proper convex plq functions but f (x) = min{ f1(x), f2(x)}= x if x < 0, 0 if 0≤ x≤ 1, and x when 1 < x.
Notice f is discontinuous at x = 1 as shown by Figure 3.2.

Fig. 3.2: The function f (x) = min(ι[−1,1](x),x) is discontinuous at x = 1.

To implement Algorithm 1, for univariate convex plq functions, we shall use the Computational Con-
vex Analysis (CCA) toolbox, which is openly available for download at [21]. It is coded using Scilab,
a numerical software freely available [30]. The toolbox encompasses many algorithms to compute fun-
damental convex transforms of univariate plq functions, as introduced in [22]. Table 3.1 outlines the
operations available in the CCA toolbox important to this work.

Table 3.1: Functions in the CCA Toolbox relevant to Algorithm 1

Function Description
plq check(plq f ) Checks integrity of a plq function
plq isConvex(plq f ) Checks convexity of a plq function
plq lft(plq f ) Fenchel conjugate of a plq function
plq min(plq f1,plq f2) Minimum of two plq functions
plq isEqual(plq f1,plq f2) Checks equality of two plq functions
plq eval(plq f ,X) Evaluates a plq function on the grid X

3.2.1 Data Structure

We next shed some light on the data structure used in the CCA library. The CCA toolbox stores a plq func-
tion as an (N +1)×4 matrix, where each row represents one interval on which the function is quadratic.
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For example, the plq function f : R→ R∪{+∞} defined by (5) is stored as

plq f =


x0 a0 b0 c0
x1 a1 b1 c1
...

...
...

...
xN−1 aN−1 bN−1 cN−1
+∞ aN bN cN

 . (6)

Note that, if c0 = +∞ or cN = +∞, then the structure demands that a0 = b0 = 0 or aN = bN = 0 respec-
tively. If f (x) is a simple quadratic function, then N = 0 and x0 = +∞. Finally, the special case of f (x)
being a shifted indicator function of a single point x̃ ∈ R,

f (x) = ι{x̃}+ c =
{

c, x = x̃
+∞, x 6= x̃

where c ∈ R, is stored as a single row vector plq f =
[
x̃ 0 0 c

]
.

Remark 3.3 Throughout this paper, we shall designate f and plq f for the mathematical function and the
corresponding plq matrix representation.

3.2.2 The plq epssub Algorithm

Following the plq data structure we rewrite Algorithm 1 for the specific class of univariate convex plq
functions. Prior to presenting the algorithm we establish its validity.

Theorem 3.1 Let f : R→ R∪{+∞} be a univariate convex plq function, x̄ ∈ dom( f ) and ε > 0. Let
∂ε f (x̄) = [vl ,vu]. Then one of the following hold.

1. If plq f ∗ =
[
s0 ã0 b̃0 c̃0

]
and s0 ∈ R, then f ∗(s) = ι{s0}(s)+ c̃0 and ã0 = b̃0 = 0; so dom( f ∗) =

{s0} and
vl = vu = s0.

In this case, f must be a linear function, i.e., f (x) = 〈s0,x〉− c̃0 and c̃0 ∈ R.
2. Otherwise, let

plql =
[
+∞ 0 x̄ (ε− f (x̄))

]
and

plqm =


ŝ0 â0 b̂0 ĉ0

ŝ1 â1 b̂1 ĉ1
...

...
...

...
ŝk−1 âk−1 b̂k−1 ĉk−1
ŝk âk b̂k ĉk


be the respective plq representations of lx̄(s) = ε − f (x̄)+ 〈s, x̄〉 and m(s) = min{ f ∗(s), lx̄(s)}. Then
the following situations hold.
(a) If k = 0, then ŝ0 =+∞ and

vl =−∞, vu =+∞.

In this case, f must be the indicator function of x̄ plus a constant, i.e., f (x) = ι{x̄}− ĉ0 and ĉ0 ∈R.
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(b) If k ≥ 1, then ŝ0 ∈ R, ŝk−1 ∈ R,

vl =

{
ŝ0, if

[
â0 b̂0 ĉ0

]
=
[
0 x̄ (ε− f (x̄))

]
−∞, otherwise

and

vu =

{
ŝk−1, if

[
âk b̂k ĉk

]
=
[
0 x̄ (ε− f (x̄))

]
+∞, otherwise

.

In order, to prove Theorem 3.1, we require the following lemmas.

Lemma 3.1 If f : Rn→R has the form f = 〈a,x〉+b where, a∈Rn and b∈R, then for ε ≥ 0 and x̃∈Rn

∂ε f (x̃) = ∂ f (x̃) = {∇ f (x̃)}= {a}.

Lemma 3.2 Let f : R→ R∪ {+∞} be a proper convex plq function, x̄ ∈ dom( f ) and ε > 0. Define
lx̄(s) = ε− f (x̄)+ 〈s, x̄〉 and m(s) = min{ f ∗(s), lx̄(s)}. Then

(i) There exists s ∈ R such that m(s)< lx̄(s).
(ii) We have

m≡ f ∗ ⇐⇒ f ∗ ≡ 〈a, ·〉+b (7)

where a = x̄, b ≤ ε − f (x̄), and m ≡ f ∗ means for all s, m(s) ≡ f ∗(s). In this case, f must be an
indicator function, f ≡ ι{x̄}−b for b ∈ R, and therefore ∂ε f (x̄) = R.

Proof We prove (i) by contradiction. Suppose m(s) = lx̄(s), for all s ∈ R, i.e. lx̄(s)≤ f ∗(s), for all s ∈ R.
Then using [29, Theorem 11.1] we obtain

f (x̄) = sup
s
{sx̄− f ∗(s)} ≤ sup

s
{sx̄− l(s)}= sup

s
{sx̄− ε + f (x̄)− sx̄}= f (x̄)− ε

and that contradiction proves the lemma.
For (ii), we have

m≡ f ∗⇔ f ∗ ≤ lx̄,

⇔ sx− f (x)≤ ε− f (x̄)+ sx̄, for all s,x,

⇔ s ∈ ∂ε f (x̄), for all s,

⇔ ∂ε f (x̄) = R.

Now assume there is y 6= x ∈ dom f . Then ε + f (y)− f (x̄) ≥ s(y− x̄) for all s, which is not possible
since the left hand-side is bounded and the right one unbounded. Hence, dom f is a singleton i.e. f is
an indicator function. Conversely, if f is an indicator, the equivalence holds. Since the conjugate of the
indicator function of a singleton is linear, we further obtain

m≡ f ∗⇔ f ≡ ιa−b,⇔ f ∗ ≡ 〈a, ·〉+b.

The fact that a = x̄ is deduced from g≡ f ∗− lx̄ ≤ 0 (g is a convex function defined everywhere and upper
bounded, hence a constant [27, Corollary 8.6.2]). The fact b≤ ε− f (x̄) follows similarly. ut
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Remark 3.4 Let f : R→ R∪{+∞} be a proper convex plq function, x̄ ∈ dom( f ) and ε > 0. Let plqm be
the representation of m(s) = min{ f ∗(s), lx̄(s)}. Suppose

plqm =


s0 a0 b0 c0
s1 a1 b1 c1
...

...
...

...
sk−1 ak−1 bk−1 ck−1
sk ak bk ck

 with k ≥ 1,

where s0 < s1, . . . ,sk−1 < sk =+∞. Then, for any i ∈ {0,1, . . . ,k−1}[
ai bi ci

]
6=
[
ai+1 bi+1 ci+1

]
.

This is because the plq min function creates the smallest matrix representation of the minimum of two
plq functions. If [ai bi ci] were equal to [ai+1 bi+1 ci+1], then the i+1-th row would be redundant, so not
constructed by the plq min function.

Now, we turn to the formal proof of Theorem 3.1.

Proof (of Theorem 3.1) Note that x̄ ∈ dom( f ) and ε > 0 so ∂ε f (x̄) 6= /0.
Case 1 Suppose plq f ∗ =

[
s0 ã0 b̃0 c̃0

]
with s0 ∈ R. By definition, f ∗ is an indicator function, i.e.,

f ∗(s) = ι{s0}+ c̃0. It also follows that ã0 = b̃0 = 0 and dom( f ∗) = {s0}. This immediately yields f ∗∗(x) =
〈s0,x〉− c̃0. Since f is a proper convex plq function, we have that f = f ∗∗ [29, Theorem 11.1], so f (x) =
〈s0,x〉− c̃0 and ∂ε f (x̄) = {s0}. Hence, vl = vu = {s0}.
Case 2(a) Suppose

plqm =


ŝ0 â0 b̂0 ĉ0

ŝ1 â1 b̂1 ĉ1
...

...
...

...
ŝk−1 âk−1 b̂k−1 ĉk−1
ŝk âk b̂k ĉk


with k = 0. In this case,

plqm =
[
ŝ0 â0 b̂0 ĉ0

]
then ŝ0 =+∞. Indeed, if ŝ0 ∈ R, then

plqm =
[
ŝ0 0 0 ĉ0

]
(= ι{ŝ0}+ ĉ0),

which cannot happen as m(s) = min{ f ∗(s), lx̄(s)} ≤ lx̄(s)<+∞.
To see vl = −∞,vu = +∞, note that from Lemma 3.2 there exists s̄ ∈ R such that m(s̄) < lx̄(s̄). This

implies
m(s) = f ∗(s) for all s,

as otherwise

m(s) =
{

f ∗(s), s ∈ X f ∗

lx̄(s), s ∈ Xl

for some X f ∗ ,Xl ⊆ R with Xl 6= /0. But, then m(s) would be a piecewise function defined on at least two
intervals contradicting k = 0. So m(s) = f ∗(s) for all s, which by Lemma 3.2 gives

∂ε f (x̄) = R.

Therefore, vl = −∞ and vu +∞. Consequently, from Lemma 3.2, f must be the indicator function at x̄
plus a constant, i.e., f (x) = ι{x̄}− ĉ0.
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Case 2(b) Suppose

plqm =


ŝ0 â0 b̂0 ĉ0

ŝ1 â1 b̂1 ĉ1
...

...
...

...
ŝk−1 âk−1 b̂k−1 ĉk−1
ŝk âk b̂k ĉk


with k ≥ 1. By definition, ŝ0, ŝk−1 ∈ R. We consider two subcases to prove the formula for vl .
Subcase (i) Suppose

[
â0 b̂0 ĉ0

]
=
[
0 x̄ (ε− f (x̄))

]
.

By definition, m(s) = lx̄(s) for all s < ŝ0. From Remark 3.4 we have

m(s) = f ∗(s) for all ŝ0 ≤ s≤ ŝ1.

Therefore,
inf{v ∈ dom( f ∗) : m(v) = f ∗(v)}= ŝ0.

So vl = ŝ0.
Subcase (ii) Suppose

[
â0 b̂0 ĉ0

]
6=
[
0 x̄ (ε− f (x̄))

]
.

By definition, we have
m(s) = f ∗(s) for all s < ŝ0.

Therefore,
inf{v ∈ dom( f ∗) : m(v) = f ∗(v)}=−∞.

So vl =−∞.
The formula for vu can be proven analogously to that of vl .

ut

The details of the computation of the ε-subdifferential of a univariate convex plq function are pre-
sented in Algorithm 2. Before looking into the complexity of the algorithm, we note a minor difference
between the algorithm implementation and Theorem 3.1.

Remark 3.5 In our implementation, the Case 2(a) of Theorem 3.1 is coded by detecting if f is an indicator
function. That is, if plq f =

[
x0 0 0 c0

]
, where x0 ∈ R, then vl = −∞ and vu = +∞ (Lemma 3.2)

without computing plq min.

3.2.3 Complexity of Algorithm 2

In order to prove the complexity of Algorithm 2, we require the following lemma.

Lemma 3.3 If plq f has (N+1) rows then plq f ∗ has O(N) rows.

Proof Since plq lft algorithm is developed to independently operate on (N + 1) rows [22, Table 2] and
has complexity of O(N) [11, Table 2], therefore the size of the output plq f ∗ cannot exceed O(N).

ut
We now turn to the complexity of Algorithm 2.

Proposition 3.2 If plq f has (N+1) rows then Algorithm 2 runs in O(N) time and space.

Proof Table 3.2 summarizes the complexity of the independent subroutines in Algorithm 2 as stated in
[22, Table 2], [11, Table 2] and the function description in Scilab.

Thus, from Table 3.2 and Lemma 3.3 the result follows.



12 Anuj Bajaj et al.

Algorithm 2 plq epssub Algorithm

Input: plq f =


x0 a0 b0 c0
x1 a1 b1 c1
...

...
...

...
xN−1 aN−1 bN−1 cN−1
+∞ aN bN cN

, x̄, ε > 0

Output: v̂l , v̂u

1: Compute plq check(plq f )
if false return ‘the input function is not plq.’

2: Compute plq isConvex(plq f )
if false return ‘the input function is not convex.’

3: Compute plq eval(plq f ,x̄)
if +∞, return ‘x̄ is not in the domain of the function.’;

4: if plqf=
[
x0 0 0 c0

]
then return vl =−∞, vu =+∞;

5: Compute plq f ∗ = plq lft(plq f ):

plq f ∗ =


s0 ã0 b̃0 c̃0
s1 ã1 b̃1 c̃1
...

...
...

...
sÑ−1 ãÑ−1 b̃Ñ−1 c̃Ñ−1
+∞ ãÑ b̃Ñ c̃Ñ

 .

if plq f ∗ =
[
s0 ã0 b̃0 c̃0

]
and s0 ∈ R return v̂l = s0, v̂u = s0;

6: Define
plql =

[
+∞ 0 x̄ (ε−plq eval(plq f , x̄))

]
.

7: Compute plqm = plq min(plq f ∗,plql):

plqm =


ŝ0 â0 b̂0 ĉ0

ŝ1 â1 b̂1 ĉ1
...

...
...

...
ŝk−1 âk−1 b̂k−1 ĉk−1
+∞ âk b̂k ĉk

 ,

where ŝ0 < ŝ1, . . . ,< ŝk−1 < ŝk =+∞.
8: Compute v̂l , v̂u:

If k = 0,
v̂l =−∞, v̂u =+∞

If k ≥ 1,

v̂l =

{
ŝ0, if

[
â0 b̂0 ĉ0

]
=
[
0 x̄ (ε−plq eval(plq f , x̄))

]
−∞, otherwise

and

v̂u =

{
ŝk−1, if

[
âk b̂k ĉk

]
=
[
0 x̄ (ε−plq eval(plq f , x̄))

]
+∞, otherwise

ut
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Table 3.2: Core subroutines in Algorithm 2 and their complexity

Function Complexity Variable Description
plq check(plq f ) O(N) N = number of rows in plq f
plq isConvex(plq f ) O(N)
plq lft(plq f ) O(N)
plq min(plq f1,plq f2) O(N1 +N2) N1,N2 = number of rows in plq f1, plq f2
plq eval(plq f ,X) O(N + k̃) k̃ = number of points plq f is evaluated at

4 Numerical Examples

We now present several examples which demonstrate how Algorithm 2 can be used to visualize the ε-
subdifferential of univariate convex plq functions. The algorithm has been implemented in Scilab [30].

4.1 Computing ∂ε f (x̄) for fixed ε > 0 and varying x̄

Example 4.1 Let

f (x) =
{

x2/2, −∞ < x < 0
0, 0≤ x <+∞

,

at x̄ = 0 and ε = 1. In plq format f is stored as

plq f =
[

0 1/2 0 0
+∞ 0 0 0

]
.

Using plq lft we obtain

plq f ∗(s) =
[

0 0.5 0 0
+∞ 0 0 +∞

]
corresponding to f ∗(s) =

{
s2/2, s < 0
+∞, 0≤ s

.

Here lx̄(s) = 1− f (0) + 〈0,s〉 = 1, in plq format we have plql =
[
+∞ 0 0 1

]
. Next, we compute

plq min(plq f ∗,plql), we obtain

plq min(plq f ∗,plql) =

−1.4142136 0 0 1
0 0.5 0 0
+∞ 0 0 1

(=

{
f ∗(s), s ∈ [−1.4142136,0]
lx̄(s), s /∈ [−1.4142136,0]

)
.

Hence, we obtain ∂ε f (x̄)≈ [−1.414,0] as visualized in Figure 4.1.
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Fig. 4.1: The primal view (left) depicts the graph of f (x) = x2/2 if x < 0, and 0 otherwise (red curve)
along with the black dashed lines passing through the point (x̄, f (x̄)− ε) (red dot), with x̄ = 0 and ε = 1,
having slopes −1.414 and 0 respectively (the lower and upper bounds of ∂ε f (x̄)). The dual view depicts
the graphs of f ∗(s) (red curve) and lx̄(s) (solid black line). The green curve shows when the graphs of
m(s) and f ∗(s) coincide.

In one dimension, from Figure 4.1, we may geometrically interpret that the ε-subdifferential set con-
sists of all possible slopes belonging to the interval [−1.414,0], resulting in all possible lines with the
respective slopes passing through the point (x̄, f (x̄)− ε) = (0,−1).

We now look into visualizing the multifunction x 7→ ∂ε f (x) for a given ε > 0.

Example 4.2 We consider

f (x) =


−7x−5, −∞ < x <−1
x2− x, −1≤ x≤ 1
2x2−3x+1, 1 < x < ∞

,

and ε = 1. As seen in Figure 4.2, for x̄ = −1, ∂ε f (x̄) = [−7,−1]. Correspondingly, for the choice of
x̄ = 0.5 we obtain ∂ε f (x̄)≈ [−2,2.162], as visualized in Figure 4.3.
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Fig. 4.2: The primal view (left) depicts the graph of f (x) = −7x− 5 if x < −1, f (x) = x2− x if −1 ≤
x≤ 1 and 2x2−3x+1 otherwise (red curve) along with the black dashed lines passing through the point
(x̄, f (x̄)− ε) (red dot), with x̄ = −1 and ε = 1, having slopes −7 and −1 respectively (the lower and
upper bounds of ∂ε f (x̄)). The dual view (right) depicts the graphs of f ∗(s) (red curve) and lx̄(s) (solid
black line). The green curve shows when the graphs of m(s) and f ∗(s) coincide. The subgradient view
(bottom) shows the graph of x 7→ ∂ε f (x̄) (lower and upper bounds) with the green line showing ∂ε f (−1).
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Fig. 4.3: The primal view (left) depicts the graph of f (x) = −7x− 5 if x < −1, f (x) = x2− x if −1 ≤
x≤ 1 and 2x2−3x+1 otherwise (red curve) along with the black dashed lines passing through the point
(x̄, f (x̄)− ε) (red dot), with x̄ = 0.5 and ε = 1, having slopes −2 and 2.162 respectively (the lower and
upper bounds of ∂ε f (x̄)). The dual view (right) depicts the graphs of f ∗(s) (red curve) and lx̄(s) (solid
black line). The green curve shows when the graphs of m(s) and f ∗(s) coincide. The subgradient view
(bottom) shows the graph of x 7→ ∂ε f (x̄) (lower and upper bounds) with the green line showing ∂ε f (0.5).

In Figure 4.3, the graph of ∂ε f (x) (red curve) as a function of x ∈ [−5,5] with ε = 1 is sketched by
iteratively computing the respective lower and the upper bounds of ∂ε f (x) for 100 equally spaced points
in the interval [−5,5]. This process takes under 5 seconds on a basic computer.

Example 4.3 Let

f (x) =


+∞, x <−6
−2x, −6≤ x≤ 0
x2−2x, 0 < x≤ 2
2x−4, 2 < x≤ 3
1
3 x2−1, 3 < x

.

An animated visualization of ∂ε f (x̄) for the example is presented in the following Figure 4.4, that takes
into account ε = 1 and the choices of x̄ as 50 equally spaced points between [−5,4.5].

4.2 Computing ∂ε f (x̄) for fixed x̄ and varying ε > 0

We can also visualize the graph of ∂ε f (x̄) as a function of ε > 0 for a given x̄.

Example 4.4 Consider x̄ = 0 and let

f (x) =


1
6 x2 + 1

3 x, x <−2
x+2, −2≤ x≤ 1
+∞, 1 < x

.



Visualization of the ε-Subdifferential of Piecewise Linear-Quadratic Functions 17

Fig. 4.4: Animated version of the primal view (left), dual view (right), and subdifferential graph (bottom)
for f (x) =+∞ if x<−6, f (x) =−2x if−6≤ x≤ 0, f (x) = x2−2x if 0≤ x≤ 2, f (x) = 2x−5 if 2≤ x≤ 3
and f (x) = x2/3− 1 otherwise (red curve) along with the black dashed lines passing through the point
(x̄, f (x̄)− ε) (red dot) forε = 1. The slopes are the lower and upper bounds of ∂ε f (x̄). The dual view
(right) depicts the graphs of f ∗(s) (red curve) and lx̄(s) (solid black line). The green curve shows when
the graphs of m(s) and f ∗(s) coincide. The subgradient view (bottom) shows the graph of x 7→ ∂ε f (x̄)
(lower and upper bounds) with the green line showing ∂ε f (x̄).

An animated visualization of ∂ε f (x̄) for the example is presented in the following Figure 4.5, that
takes into account x̄ =−1 and the choices of ε > 0 as 50 equally spaced points between [0.1,3].

4.3 An illustration of Brøndsted-Rockafellar Theorem

In this section, we visualize the Brøndsted-Rockafellar theorem.

Theorem 4.1 [14, Theorem XI.4.2.1] Let f : Rn→R∪{+∞} be a proper lower- semicontinuous convex
function, x̄∈ dom( f ) and ε ≥ 0. For any λ > 0 and s∈ ∂ε f (x̄), there exists x̄λ ∈ dom( f ) and sλ ∈ ∂ f (x̄λ )
such that ‖x̄λ − x̄‖ ≤ λ and ‖sλ − s‖ ≤ ε/λ .

Theorem 4.1 asserts that for a one-dimensional proper lower-semicontinuous convex function, any
ε-subgradient at x̄ can be approximated by some true subgradient computed (possibly) at some y 6= x̄,
lying within a rectangle of width λ and height ε/λ . For a better understanding, we consider the following
animated example.

Example 4.5 Consider for x ∈ R

f (x) =

 x2/3, x≤−2,
x/2+7/3, −2≤ x≤ 2.5,
x2−8/3, 2.5 < x,
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Fig. 4.5: Animated version of the primal view (left), dual view (right), and subdifferential graph (bottom)
for f (x) = x2/6+ x/3 if x < −2, f (x) = x+ 2 if −2 ≤ x ≤ 1, f (x) = +∞ otherwise (red curve) along
with the black dashed lines passing through the point (x̄, f (x̄)−ε) (red dot) forx̄ =−1. The slopes are the
lower and upper bounds of ∂ε f (x̄). The dual view (right) depicts the graphs of f ∗(s) (red curve) and lx̄(s)
(solid black line). The green curve shows when the graphs of m(s) and f ∗(s) coincide. The subgradient
view (bottom) shows the graph of ε 7→ ∂ε f (x̄) (lower and upper bounds) with the green line showing
∂ε f (−1).

and x̄ = −1.5. Figure 4.1 visualizes the Brøndsted-Rockafellar theorem at (x̄,vl) ≈ (−1.5,−1.471) ∈
∂ε f (−1.5) (black star).
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(a) For ε = 1 and λ ∈ [0.2,2]

(b) For λ = 1 and ε ∈ [0.1,2]

Fig. 4.6: An illustration of Brøndsted-Rockafellar theorem at x̄ = −1.5. The graph depicts ∂ε f (x) (red
dashed curve) and ∂ f (x) (black curve) for x ∈ [−5,5]. The theorem asserts that the blue rectangle always
intersect the black curve.

In Figure 4.6a, for a given ε = 1, and (x̄,vl) ≈ (−1.5,−1.471), we plot rectangles having respective
dimensions λ×(ε/λ ) for 50 different choices of λ ∈ [0.2,2]. We observe that, as stated by the Brøndsted-
Rockafellar theorem, for each choice of λ the rectangles intersect the true subdifferential. Likewise, in
Figure 4.6b we repeat the same process with a fixed λ = 1 and 50 different choices of ε ∈ [0.1,2] leading
to a similar conclusion.

5 Conclusion and Future Work

In this work, we first proposed a general algorithm that computes the ε-subdifferential of any proper
convex function, and then presented an implementation for univariate convex plq functions. The imple-
mentation allows for rapid computation and visualization of the ε-subdifferential for any such function,
and extends the CCA numerical toolbox.

Noting that the algorithm is implementable in one dimension, it is natural to ask whether an extension
to higher dimension is possible. Note that if f : Rn → R, then visualization of the subdifferential is
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difficult, since ∂ f (x) is a set-valued mapping from Rn into Rn. In addition, in dimensions greater than
1, the minimum of two plq functions is no longer representable using the plq data structure presented in
Subsection 3.2.1. Consider, for example,

min(1/2‖s‖2−1,0) =
{

1/2‖s‖2−1 ‖x‖ ≤ 1,
0 ‖x‖> 1.

and note that the domain is not split into polyhedral pieces. Hence, the ε-subdifferential is no longer
polyhedral even for functions of 2 variables. It is a convex set whose boundary is defined by piecewise
curves; in some cases it is an ellipse.

Note that there has been work on computing the conjugate of bivariate functions [17,11,9]. However,
the resulting data structures are much harder to manipulate. We leave it to future work to extend our
results to higher dimensions.

Two other directions for future work are as follows. First, the current method to produce the subdif-
ferential view (e.g., Figure 4.2) requires computing the ε-subdifferential for a wide selection of x values.
It may be possible to improve this through a careful analysis of Proposition 3.1. Another clearly valuable
direction of extension would be developing methods to visualize the ε-subdifferential of any univariate
convex function. A first approach to this could be achieved by approximating the univariate convex func-
tion with a univariate convex plq function. However, it may be more efficient to try to directly solve
inf{v ∈ dom( f ∗) : m(v) = f ∗(v)} and sup{v ∈ dom( f ∗) : m(v) = f ∗(v)} using a numerical optimization
method.
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