
A Linear-Time Algorithm to Compute the Conjugate of Convex

Piecewise Linear-Quadratic Bivariate Functions

Tasnuva Haque, Yves Lucet

January 20, 2018

Abstract

We propose the first algorithm to compute the conjugate of a bivariate Piecewise Linear-
Quadratic (PLQ) function in optimal linear worst-case time complexity. The key step is to use
a planar graph, called the entity graph, not only to represent the entities (vertex, edge, or face)
of the domain of a PLQ function but most importantly to record adjacent entities. We traverse
the graph using breadth-first search to compute the conjugate of each entity using graph-matrix
calculus, and use the adjacency information to create the output data structure in linear time.

Keywords. Legendre-Fenchel transform; Conjugate; Piecewise linear-quadratic functions; Sub-
differential; Convex Function; Computational Convex Analysis (CCA); Computer-Aided Convex
Analysis.

1 Introduction

Convex conjugate functions play a significant role in duality theory. Consider the primal optimiza-
tion problem

p = inf
x∈Rd

[f(x) + g(Ax)],

whose Fenchel dual optimization problem is

d = sup
y∈Rd

[−f∗(AT y)− g∗(−y)],

where f∗ denotes the (Fenchel) conjugate of f , and AT the transpose of the matrix A. Fenchel’s
duality Theorem states that under some constraint qualification conditions, p = d and the solution
of one problem can be computed from the solution of the other. Understanding how to compute
the conjugate of a function is one of the key steps to solve a dual optimization problem [Her16].

Computing the conjugate efficiently is also important for regularization. There is a close rela-
tionship [Luc06] between the conjugate and the Moreau envelope (also known as Moreau-Yosida
approximate or Moreau-Yosida regularization)

Mλ(s) = inf
x∈Rd

[
f(x) +

||x− s||2

2λ

]
.

The Moreau envelope regularizes a nonsmooth function while keeping the same local minima [Luc10,
PW16]. The set of point at which the infimum is attained is called the proximal mapping and is
the basis of many convex and nonconvex optimization techniques like bundle methods [HUL93].

The importance of conjugate functions inspired us to develop an optimal worst-case time algo-
rithm to compute the entire graph of the conjugate to better understand its structure, and gain

1

more intuition in the information it carries. Such computation belongs to the field of Computa-
tional Convex Analysis (CCA) by contrast with computing the conjugate at a single point, which
is an optimization problem.

CCA focuses on creating efficient algorithms to compute transforms commonly encountered in
convex analysis: addition, scalar multiplication, Moreau envelope, and (Legendre-Fenchel) conju-
gate. Those transforms are considered the core convex transforms [GL13, Luc10] and have been
used to develop new theories and results in convex optimization [Luc13b]. One application of
CCA is Computer-Aided Convex Analysis, which focuses on visualizing transforms applied to low-
dimensional functions.

The Computational Convex Analysis (CCA) toolbox has been developed in the past decade to
implement the latest algorithms to compute convex transforms efficiently. It is a free and open
source Scilab [Con94] toolbox. The CCA toolbox is almost complete for univariate functions but
lacking for bivariate functions.

The first algorithm to compute the conjugate of a convex bivariate PLQ function was developed
in [GL13] and implemented in Scilab using the Computational Geometry Library CGAL [CGA].
It uses a planar arrangement to store the entities (vertices, edges and faces) of the domain of a
PLQ function. The dual arrangement is then computed by looping through the the vertices and
computing the conjugate of the associated edges using a decision tree that enumerates all the
possibilities. The algorithm uses a binary search tree to detect duplicate points, which results in
a O(N logN) worst-case time complexity for a function with N pieces. It achieves a linear-time
expected case complexity when implemented using a hash table but needs to assume bounded
bit length to achieve linear-time worst-case time complexity when implemented using a trie data
structure (a try – the name comes from retrieval but is pronounced “try” – is a “M -ary tree,
whose nodes are M -place vectors with components correspoinding to digits or characters” [Knu73,
Section 6.3, p. 492]). Our proposed algorithm is simpler and achieves the same performance without
such assumption.

For a convex bivariate PLQ function, the full conjugate can be computed using the partial
conjugate, which is the conjugate with respect to only one of the variables. Partial conjugates
are also PLQ functions but not necessarily convex [Roc70], e.g. the partial conjugate of the l1
norm l1(x1, x2) = |x1| + |x2| is (l1)∗1(s1, x2) = ι[−1,1](s1) − |x2|. In [GJL14], a simpler algorithm
than [GL13] is proposed to compute the full conjugate of a bivariate PLQ function by using two
partial conjugates; both the full and partial conjugate algorithms achieve the same complexity.

Another algorithm, based on parametric programming, was developed in [Jak13] to compute the
conjugate of convex bivariate PLQ functions. It combines a Parametric Quadratic programming
(pQP) approach with computational convex analysis. The input and output PLQ functions are
stored using a list representation which is internally converted into a face-constraints adjacency
representation. While a planar graph was used to store the entities of a PLQ function, the adjacency
information of the entities was not stored. That algorithm computes the vertices, which requires a
log-linear time complexity in the worst-case. The time required to compute the remaining entities,
i.e. rays and segments, is log-quadratic because for every vertex, the algorithm loops through all
adjacent edges. However, the worst-case time complexity can be improved [Jak13, Theorem 5.7]
by using a half-edge data structure to store the vertices in order. Even with this improvement,
the algorithm still needs to detect duplicate entities and only achieves a log-linear worst-case time
asymptotic complexity.

A summary of the algorithms for computing the conjugate of a bivariate PLQ function is
presented in Table 1, which shows that no algorithm is known so far to compute the conjugate of a
bivariate PLQ function in linear worst-case time. We present such a new algorithm in the present
paper. To our knowledge, it is the first linear-time algorithm. We implement our algorithm in

2

Table 1: The worst-case time complexity of algorithms developed for computing the conjugate of
a bivariate PLQ function. All algorithms achieve linear worst-case space complexity.

Algorithm Source Time Data Structure Restriction

Full conjugate Log-linear Red-Black Tree

(geometric algorithm) [GL13] Linear Trie bounded bit length

Linear Hash table Expected time

Full conjugate [Jak13] Log-linear List
(parametric optimization)

Partial conjugate [GJL14] Log-linear Red-Black Tree
(geometric algorithm)

Scilab [Con94].
There are two steps to compute the conjugate: a local step that requires computing dual entities

one by one, and a global step that input those dual entities into the output data structure while
preventing duplicates. Our contribution is twofold. First, for the local step, we propose a simpler
approach that uses graph-matrix calculus [Goe08, GL11] instead of a geometric [GL13, GJL14] or
a parametric optimization [Jak13] approach. That improvement makes the algorithm simpler but
does not improve the worst-case time complexity. Our second contribution improves the global step
by using a neighborhood graph to build the output data structure instead of performing a search
using a binary search tree (Red-Black tree), a trie, or a hash table [GL13, GJL14, Jak13]. By using
additional information about the conjugate, we are able to avoid any search step completely and
achieve an optimal linear worst-case time complexity.

This paper is organized as follows. All the basic notations and definitions required to explain
our algorithm are included in Section 2. We include a detailed explanation of the data structure
we used in Section 3. Our proposed algorithm is explained with an example in Section 4. The
complexity of the algorithm is included in Section 5. Section 6 concludes the paper.

2 Preliminaries and Notations

First, we fix our definitions and notations. We note riC (resp. intC, coC) the relative interior
(resp. the interior, the convex hull) of a set C, and dom f the effective domain of a function
f : Rd → R ∪ {+∞} i.e. the set of points where f is finite.

Definition 2.1 (Conjugate function). Consider a proper convex lower semi-continuous (lsc) func-
tion f : Rd → R ∪ {+∞}. The conjugate of f , denoted by f∗, is defined as

f∗(s) = sup
x

(〈s, x〉 − f(x)).

Definition 2.2 (Polyhedral set). A polyhedral set C in Rd is the intersection of finitely many
half-spaces and is denoted C = {x ∈ Rd : ai

Tx ≤ bi} where ai ∈ Rd, bi ∈ R, i = 1, . . . ,m.

Definition 2.3 (Proper face). A face of a convex set C is a nonempty subset, F ⊆ C such that if
x1, x2 ∈ C, and for all θ, 0 < θ < 1 we have θx1 + (1− θ)x2 ∈ F then x1, x2 ∈ F . A face F that is
strictly smaller than C is called a proper face.

3

Definition 2.4 (Polyhedral decomposition [PS11, Definition 1]). The set C = {Ck : k ∈ K}, where
K is a finite index set, is called a polyhedral decomposition of D ⊆ Rd if it satisfies the following
conditions

(i) all of its members Ck are polyhedral sets,

(ii)
⋃
k∈K

Ck = D,

(iii) for all k ∈ K, dimCk = dimD,

(iv) riCk1 ∩ riCk2 = ∅, where k1, k2 ∈ K, k1 6= k2.

Definition 2.5 (Polyhedral subdivision [PS11, Definition 1]). The set C is a polyhedral subdivision
if C is a polyhedral decomposition and the intersection of any two members of C is either empty or
a common proper face of both.

Definition 2.6 (Piecewise Linear-Quadratic (PLQ) function [RW98]). A function f : Rd → R ∪
{+∞} is a Piecewise Linear-Quadratic (PLQ) function if its domain can be represented as the
union of finitely many polyhedral sets on each of which the function is either linear or quadratic.

The domain of a PLQ function can always be decomposed into a polyhedral decomposition and
on each set Ck, we note f(x) = fk(x) if x ∈ Ck, k ∈ K, where

fk(x) =
1

2
xTQkx+ qk

Tx+ αk (1)

with Qk a d× d symmetric matrix, qk ∈ Rd and αk ∈ R. For each piece of the PLQ function f , we
associate the function f̃k = fk + δCk

where δCk
is the indicator function defined as

δCk
=

{
0, if x ∈ Ck;
∞, if x 6∈ Ck.

Example 2.7. The l1 norm function,illustrated in Figure 1, is a PLQ function that will be used
throughout the paper as an example. Its domain is partitioned into four polyhedral sets on each of
which the function is linear,

l1(x1, x2) = |x1|+ |x2| =


x1 + x2, if − x1 ≤ 0,−x2 ≤ 0;

−x1 + x2, if x1 ≤ 0,−x2 ≤ 0;

−x1 − x2, if x1 ≤ 0, x2 ≤ 0;

x1 − x2, if − x1 ≤ 0, x2 ≤ 0.

Throughout this paper we assume that the input function is a proper convex lsc bivariate PLQ
function whose domain is a polyhedral subdivision.

Definition 2.8 (Entity [GL13]). Assume f is a PLQ function and ∪kCk = dom f is a polyhedral
subdivision that induces a partition of dom f . An entity is an element of the partition of the domain.
For f : R2 → R ∪ {+∞}, an entity is either a vertex, an edge or a face.

Definition 2.9 (Entity types [Jak13]). If the dimension of an entity is 0 then it is called a vertex.
If the dimension of an entity is 1 then it is called an edge and can be written

EΛ = {x ∈ Rd : x = λ1x1 + λ2x2, λ1 + λ2 = 1, λ = (λ1, λ2) ∈ Λ},

where x1 6= x2. In R2, an edge is classified as a

4

(a)

Face 2 Face 1

Face 3 Face 4

E2

E3 E4

E5E7

E6

E8E9
vertex 1 Ray 4

Ray 1

Ray 2

Ray 3

E1

(b)

Figure 1: (a) A bivariate PLQ function - the l1 norm function (b) Partition of domain of the l1
norm function.

(i) Line when Λ = R2.

(ii) Ray when Λ = R+ × R where R+ = {x ∈ R : x ≥ 0}.

(iii) Segment when Λ = R+ × R+.

If an entity has a nonempty interior then it is called a face.

Definition 2.10 (Extreme point, [Fan63]). An extreme point of a convex set C, is a point x ∈ C,
such that if x = θx1 + (1− θ)x2 with x1, x2 ∈ C and θ ∈ [0, 1], then x1 = x or x2 = x (or both).

Definition 2.11 (Subgradient, subdifferential [Roc70, RW98]). The subgradient of a function f at
a point x̄ ∈ dom f , is a vector s such that

f(x) ≥ f(x̄) + 〈s, x− x̄〉, ∀x ∈ Rd,

where 〈·, ·, 〉 denotes the standard dot product.
The subdifferential of a function f at a point x̄ is a closed convex set which is the collection of

all subgradients of f at x̄. It is noted

∂f(x) = {s ∈ Rd : f(x) ≥ f(x̄) + 〈s, x− x̄〉,∀x ∈ dom f}.

If x /∈ dom f by convention we set ∂f(x) = ∅.

A subgradient of the PLQ function f , defined by Equation (1), at a point x is

s = ∇fk(x) = Qkx+ qk. (2)

If the function is convex and differentiable at x ∈ int dom f , then ∂f(x) = {∇f(x)}. If a PLQ
function f is not differentiable at x then its subdifferential is

∂f(x) = co{∇fk(x) : for all k such that x ∈ Ck}.

5

Definition 2.12 (Planar graph). A graph G = (V, E) is said to be a planar graph if it can be drawn
in a plane with no two edges crossing each other except at a vertex to which they are incident.

The following property states that planar graphs are sparse i.e. they do not have many edges.

Proposition 2.13 ([AMO93, Property 8.7]). Let G = (V, E) be a connected planar graph with ne
edges and nv vertices. Assume nv ≥ 3. Then ne ≤ 3nv.

We include the proof for completeness. First, we recall Euler’s Formula.

Fact 2.14 (Euler’s Formula). For a connected planar graph G with nv vertices, ne edges and nf
faces, we have nv − ne + nf = 2.

Proof. In a planar graph G, the edges divide the plane into different regions and each region is
called a face of the graph G. The total number of edges bordering a face Fi is called the degree of

Fi. An edge separates 2 faces so
m∑
i=1

deg Fi = 2ne.

Since any face has degree deg Fi ≥ 3, we obtain 2ne =
m∑
i=1

deg Fi ≥ 3nf ; hence nf ≤ 2
3ne. Using

Euler’s Formula gives nf = 2 + ne − nv ≤ 2
3ne; so 1

3ne ≤ nv − 2, and ne ≤ 3nv − 6.

Since graph-matrix calculus is a fundamental part of our algorithm, we recall the following fact.
We note

gph ∂f = {(x, s) ∈ Rd × Rd : s ∈ ∂f(x)}

the graph of the subdifferential and Id the identity matrix.

Fact 2.15 (Goebel’s Graph-matrix calculus [Goe08, GL11]). Assume f : Rd → R ∪ {+∞} is a
proper lsc convex function, then

gph ∂(f∗) =

[
0 Id
Id 0

]
gph ∂f.

In other words, one can compute the graph of the subdifferential of the conjugate by applying
a linear transform to the graph of the subdifferential of the function. We will use the result to
associate a dual point (x, s, y∗) to any primal point (x, s, y) with y∗ = sTx − y. Note that the
result is vectorized, i.e. a program like MATLAB can compute the result using vector operations
resulting in increased efficiency on any modern computer.

3 Representation of a PLQ function

The input for our algorithm is a graph, called the entity graph, that stores specific information on
each entity. The entity graph is built from a proper convex lsc PLQ function. Each node of the
entity graph represents an entity of the PLQ function.

Let G = (V, E) be the entity graph where V is the set of nodes and E is the set of edges. Each
node represents an entity. When two entities are adjacent, we connect them using an edge. For
example, the domain of the l1 norm function is partitioned into four faces, four rays and one vertex,
which is illustrated in Figure 1 while Figure 2 is the corresponding entity graph. In addition, each
node of G stores the following information about its entity: the GPH matrix, the adjacent entities
and the entity type.

6

E9

E1E2

E4

E5

E6

E7

E8E3

Figure 2: Entity graph for the l1 norm function

3.1 GPH matrix

We use a GPH matrix to represent an entity Ck and its associated function fk [Luc13b]. For each
entity k, we select some points from Ck and compute the full subdifferential and the function value
at those points. Points in the GPH matrix representation are stored in order. Suppose we pick n
points to completely represent Ck. Its GPH matrix Gk is

Gk =


x1 x2 . . . xn
s1 s2 . . . sn
y1 y2 . . . yn
b1 b2 . . . bn
b∗1 b∗2 . . . b∗n


where xi ∈ Ck is the coordinate of a point, si is a subgradient of f at the point xi, and yi is the
value of f at xi. The points xi represent the polyhedral set Ck and are given in clockwise order.
Similarly, the points si describe the full subgradient ∂f(xi), which is a polyhedral set. The binary
flag bi (resp. b∗i) is used to identify whether xi (resp. si) is an extreme point. It equals 0 for an
extreme point and 1 otherwise.

In Rd, the dimension of the GPH matrix is (2d + 3)n, where n is the number of points. For
example, in R2, the dimension of a GPH matrix is 7n.

Example 3.1. Consider f(x1, x2) = (x2
1 + x2

2)/2 if x1 ≥ 0, x2 ≥ 0 and ∞ otherwise, whose
conjugate is

f∗(s1, s2) =


1
2(s2

1 + s2
2), if s1 ≥ 0, s2 ≥ 0;

1
2s

2
2, if s1 ≤ 0, s2 ≥ 0;

0, if s1 ≤ 0, s2 ≤ 0;
1
2s

2
1, if s1 ≥ 0, s2 ≤ 0.

Hence, the domain of the conjugate is composed of 9 entities: 4 faces, 4 rays, and 1 vertex. The
domain of the PLQ function f and the domain of its conjugate f∗ are shown in Figure 3.

To compute the GPH matrix for the entity E1 = {(x1, 0) : x1 ≥ 0}, a ray, we note that
E1 is adjacent to F1 = {x : x1, x2 ≥ 0} (associated with f1(x1, x2) = 1

2x1
2 + 1

2x2
2) and entity

F2 = {x : x1 ≥ 0, x2 ≤ 0} (associated with f2(x1, x2) =∞). Since dom f2 = ∅, ∂f2(x1, x2) = ∅.
We note that for any point x ∈ E1, ∂f̃1(x) = {0} × (−∞, 0]. Hence, we need 2 points to store

E1 (we have to select (0, 0) since it is an extreme point and we arbitrarily pick (1, 0) to represent the

7

x1

f1

∞

(1, 0)(0, 0)

x2

E1

(a) Primal graph. The ray E1 = {(x1, 0) : x1 ≥ 0} is
represented using extreme point (0, 0) and the arbitrar-
ily chosen nonextreme point (1, 0). It separates region
F1 associated with function f1 from region F2 associated
with f2 = +∞.

s1

(1, 0)(0, 0)

s2

(0,−1)

(b) Dual graph. The gray area represents ∂f(E1) =
∪x∈E1∂f(x) where ∂f(x) = {0} × (−∞, 0]; it is repre-
sented using the extreme point (0, 0) and the (arbitrarily
chosen) nonextreme points (1, 0) and (0,−1).

Figure 3: The domain of Function f from Example 3.1 (left) and the domain of its conjugate
(right). Blue dots represent extreme points while red dots represent non-extreme points.

direction) but 3 points to store its associated entity R+ × R− (again we have to select the extreme
point (0, 0) and arbitrarily pick (0,−1) and (1, 0) to represent the 2 directions). Consequently, a
GPH matrix G1 for E1 is

G1 =



1 0 0
0 0 0
1 0 0
0 0 −1

1/2 0 0
1 0 0
1 0 1


.

We note that storing extreme points and directions is sufficient to represent any polyhedral set.

Fact 3.2. (Representation of a polyhedral set [Roc70, Theorem 19.1, Corollary 19.1.1]) Assume
C = {x ∈ R2 : aTi x ≤ bi, i = 1, . . . ,m} is a polyhedral set with at least one extreme point. Then
the set of extreme points of C contains a finite number of elements x1, x2, · · · , xk. If C is bounded
then the set of extreme direction is empty. If C is not bounded then the set of extreme directions is
nonempty and has a finite number of elements d1, d2, . . . , dl. Moreover, x̄ ∈ C if and only if

x̄ =
k∑
i=1

λixi +
l∑

j=1

µjdj ,

where
∑k

i=1 λi = 1, λi ≥ 0, i = 1, . . . , k, µj ≥ 0, j = 1, . . . , l.

8

After we compute the conjugate f∗ and provided it with our data structure, the user may wish
to compute the quadratic formula associated with each entity; such computation can be performed
by interpolation as follow. Given the GPH matrix Gk, we compute the entity Ck and the associated
function fk by solving a linear system amounting to Hermite interpolation. Recall that, on each
piece of the domain the function f is quadratic and represented by Equation (1). The subgradient
of f at a point x is represented by Equation (2). For each x we get d equations from (2)(gradient
information) and 1 equation from knowing the function value. So for each x we have a total of
d+ 1 equations.

The number of unknowns to determine the symmetric matrix Qk is d+d−1+· · ·+1 = d(d+1)/2,
while it is d for qk and 1 for αk giving a total of d(d + 1)/2 + d + 1 = (d + 1)d/2 + 1 unknowns.
Consequently, the minimum number of points required to determine the function fk is (dd/2e+ 1).

In R2, we need to determine 6 unknowns. For each point we get 3 equations. So we need to
store at least two points to determine fk uniquely, although we may need to store more to represent
Ck.

Example 3.3. Note

fk(x) = y =
1

2

[
x1 x2

] [a b
b c

] [
x1

x2

]
+
[
q1 q2

] [x1

x2

]
+ α.

Equation (2) gives
s1 = ax1 + bx2 + q1, (3)

s2 = bx1 + cx2 + q2. (4)

Consider the entity E1 of Example 2.7, which is a face. Its GPH matrix G1 is

G1 =



1 0 0
0 0 1
1 1 1
1 1 1
1 0 1
1 0 1
0 0 0


.

We need 3 points to represent E1. The matrix G1 indicates that (0, 0) is an extreme point while
(1, 0) and (0, 1) are non extreme points.

To determine f1, the function associated with E1, we need to compute (a, b, c, q1, q2, α). From
Equation (3) we solve 1

1
1

 =

1 0 1
0 0 1
0 1 1

 ab
q1

 .
to obtain (a, b, q1) = (0, 0, 1). Similarly using (4) we compute (b, c, q2) = (0, 0, 1) and substituting
we get α = 0. We deduce f1(x1, x2) = x1 + x2.

In the GPH matrix representation, we store a point x multiple times when its subdifferential is
multi-valued [GL11, GL10].

Example 3.4. Consider the entity E5 of Example 2.7. It is a ray adjacent to two faces: E1 and
E4. Consider x = (0, 0). The face E1 is associated with f1(x) = x1 + x2 and the only subgradient
of f1 at x = (0, 0) is (1, 1). Similarly, the face E4 is associated with f4(x) = x1 − x2, and at

9

x = (0, 0), the subgradient is (1,−1). At any point on E5 (except (0, 0)) the subdifferential is
∂f(x1, x2) = {1} × [1,−1] = co{(1, 1), (1,−1)}. It has two extreme points (1, 1) and (1,−1). We
represents the GPH matrix G5 associated with E5 as

G5 =



1 0 0 1
0 0 0 0
1 1 1 1
1 1 −1 −1
1 0 0 1
1 0 0 1
0 0 0 0


.

Remark 3.5. In R2, we can recover the polyhedral set by computing the convex hull of xi where
i = 1, · · · , n (si in the dual). Note that we need at least one extreme point to recover the polyhedral
set, so we may split dom f further to make sure any entity Ck has at least one extreme point.

For our algorithm, we choose to store the extreme points in order as we move along the convex
hull in clockwise fashion. Since there are either 0 (bounded set), 1 (ray), or 2 (face) directions, we
store nonextreme points for unbounded sets as the first and last column.

In our Scilab implementation, we use two hypermatrices Hp and Hd to store the GPH matrices
of all entities in the domain of f and the domain of f∗ respectively. In Rd, the dimension of the
hypermatrix is N ×M ×nmax where N is the total number of entities, M = (2d+ 3) is the number
of rows of the GPH matrix and nmax = max{ni : i = 1, . . . , N} where ni is the number of columns
in the GPH matrix of entity i.

Example 3.6. The function l1 norm has nine entities and the maximum value of ni is 4 which is
attained for the vertex E9. So the dimension of the hypermatrix Hp used to store the entities of the
l1 norm is 9× 7× 4.

3.2 Adjacent entities

Each node of G stores its adjacent entities information in a sparse N×m matrix, called the neighbor
matrix, where N is the number of entities and m is the maximum degree of all vertices in the entity
graph.

Example 3.7. Consider Example 2.7, which has 9 entities. The vertex E9 has eight adjacent
entities which is the maximum. So we use a Neighbor Matrix of dimension 9 × 8. The entity E1

is adjacent to E5, E6 and E9. In the entity graph G, the node V1 which contains E1, stores the
indices of the adjacent entities i.e. 5, 6, 9. We represent the Neighbor Matrix of Example 2.7 as

NM =



5 6 9 0 0 0 0 0
6 7 9 0 0 0 0 0
7 8 9 0 0 0 0 0
5 8 9 0 0 0 0 0
1 4 9 0 0 0 0 0
1 2 9 0 0 0 0 0
2 3 9 0 0 0 0 0
3 4 9 0 0 0 0 0
1 2 3 4 5 6 7 8


.

Each row of this matrix contains the adjacency information of the corresponding entity. For exam-
ple, the index of all adjacent entities of E5 is found in the 5th row of NM .

10

1.GPH matrix

2. Adjacency information

3. Entity type

1.GPH matrix

2. Adjacency information

3. Entity type

1.GPH matrix

2. Adjacency information

3. Entity type

Hypermatrix

Neighbour Matrix

Entity type

Figure 4: Visualization of the relationship between the information stored for each entity and the
data structure recording that information.

3.3 Entity Type

The type of each entity is stored as a single integer whose meaning is listed in Table 2. We use an
1×N array T to store the type of all entities.

Table 2: Entity type.

Entity Type Flag

Vertex 1
Face 2
Line 3
Ray 4

Segment 5

Example 3.8. The array which stores the entity type of the l1 norm function is

T =
[
2 2 2 2 4 4 4 4 1

]
.

It indicates that entities E1 to E4 are faces, entities E5 to E8 are rays and E9 is a vertex.

We visualize our data structure in Figure 4. Consider a PLQ function with N entities where
each entity has a GPH matrix, adjacency information and entity type. We store all GPH matrices
in a hypermatrix, all adjacency information in a neighbor matrix NM and all entity types in an
array T .

11

4 Algorithm for computing the conjugate of a PLQ function

Consider f : R2 → R∪{+∞} where dom f has N entities. Algorithm 1 uses breadth-first search to
traverse the entity graph G. When Entity i is considered, we store the index of all adjacent entities
in an array denoted D of dimension 1×N . We traverse G according to the index stored in D. Note
that we will not store any duplicate index in D. To check whether the index of an entity is already
stored in D, we use a binary array I of dimension 1×N (Ii = 1 if entity i is already stored in D,
otherwise Ii = 0).

Algorithm 1 calls two subroutines: Algorithm 2 and Algorithm 3. Algorithm 2 computes the
dual entity Gd and type t of the primal entity Gp. It uses graph-matrix calculus on Line 6 to
obtain Gd while the remainder of the algorithm computes t. Algorithm 3 updates D, I, N̄ using
information from Eadj . It uses the binary array I to store unique indices in D and allows the main
loop of Algorithm 1 to pick the next non-visited index at Line 5 in Algorithm 1.

Algorithm 1 Computing the conjugate of a PLQ function in linear time

Require: Primal information: Hp (a hypermatrix which contains the GPH matrices of all entities),
Np
M (contains the adjacency information of all entities), Tp (contains the type of all entities).

1: function Compute PLQ Conjugate(Hp, N
p
M , Tp)

2: Initialize I with zero and set I(1) = 1
3: Initialize D with zero and set D(1) = 1 and N̄ = 1
4: for i← 1 to N do
5: j ← D(i)
6: Gp ← Hp(j,:,:)
7: [Gd, t]← Conjugate GPH(Gp)
8: Hd(j,:,:) ← Gd
9: Td(j)← t

10: if (N̄ < N) then
11: Eadj = Np

M (j, :)
12: Compute Index(Eadj , D, I, N̄)
13: end if
14: end for
15: Nd

M ← Np
M

16: return Dual information: Hd, N
d
M , Td

17: end function

Example 4.1. Applying Algorithm 1 to the l1 norm function whose entity graph is illustrated on
Figure 2, we start from the face E1 with GPH matrix

Gp1 =



1 0 0
0 0 1
1 1 1
1 1 1
1 0 1
1 0 1
0 0 0


,

and adjacent entities 5, 6, 9. We initialize D = [1, 0, 0, 0, 0, 0, 0, 0] and I = [1, 0, 0, 0, 0, 0, 0, 0], and

12

Algorithm 2 Computing the GPH matrix and the type of an entity

Require: Gp (the GPH matrix in the primal).
1: function Conjugate GPH(Gp)
2: // Compute Gd
3: x = Gp(1 : 2, :), b = Gp(6, :)
4: y = Gp(5, :),
5: s = Gp(3 : 4, :), b∗ = Gp(7, :)

6: The conjugate is Gd =


s
x

sTx− y
b
b∗


7: // Compute t
8: Pu = number of unique columns in {Gd(1 : 2, k) : k}
9: Pt = number of columns of Gd

10: if Pu = 1 and Pt ≥ 1 then
11: // Gd is a vertex
12: t = 1
13: else if Pu = 2 then
14: //Gd is an edge
15: Pb0 = number of elements in {Gd(6, k) : Gd(6, k) = 0}
16: Pb1 = number of elements in {Gd(6, k) : Gd(6, k) = 1}
17: if Pb1 = 2 then
18: // Gd is a line
19: t = 3
20: else if (Pb0 = 1 and Pb1 = 1) then
21: // Gd is a ray
22: t = 4
23: else if Pb0 = 2 then
24: // Gd is a segment
25: t = 5
26: end if
27: else if Pu ≥ 2 then
28: // Gd is a face
29: t = 2
30: end if
31: return Gd, t
32: end function

13

N̄ = 1. We apply Algorithm 2 to compute the conjugate of E1 and obtain

Gd1 =



1 1 1
1 1 1
1 0 0
0 0 1
0 0 0
0 0 0
1 0 1


.

Since Gd1 has a unique subgradient, we deduce it is a vertex and set its type to 1.
Next we check the adjacent entities of E1 using Algorithm 3.

Algorithm 3 Computing the index of adjacent entities

Require: Eadj (contains the indices of all adjacent entities of an entity), D (contains the indices
of the entities to traverse), I (indicates which entities are already included in D), N̄ (number
of nonzero elements in D).

1: function Compute index(Eadj , D, I, N̄)
2: Adj ← [extract the non zero elements from Eadj]
3: for i← 1 to size of(Adj) do
4: index← Adj(i)
5: if (I(index) == 0) then
6: I(index) = 1
7: N̄ ← N̄ + 1
8: D(N̄) = index
9: end if

10: end for
11: return D, I, N̄
12: end function

We find that the entity E1 is adjacent to the entities E5, E6, and E9. Then we check the
corresponding index of I and see that these entities have not been included in D yet. So we update
D, I and N̄ as

I =
[
1 0 0 0 1 1 0 0 1

]
,

D =
[
1 5 6 9 0 0 0 0 0

]
,

N̄ =4,

and loop to the next entity indicated in D, in this case Entity 5.
We traverse all nodes of G and update the array D and I accordingly, see Table 3.
Figure 5 shows the partition of the primal and the dual domain of the l1 norm function. The

mapping of the entities from the primal to the dual domain is presented in Table 4.

5 Complexity analysis

The space and time complexity of our algorithm is computed next.

14

Table 3: Iterations of Algorithm 1.

Iterations D I

Initialization 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 5 6 9 0 0 0 0 0 1 0 0 0 1 1 0 0 1

2 1 5 6 9 4 0 0 0 0 1 0 0 1 1 1 0 0 1

3 1 5 6 9 4 2 0 0 0 1 1 0 1 1 1 0 0 1

4 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

5 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

6 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

7 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

8 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

9 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

Table 4: Mapping of the primal entity to the dual entity for the l1 norm function.

Primal entity Type Dual entity Type

E1 face 1 E1
′ vertex 1

E2 face 2 E2
′ vertex 2

E3 face 3 E3
′ vertex 3

E4 face 4 E4
′ vertex 4

E5 ray 1 E5
′ segment 1

E6 ray 2 E6
′ segment 2

E7 ray 3 E7
′ segment 3

E8 ray 4 E8
′ segment 4

E9 vertex 1 E9
′ face 1

E2

E3 E4

E5E7

E6

E8

E9

E1

(a)

E2 E1

E3 E4

E5

E6

E7

E8

E9

(b)

Figure 5: (a) Partition of dom f (b) Partition of dom f∗.

15

5.1 Space complexity

Proposition 5.1. Consider a proper convex lsc bivariate PLQ function f : R2 → R ∪ {+∞} with
N entities. The worst-case space complexity for computing the conjugate of f using Algorithm 1 is
O(N2) but can be improved to O(N) using a sparse matrix data structure.

Proof. In Algorithm 1, we use two hypermatrices (Hp and Hd) to store the input and output GPH
matrices, a Neighbor matrix NM to store the adjacency information, two arrays (Tp and Td) to
store the type of entities, an array D to store the indices to traverse and a binary array I.

The space complexity of our algorithm mainly depends on the size of the hypermatrix and the
Neighbor matrix. Recall that the size of the hypermatrix H is N ×M × nmax where N is the
total number of entities, M = (2d + 3) is the number of rows of the GPH matrix and nmax is the
maximum number of columns in the GPH matrix. If we assume d is constant, the worst-case space
complexity of H is O(N).

In addition, we use four arrays: Tp, Td, D and I. In the worst-case, the space required to store
each array is O(N).

In Algorithm 1, we use a planar graph as the entity graph. Recall that the sum of the degrees
of the vertices equals twice the number of edges and the dimension of the Neighbor matrix NM

is N × m where m is the maximum degree of all vertices. For N entities, in the worst-case the
maximum degree of the vertices is (N − 1). So the worst-case space complexity of NM is O(N2).

Finally, using a sparse matrix data structure we only store the nonzero elements of NM , which
according to Proposition 2.13, amounts to O(N).

Remark 5.2. An adjacency list data structure would also result in a O(N) space complexity; the
quadratic space complexity of our implementation is a Scilab limitation.

5.2 Time complexity

Proposition 5.3. The worst-case time complexity for computing the conjugate of a proper convex
lsc bivariate PLQ function f with N entities using Algorithm 1 is O(N).

Proof. The time complexity of our algorithm comes from the following parts

(i) Extracting N GPH matrices from the hypermatrix Hp according to the index stored in D and
storing them in E,

(ii) Computing the conjugate of E,

(iii) Checking the adjacency information of E and updating the arrays D and I,

(iv) Storing the GPH matrix containing the conjugate of E in Hd.

Task (i) amounts to accessing an index in hypermatrix Hp, which takes O(1); the total time
required to access N elements of Hp is O(N). Task (ii) involves computing the conjugate and takes
O(N). Task (iii) involves storing the index of adjacent entities in the array D. Recall that the
indices stored in D are used to traverse the entity graph. In this part, when storing an index in D
we need to check whether the index is already stored in D or not. In the worse-case, searching the
index of an entity in an array takes O(N) time. For N entities, the time for storing all indices in D
would then be O(N2). However, we use a binary array I to determine whether an index is already
stored in D. Accessing a position of I takes constant time; so the time complexity for N entities
reduces to O(N). Finally, task (iv) requires accessing a position of hypermatrix Hd and storing
the output GPH matrix in Hd, which is performed in linear time like Task (i). Consequently, the
overall time complexity for Algorithm 1 is linear.

16

y = 0.0034x - 0.5095

R² = 0.9991

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e

Total entity

Figure 6: The time complexity for a function approximating (5) with a domain partitioned into a
grid.

5.3 Performance Comparison

Consider the following additively separable PLQ function

f(x1, x2) = x4
1 + x4

2. (5)

We set f1(x1) = x4
1 and f2(x2) = x4

2. We use the plq build function from the CCA package [Luc13a]
to compute a quadratic approximation of f1 with an univariate PLQ function. Then we combine
the approximation to obtain an approximation of the bivariate function f .

Next we compute all the entities and represents them using GPH matrices. We build the
hypermatrix Hp and compute the neighbor matrix NM . Then we apply our algorithm and compute
an approximation of

f∗(s1, s2) = f∗1 (s1) + f∗2 (s2),

where f∗1 (s1) = (3
4)

4
3 s1

4
3 and f∗2 = f∗1 . We increase the number of pieces by increasing the size of

the grid and measure the time for computing the conjugate of f . Figure 6 illustrates the linear
time complexity of our algorithm.

We compare the performance of our proposed algorithm with the algorithm developed in [Jak13]
on Figure 7. For the algorithm developed in [Jak13], a linear least-square regression results in R2 =
0.91 vs. R2 = 0.99 for a quadratic regression i.e. the implementation tested on the specific example

17

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

0 500 1000 1500 2000 2500 3000 3500

T
im

e

Total Entity

Total Entity vs Time
Previous Algorithm

Proposed Algorithm

Figure 7: The time complexity for computing the conjugate of the a PLQ function approximating
(5) using the algorithm from [Jak13] and the proposed algorithm .

runs in quadratic time. (We use the standard notation R2 for the coefficient of determination that
measures how close the data is to the regression line.) By contrast, a linear least-square regression
fitted to the computation time of our algorithm gives R2 = 0.99 thereby validating our linear
computation time.

We run all numerical experiments on a Core(TM) i5 processor, 64 bit OS, 8.00 GB RAM, 2.40
GHz HP Pavilion x360 laptop, running Windows 10. The implementation of the algorithm is done
using Scilab version 5.5.2. We performed the numerical experiment several times and obtained
similar results each time.

The implementation of the algorithm from [Jak13] that we tested was a pure Scilab code that
did not include the improvement of using the half-edge data structure provided in an external
library. At the price of considerable complexity and a loss in portability, the [Jak13] algorithm can
be implemented in log-linear time. However, our new algorithm would still be faster (linear-time)
and much simpler.

6 Conclusion and future work

We proposed the first linear-time algorithm to compute the conjugate of a proper convex lsc bivari-
ate PLQ function. That performance was achieved by taking advantage of adjacency information.

18

Further simplification was made by using graph-matrix calculus. An example provides evidence of
the significant speedup of our algorithm compared to previous work.

Future work includes developing graph-matrix calculus based algorithms for computing other
convex transforms like the proximal average, the Moreau envelope, the addition and the scalar
multiplication for bivariate PLQ functions. The implementation for functions defined on Rd would
also be of interest.

Acknowledgements

This work was supported in part by Discovery Grants #298145-2013 (Lucet) from NSERC, and
The University of British Columbia, Okanagan campus. Part of the research was performed in the
Computer-Aided Convex Analysis (CA2) laboratory funded by a Leaders Opportunity Fund (LOF,
John R. Evans Leaders Fund – Funding for research infrastructure) from the Canada Foundation
for Innovation (CFI) and by a British Columbia Knowledge Development Fund (BCKDF).

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows. Prentice
Hall Inc., Englewood Cliffs, NJ, 1993. Theory, algorithms, and applications.

[CGA] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

[Con94] Scilab Consortium. Scilab, 1994. http://www.scilab.org.

[Fan63] K. Fan. On the Krein-Milman theorem. Convexity, 7:211–220, 1963.

[GJL14] Bryan Gardiner, Khan Jakee, and Yves Lucet. Computing the partial conjugate of
convex piecewise linear-quadratic bivariate functions. Comput. Optim. Appl., 58(1):249–
272, 2014.

[GL10] Bryan Gardiner and Yves Lucet. Convex hull algorithms for piecewise linear-quadratic
functions in computational convex analysis. Set-Valued Var. Anal., 18(3–4):467–482,
2010.

[GL11] Bryan Gardiner and Yves Lucet. Graph-matrix calculus for computational convex analy-
sis. In Heinz H. Bauschke, Regina S. Burachik, Patrick L. Combettes, Veit Elser, D. Rus-
sell Luke, and Henry Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, volume 49 of Springer Optimization and Its Applications,
pages 243–259. Springer New York, 2011.

[GL13] Bryan Gardiner and Yves Lucet. Computing the conjugate of convex piecewise linear-
quadratic bivariate functions. Math. Prog., 139(1-2):161–184, jun 2013.

[Goe08] Rafal Goebel. Self-dual smoothing of convex and saddle functions. J. Convex Anal.,
15(1):179–190, 2008.

[Her16] Cristopher Hermosilla. Legendre transform and applications to finite and infinite opti-
mization. Set-Valued Var. Anal., 24(4):685–705, 2016.

19

[HUL93] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization
Algorithms II, volume 306 of Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1993. Vol II:
Advanced theory and bundle methods.

[Jak13] Khan Md. Kamall Jakee. Computational convex analysis using parametric quadratic
programming. Master’s thesis, University of British Columbia, 2013.

[Knu73] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Series in computer-science and information processing. Addison-Wesley, 1973.

[Luc06] Yves Lucet. Fast Moreau envelope computation I: Numerical algorithms. Numer. Algo-
rithms, 43(3):235–249, November 2006.

[Luc10] Yves Lucet. What shape is your conjugate? A survey of computational convex analysis
and its applications. SIAM Rev., 52(3):505–542, 2010.

[Luc13a] Yves Lucet. Computational Convex Analysis library, 1996-2013.

[Luc13b] Yves Lucet. Techniques and open questions in computational convex analysis. In Com-
putational and analytical mathematics, volume 50 of Springer Proc. Math. Stat., pages
485–500. Springer, New York, 2013.

[PS11] Panagiotis Patrinos and Haralambos Sarimveis. Convex parametric piecewise quadratic
optimization: Theory and algorithms. Automatica, 47(8):1770 – 1777, 2011.

[PW16] C. Planiden and X. Wang. Strongly convex functions, moreau envelopes, and the generic
nature of convex functions with strong minimizers. SIAM J. Optimiz., 26(2):1341–1364,
2016.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[RW98] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer-Verlag, Berlin, 1998.

20

	Introduction
	Preliminaries and Notations
	Representation of a PLQ function
	GPH matrix
	Adjacent entities
	Entity Type

	Algorithm for computing the conjugate of a PLQ function
	Complexity analysis
	Space complexity
	Time complexity
	Performance Comparison

	Conclusion and future work

