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Abstract: Device-to-device (D2D) communication is becoming an increasingly important technology
in future networks with the climbing demand for local services. For instance, resource sharing in
the D2D network features ubiquitous availability, flexibility, low latency and low cost. However,
these features also bring along challenges when building a satisfactory resource sharing system in the
D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D
computational resource sharing system since mutual communication may not be stably available
due to user mobility. A previous endeavour has demonstrated and proven how connectivity can
be incorporated into cooperative task scheduling among users in the D2D network to effectively
lower average task execution time. There are doubts about whether this type of task scheduling
scheme, though effective, presents fairness among users. In other words, it can be unfair for
users who contribute many computational resources while receiving little when in need. In this
paper, we propose a novel blockchain-based credit system that can be incorporated into the
connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network.
Users’ computational task cooperation will be recorded on the public blockchain ledger in the system
as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at
the base station is responsible for scheduling cooperative computational tasks based on user mobility
and user credit balance. We investigated the performance of the credit system, and simulation results
showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a
major enhancement.

Keywords: D2D communication; blockchain; fairness; connectivity-aware

1. Introduction

Advances in computing technology are transforming the way people execute computational tasks
for daily applications like stock trading [1], gaming [2], etc. Usage of traditional desktop computers for
large computational works has been expanded to various ways of computing such as cloud computing.
For example, cloud gaming platforms PlayStation Now [3] and GameFly [4] execute most gaming
computational tasks on the cloud, which frees gamers from having to update their computing devices
frequently. Stock market investors are now able to manipulate stock trading on their mobile devices by
offloading most computational tasks to the cloud [1].

In recent years, with the explosion of smart mobile devices and their capacities in terms of
computing power, storage, data transmission efficiency, etc., the concept of fog computing [5] and
D2D offloading has been facilitated to overcome high cloud service costs and mobility constraints.
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Although it is widely adapted contemporarily with offloading of computational tasks to the cloud as
the fog does not have as high a “density” (i.e., calculation and storage capacities), fog computing and
D2D offloading prevent high carrier data transmission cost and cloud service costs, and its presence
in users’ vicinity can prevent high communication latency. Intermittent access to cellular data and
non-seamless wireless coverage in the mobile environments are also discouraging factors for users to
completely rely on the cloud. Faster and more responsive task cooperation and offloading in the D2D
network becomes even more necessary in extreme situations like earthquake response.

The work in [6] shows that despite increasing usage of mobile devices in our daily lives, most of
the computational power of these smart devices is still in the idle state and wasted, e.g., only email
notification listeners and other low consumption applications run in the background for most of the
time. If we can take advantage of the computational power of these idle devices together with their
storage and data layover abilities, cost-effective task cooperation in D2D networks is highly feasible.
Such a task cooperation and offloading context was first presented in Serendipity [7], a system that
allows a mobile initiator to utilize computational resources available in other mobile systems in its
surroundings to accelerate computing and save energy, whose performance is further analysed in [8]
to see significant potential gain in both execution time and device energy. The authors of [9] proposed
a mobile application that enables the cooperation of computationally-intensive applications by making
use of computational powers of mobile devices in a nearby cloudlet.

While many previous works tried to exploit how idle computational power can be effectively
utilized in D2D networks, the mobility aspects of users, especially the task cooperation scheduling in
mobile environments, still remain open issues. Previous work in [10] illustrated a computational task
cooperation system in the D2D network that provides users with significantly lowered task execution
time without turning to cloud services that may introduce high monetary costs. However, this work
does not consider the incentive for a user to share the computational resource of her/his device even
though her/his device might be idle, neither is the fairness among users considered.

The work in [11] presented a reputation system incorporated with an ad hoc cloud gaming
system. Without such a reputation system, unfairness will present as the players with higher
network quality will be sacrificing significantly higher bandwidth that may lead to much higher
monetary cost than those with lower network quality. In a D2D computation offloading system,
similarly, unfairness may also result if users who contribute many computational resources are
offered little, or even none, when in need. Therefore, it becomes important for us to build a
reliable credit system on top of our computational resource sharing system to provide incentives
for users to share their spare computational resources and enforce fairness while not affecting
system effectiveness too much. Among various possible ways to implement a credit system for
our computational resource sharing system, the recent upsurge of attention toward de-centralized
blockchain technology has inspired us. Blockchain technology features de-centralized autonomy,
anonymity, transparency, immutability, etc. [12], naturally meeting our system needs and becoming
the choice as the basis of our credit system. In this work, we will be the first to propose a task
outsourcing and scheduling scheme that is probabilistically based on the mobility of smart mobile
device users in a D2D network, with a blockchain-based credit system to enforce fairness among users
in the system.

The remaining parts of this work are organized as follows. Section 2 conducts a review on related
works. Section 3 presents the system overview, and Section 4 models the proposed system. Section 5
illustrates the problem formulation of our proposed scheme, and Section 6 shows corresponding
experimental evaluation results. Section 7 discusses the benefits and limitations of the proposed
scheme. Section 8 concludes our work in this paper.
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2. Related Work

2.1. Abundance of Spare Resources in D2D Networks

To relieve the burden of wireless cellular networks and the cloud, mobile data and computational
traffic can be delivered through other means to the users (e.g., WiFi, D2D communications). This is
known as mobile data and computation offloading. Several works have identified the benefits of
WiFi data offloading [13–15]. The work in [13] showed that deferring the uploading tasks until WiFi
access points are available can save the energy of smartphones. By jointly considering the power
consumption and link capacity of wireless network interfaces, Ding et al. in [14] studied the criterion
of downloading data from WiFi, as well as the WiFi access point selection problem.

However, mobile data traffic cannot always be offloaded to WiFi networks since the number
of open-accessible WiFi access points is limited [14], just as the availability of affordable cloud
computing services may be quite limited [5]. To fully exploit the benefits of data and computation
offloading, mobile traffic and computational works can also cooperate in D2D networks. Specifically,
mobile devices in close proximity can be connected via WiFi Direct [16], Bluetooth, etc., in a D2D
manner for data and task cooperation between users. This is referred to as D2D data and computation
offloading. The works in [7,8] explore task cooperation of mobile devices in the D2D network
and showed that significant execution time and device energy can be saved. The authors of [17]
presented a framework for opportunistic storage and processing in the mobile cloud. The work in [18]
considers D2D technologies as candidates to deal with most local communications and time-sensitive
computations in the near future. A D2D network should make use of Bluetooth, WiFi-Direct and
other protocols to more efficiently provision services to applications such as video gaming and
image processing.

It has been shown in [6] that the computational power of our smart mobile devices is idle and
wasted for most of the time before these devices become outdated and replaced with newer models.
The work in [19] presents that contemporary smart devices (mostly quad-core devices) use less than two
cores on average in their non-idle states with the consideration of simultaneously running applications
in the background, not to mention the computing power that these devices can provide in their idle
states. It is generally true that building more data centres can provision more computational power
for end users. However, a data centre needs to be built and maintained at a very high cost, which
encourages us to exploit the task cooperation possibilities in D2D networks bearing users’ mobility.

Considering the mobile nature of smart device users in ad hoc networks, Wang et al. in [20]
proposed a metric, expected available duration (EAD), based on the mobility and similarities of users’
interests in the D2D network. EAD indicates the statistically determined expected duration of each
user’s files of interest in the D2D network. With this metric, this work presents an optimization and
performance promotion of a file sharing system in the D2D network to reduce the expensive data
charge from cellular carriers and download more data from neighbours.

The work in [11] presented a reputation system incorporated with an ad hoc cloud gaming
system that can reduce system players’ overall bandwidth consumption while keeping fairness among
them, without which players with higher network quality will be sacrificing significantly higher
bandwidth. Similarly, if a user in our D2D computation offloading system can choose not to share
spare computational resources while only receiving help from peers, it is unfair for those helpers
contributing their computational resources. Consequently, we need to add a reliable credit system for
our computational resource sharing system to enforce fairness among users, but not affecting system
effectiveness too much. Multiple candidates are available for building a credit system, among which
de-centralized blockchain technology seems to meet our system needs most.

2.2. Fairness and Blockchain

The authors in [21] presented a blockchain-based reputation system framework for joint cloud
computing services, which evaluates the credibility of cloud service vendors in terms of service quality.
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The blockchain-based information database stores vendor reputation values in a distributed manner
and prevents the reputation values from being artificially tampered with, which benefits agnostic
end users. The recent upsurge of attention toward de-centralized blockchain technology resulted
because traditional credit systems like centralized banking and membership services are losing user
confidence because users are agnostic and not truly in charge of their accounts. For example, if the
cloud service vendor in [21] can easily tamper with it and increase its reputation value, the system
is not trustworthy with respect to its customers. To build up a fair and trustworthy computational
resource sharing system, blockchain technology naturally becomes the key cornerstone of our credit
system. First, the blockchain needs to be maintained by mining (to be explained below), which can
be performed by any of our system nodes. Second, the blockchain is available to all users, which
is transparent and immutable so that users are in charge of their own accounts and transactions.
Third, the transactions on the blockchain are anonymized, which provides user privacy, just to name a
few. In this section, we describe the key concepts related to blockchain technology in general.

• Blockchain: Blockchain is a distributed data structure consisting of a chain of blocks. Blockchain
works as a distributed database or a public ledger that keeps records of all transactions in the
blockchain network. The transactions are time-stamped and listed into blocks where each block is
identified by a unique cryptographic hash. Each block links to it previous block by referencing
the hash value of the previous block, forming a chain of blocks and thus called a blockchain.
A blockchain is maintained by a network of nodes, and every node records the same transactions.
The blockchain is publicly accessible among the nodes in the blockchain network. Figure 1
illustrates the structure of a blockchain.

Figure 1. Typical blockchain structure.

• Blocks: The transactions in a blockchain network are bundled into blocks. These blocks are
executed and maintained by all nodes in the network. A block consists of its hash, the hash of
its previous block, a nonce that is used to avoid malicious nodes from flooding the network,
a transaction list and a timestamp. In order to save storage space, the transaction list is typically
stored in a Merkel root [22] format in each block. Only one of the conflicting transactions
(e.g., transactions trying to double spend) will be taken as a part of the block. The blocks are
added to the blockchain at regular intervals by miners.

• Transactions: A transaction is between two nodes in the blockchain network. Each transaction
mainly includes the addresses of the sender and recipient, as well as a transaction value. In a valid
transaction, the transaction value is transferred from the sender to the recipient. All transactions
are signed by the sender’s private key as a digital signature. Transactions are chosen and included
in the blocks in the mining process. All transactions on a blockchain can be accessed by all
participant nodes in the network.

• Mining: Transactions in a blockchain network are verified in a process called mining. Incentives,
in the form of credit or crypto-currency, are provided to participating nodes to perform the mining
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operations. Nodes participating in mining are called miners. A miner typically is required to select
new transactions from a transaction pool, include them in a candidate new block and perform a
mathematical computation to determine an appropriate nonce for the new block. This process of
performing the mathematical computation is referred to as “proof of work” (PoW) [23], which is
mainly used to prevent malicious nodes from arbitrarily adding new blocks to the blockchain
or “flooding” the network. The first miner to come up with a valid nonce and thus a valid new
block gets the block reward. Miners produce blocks that are then verified by other miners in the
network for validity. Once a new winning block is selected, all other miners update to that new
block. The longer the blockchain becomes, the harder for a malicious node to tamper with it.
Therefore, mining is typically the key to keep data safety in blockchain applications. While mining
is prevalent in contemporary blockchain applications, it is not necessary, and the discussion of
this remains beyond the scope of this work.

3. System Overview

Our system consists of two major parts: the cooperative task scheduling to enhance effectiveness
(e.g., average task execution time) among users and a blockchain-based credit system to provide
fairness and incentives to users. Specifically, as the recent upsurge of interest in de-centralized
blockchain technology suggests, traditional credit system like centralized banking and membership
services are losing user confidence because users are not truly in charge of their accounts. The central
power is able to modify user credit or create credit out of nothing, which can lead to user losses.
Consequently, our credit system will be empowered by blockchain technology to enforce fairness and
other benefits, e.g., autonomy and anonymity, among users, which effectively enhances user QoE in a
fair manner.

3.1. Cooperative Task Scheduling and Roles of System Users

As shown in Figure 2, our D2D network consists of users with smart devices and a supernode at
the base station (BS). Communications between user devices are through direct D2D links like Bluetooth
or WiFi Direct, and communications between user devices and the supernode (e.g., reporting mobility
and task information) are through a cellular link like 4G or LTE. D2D task cooperation is coordinated
by the supernode bearing the mobility and task information among users in mind. In this paper,
we assume that some necessary information related to a properly sliced task piece (including some
overhead and necessary execution files, which are assumed to be of limited size not comparable to large
multimedia content) will be sent from a requester to a helper, and the calculation result (which is even
smaller) will be sent back to the requester once the helper has finished. The information exchanged
between a user node and the supernode will be of a much more limited size, whose transmission time
can also be negligible compared to the cooperative task execution time. More importantly, the D2D
task cooperation is coordinated and assigned by the supernode at the base station, meaning that each
helper is assigned specific time slots (to be elaborated in Section 5) and a corresponding amount of
work to help each requester. Thus, we do not emphasize the difficulty of assigning dedicated in-band
channels for the D2D communications in our system. Instead, we emphasize the difficulty of a user
executing her/his own task in a timely manner, and since our system is not proposed for content
sharing that is bandwidth significant, we assume that D2D communications between user nodes use
dedicated in-band channels assigned by the supernode. Hence, mutual interference is not emphasized
in our work.

At any moment, we may further divide system users into computational resource users and
miners. Miners will write transactions into the main blockchain and grant credits for keeping
our blockchain-based credit system safe. Computational resource users consist of requesters and
helpers: requesters in an task period are devices in need of computational assistance, and helpers are
devices that may offer help requesters. Each successful computational assistance will be recorded
as a transaction and will be written into the blockchain. Therefore, a requester will need to pay
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the corresponding amount of credit to a helper after receiving the computational assistance from
that helper.

Figure 2. Task scheduling in the D2D network.

3.2. Supernode Coordination and Working Process

In our system, the supernode will not only assign task assignments to devices in the D2D
network, it will also work as a coordinator between a requester and worker pair by acknowledging
their cooperation work. As shown in Figure 2, the step-by-step working process is as follows:
(1) A requester notifies the supernode at the BS about the need for a cooperative task T; (2) After
calculation and analysis of the system conditions, the supernode will assign, say, 30% of cooperative
task T to one helper and 70% of T to another helper around the requester. The supernode will notify
the requester and each related helper about the cooperation assignment information. The requester
then will send corresponding task portions to each assigned helper; (3) Each helper executes the task
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portion on the device; (4) Upon completion, each helper will notify the supernode and send back the
result to the requester; (5) When the requester gets back the computational result from a helper, she/he
will notify the supernode about the successful reception of the result; (6) A transaction of the requester
paying each related helper is confirmed by all three: the requester, the helper and the supernode.
All three of them will store this transaction into their own transaction pool, waiting for a miner to put
this transaction into the blockchain.

3.3. Transaction Pool and Mining

After cooperation is performed between a requester and a helper, both of them will have an
identical transaction generated. They will store this transaction into their own transaction pool on their
own device and also broadcast to nearby peers. Each peer will then store the transaction into her/his
own transaction pool upon reception of the broadcast transaction. Note that the supernode has the
information of all transactions in the D2D network, so the supernode holds the publicly assessable
full transaction pool for all users in the network. The storage space of the transactions is negligible.
Figure 3 is a typical part of the blockchain of our system. Each block is identified with a 256-bit unique
hash value and links to its previous block. Each block contains transactions, also identified with a
256-bit unique hash value, that contain information about the cooperative work in the D2D network.
For example, Transaction 1 in the left block is recording that User 1 paid 2000 credits to User 2 for
receiving the corresponding amount of helper work from User 2. As a safety feature, each transaction
needs to point to the source of the income of the credit, as a proof of enough credit. For instance,
Transactions 1 and 2 at the right block both point to Transaction 1 in the left block since this is an
indication that User 2 does have enough credit to pay the total of 1600 credits in the right block.
Similarly, Transaction 3 at the right block also points to Transaction 2 in the left block, indicating that
User 4 has enough credit. Note that for demonstration purposes, users are labelled as U1, U2, etc.,
in the figure. In fact, these users are actually represented as 256-bit unique digital addresses to provide
anonymity. Users are also able to change their addresses to further enhance anonymity.

Figure 3. Typical part of the blockchain of our system.

A user will switch between a helper and a miner according to whether task cooperation is needed
in the surrounding area. When a device is assigned work to help a requester in the D2D network,
the device will switch to helper mode; otherwise, i.e., when no task is assigned to assist a helper in the
current period, the device will switch to miner mode in search for a mining possibility. The debate
between how secure the mining algorithm is compared to those used in Bitcoin or Ethereum remains
beyond the scope of this work.
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4. System Modelling

In this section, the basic system settings, connectivity model, dynamic program slicing,
task cooperation scheduling background and the credit balance system that is blockchain based
are illustrated.

4.1. Basic System Settings

Apart from the set of all miners in the D2D network, there is a computational resource user set U
consisting of u users in our system, where in each task period p, u users are requesters and the rest
h = u− p are helpers. We divide the user set U into two member sets, namely requester set P and
helper set H. There are p requesters in P and h helpers in H, where p ≥ 1 and h ≥ 1. Each requester
is denoted as pi ∈ P, and each helper is denoted as hj ∈ H, where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}.
The smart device of a requester pi or helper hj is subject to a D2D communication range rp

i or rh
j ,

respectively, above which D2D direct link connection is not possible. cp
i or ch

j is used to denote the
available computational power of a requester or helper, indicating how fast or how much computation
the smart device is able to handle per second for our cooperative scheme. Typically, this type of
computational power is represented by how many clock cycles the device can run per second, 2.6 GHz
for example. At any task period Ψ ≥ 0, each requester pi initializes a task of complexity Ti,Ψ in clock
cycles (indicating how many clock cycles need to be run to get the result of the task) with its maximum
wait time ti,Ψ in seconds (indicating the maximum time pi will wait for the result until he/she has to
do the assigned uncompleted task slices by himself/herself).

4.2. Connectivity Model

Assuming the connection between a requester pi and a helper hj to be symmetric, we denote the
random variable Bi,j(τ) = 1 (or Bi,j(τ) = 0) to represent that pi and hj are connected (or disconnected)
at time τ ≥ 0. Moreover, let random variable S1

i,j denote the sojourn time that pi and hj are in the

connected state and S0
i,j denote that in the disconnected state. We consider that both S1

i,j and S0
i,j

follow the exponential distribution with parameters λi,j and µi,j, respectively. Therefore, we have the
cumulative distribution functions (CDF) of S1

i,j and S0
i,j given by:

Pr(S1
i,j ≤ τ) = 1− eµi,jτ , (1)

and:
Pr(S0

i,j ≤ τ) = 1− eλi,jτ . (2)

We represent the continuous time Markov chain (CTMC) model with two states illustrated in
Figure 4 and let Pi,j(τ) denote the 2× 2 matrix with entries pxy

i,j (τ) = Pr(Bi,j(τ) = y|Bi,j(0) = x), where
x, y ∈ {0, 1}. Referring to [24], we have the solution of Pi,j(τ) given by:

Pi,j(τ) =

 λi,j
ψ +

µi,j
ψ κ

µi,j
ψ −

µi,j
ψ κ

λi,j
ψ −

λi,j
ψ κ

µi,j
ψ +

λi,j
ψ κ

 , (3)

where κ = e−(µi,j+λi,j)τ and ψ = µi,j + λi,j.
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Figure 4. Continuous-time Markov chain for the connected-disconnected transition between pi and hj.
Let 1/0 represent the state in which pi and hj are connect/disconnected. The transition rates from zero
to one and from one to zero are given by λi,j and µi,j, respectively.

The parameters µi,j and λi,j used in (3) for pi and hj can be obtained by maximum likelihood
estimation (MLE) on each of them. Specifically, without loss of generality, consider that pi and hj were
disconnected initially, and the connectivity between pi and hj has changed m times before the current
time τ. Therefore, pi and hj have recorded a vector of time ~τi,j = (τ1, ..., τm) ∈ Rm

+, where each element
τz

i,j < τ(z = 1, ..., m) represents the time when the connectivity between pi and hj changed. Assume
pi and hj are currently connected (then, m must be an odd number, and the case that pi and hj are
currently disconnected can be analysed via following approach similarly); µi,j and λi,j estimated by
MLE up to current time τ are given by:

µ̂t
i,j =

m− 1

2 ∑
m−1

2
z=1 (t

2z
i,j − t2z−1

i,j )
, (4)

and:
λ̂t

i,j =
m− 1

2 ∑
m−1

2
z=1 (t

2z+1
i,j − t2z

i,j )
. (5)

Because the connections between pi and hj are assumed symmetric, the same results are obtained
on pi and hj. For the people who study or work together, ~τi,j is kept being recorded by both pi and
hj as the system time increases. According to (4) and (5), µ̂t

i,j and λ̂t
i,j will converge. We denote

µ̂i,j = limt→∞ µ̂t
i,j and λ̂i,j = limt→∞ λ̂t

i,j, which are the MLE of µ̂i,j and λ̂i,j, respectively. Given the
connection station Bi,j(τ) between pi and hj at time τ, the probability that they are connected at future
time τ′ ≥ τ is given by:

Pr(Bi,j(τ
′) = 1|Bi,j(τ)) =


λi,j−λi,je

−(λi,j+µi,j)(t
′−t)

λi,j+µi,j
, Bi,j(τ) = 0,

λi,j+µi,je
−(λi,j+µi,j)(t

′−t)

λi,j+µi,j
, Bi,j(τ) = 1.

(6)

4.3. Dynamic Program Slicing

In general, computational tasks cannot be arbitrarily sliced into different parts. However,
many dynamic program slicing techniques are facilitating our need for the distribution of tasks [25].
For example, MapReduce [26] allows Google to slice and run an average of one hundred thousand
MapReduce jobs every day from 2004–2008. Without the availability of dynamic program slicing,
a large load of tasks may not be sent back to the requester in a timely manner, and this increases the
risk of the helper being out of the device communication range of the requester on completion of the
task execution. Therefore, we adopt the assumption that tasks can be sliced in an arbitrary manner in
our system.
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4.4. Task Cooperation Scheduling

In our system, we assume that a computing unit, which we refer to as a supernode, with enough
capacity to perform task cooperation scheduling for all devices is available at the cellular BS covering
the D2D network. At the beginning of each task period, the supernode collects task and connectivity
information sent wirelessly from the devices and computes the task scheduling for requesters and
helpers in the D2D network based on the probability of connection among them according to (6).
Note that the task and connectivity information sent to the supernode is very limited in size and
transmission time, which are assumed to be negligible for simplicity. Each task period is divided into
discrete time slots for scheduling to ensure accuracy and latency and to lower the chance of losing
computation results due to changes in connectivity. This computation will be based on an effective
light-weight algorithm elaborated in Section 5.5.

4.5. Blockchain-Empowered Credit System

In contrast to a Bitcoin system, where later, the user is discouraged from joining due to the
significantly increased difficulty to obtain a new coin, our system offers the same initial credit, v, to any
new user to the system. Users need to pay credits from their own balance to get help from peers and
will earn credits after helping peers on computational tasks. At the beginning of each task period
Ψ ∈ {1, 2, 3, ...}, the credit balance BΨ

k of each user uk is obtained by the supernode by referring to
the blockchain. For each user uk in period Ψ, we denote the amount of help received by peers as
RΨ

k , the amount of work contributed to peers as HΨ
k and the block reward as ηΨ

k . For simplicity,
we limit a user to be either a requester, a helper or a miner within a given task period Ψ. In our
blockchain-empowered credit system, uk needs to pay αRΨ

k from and is rewarded βHΨ
k to the balance

BΨ
k ; therefore,

BΨ+1
k =

{
BΨ

k − αRΨ
k + βHΨ

k + ηΨ
k , Ψ ≥ 1,

v, Ψ = 0.
(7)

5. Problem Formulation

As mentioned in the previous section, we assume that a supernode with enough capacity is
present at the BS covering the D2D network of our interest. At the beginning of each task period,
the supernode will, with the knowledge of all devices and tasks in the D2D network, calculate the
probability distribution of the connectivities between devices and assign computational tasks to each
helper or requester device accordingly. The task assignment also takes into account users’ credit balance
when our blockchain-based credit system is adopted. Connectivity awareness, computational task
assignment, selfishness avoidance and response delay optimization are mathematically formulated in
this section.

5.1. Connectivity Awareness

To analyse the connectivity between requesters and helpers for more accurate and cost-effective
computation assignment, we first define a p × (h + 1) probability matrix Rt at each time slot
t ∈ {0, 1, ..., T

∆t}. For a given t, the element Ri,j,t is the probability of connection between pi and hj if
j ∈ {1, 2, ..., h} and Ri,(h+1),t indicating the probability of connection between pi and herself/himself.
Obviously, Ri,(h+1),t = 1 ∀ i, t. At the start of each task period, i.e., t = 0, we randomly generate
Ri,j,0 ∀ i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h} based on the pre-defined initial connection probability. Thereafter,
according to Equation (6), we generate Ri,j,t ∀t ∈ {1, 2, ..., T

∆t} for each pi-hj pair.
At any given time slot t ∈ {1, 2, ..., T

∆t}, we define a p-element vector ~It with its element ~Ii,t
representing the amount of self-computing computational task assigned to pi and a p × h matrix
Jt with element Ji,j,t representing the amount of assisting computational task assigned to hj for pi.
By concatenating Ji,j,t and~Ii,t, we get a p× (h + 1) computation assignment matrix Mt = [Ji,j,t ~Ii,t] at
time slot t. Joining all Mt where t ∈ {1, 2, ..., T

∆t}, we get a p× (h + 1)× T
∆t three-dimensional system
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computation assignment matrix, M, containing the computation assignment in a task period τ ∈ [0, T].
Consequently, Mi,j,t where j ∈ {1, 2, ...h} is the amount of computational task assigned to hj for pi and
Mi,h+1,t is the amount of self-computing computational task assigned to pi at time slot τ = t.

Note that the element-wise product between R and M,

Mexp = M� R, (8)

is the matrix indicating the expected amount of computational task done and the result sent back to
requesters. For example, Mexp

i,j,t = Mi,j,t · Ri,j,t is the expected amount of assisting task done by hj and
sent back to pj at time slot τ = t.

5.2. Computation Assignment and Maximum Wait Time

At the start of each task period, all requesters will specify to the supernode at the BS the amount
of computation, in clock cycles, required for the coming task period. We represent these tasks with
a p-element vector ~γ with γi corresponding to the total amount of task required by pi. Meanwhile,
for an ensured QoE, pi is also subject to a maximum wait time in each task period for the result of the
computational task. We use another p-element vector ~φ with φi corresponding to the maximum wait
time for pi in seconds. Apparently, φi ≤ T, ∀i. Therefore, the computation assignment needs to ensure
that a task is expected to be completed before the maximum wait time for all requesters, that is:

γi ≤
φi/t

∑
t=1

(h+1)

∑
j=1

Mexp
i,j,t , ∀i ∈ {1, 2, ..., p} (9)

5.3. Computation Capacity of Mobile Devices

Each mobile device is subject to a computation capacity denoted as cp
i for pi’s mobile device and

ch
j for hj’s mobile device where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}. When talking about the computation

capacity of a device, one typically will refer to its CPU. CPU processing capacity is typically referred
to in terms of megahertz (MHz) or gigahertz (GHz). Professionals talk about clock speed, which is
the standard ability of the CPU to cycle through its operations over time. Therefore, a 1-GHz CPU is
able to tick its clock around one billion times per second, which in turn can perform more complicated
computational tasks. Without loss of generality, we regulate these computational power values in
clock cycles to a scale of 0–100, i.e., 0 ≤ cp

i ≤ 100 and 0 ≤ ch
j ≤ 100 ∀ i, j, for simplicity. Each entry of

the computation assignment matrix, Mi,j,t, refers to the number of clock cycles required to perform the
corresponding task section. For example, M3,4,0 = 1000 means that at t = 0, h4 is assigned to help p3

for 1000 clock cycles worth of computational task. If ch
4 = 50 Hz, then it takes h4

M3,4,0
ch

j
= 1000

50 Hz = 20 s

to perform the task. Therefore, each device is subject to an amount of computational task in clock
cycles at each time slot as a higher limit, that is:

p

∑
i=1

Mi,j,t ≤ ch
j , ∀j ∈ {1, 2, ..., h}, t ∈ {1, 2, ...,

T
∆t
} (10)

for all helper devices, and:

Mi,h+1,t ≤ cp
i , ∀i ∈ {1, 2, ..., p}, t ∈ {1, 2, ...,

T
∆t
} (11)

for all requester devices as the (h + 1)th column of the computation assignment matrix is representing
the amount of self-computing tasks.
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5.4. Selfishness Avoidance

As derived in Section 4.5, the balance of each user is updated as represented in (7).
When computing cooperative task assignment for the D2D network at each task period, the supernode
needs to make sure that each requester has enough balance for the task period according to the task
assignment matrix M in that period Ψ. Since the exact amount of RΨ

k and HΨ
k for user uk is not known

at the beginning of task period Ψ, the supernode ideally needs to make sure that:

Pr(BΨ
k − αRΨ

k + βHΨ
k + ηΨ

k ≥ 0) ≥ ξ, ∀k ∈ {1, 2, ..., u}, Ψ ≥ 1. (12)

where ξ → 1. However, though the exact amount of RΨ
k and HΨ

k for user uk is not known at the

beginning of task period Ψ, their expected value, namely RΨ,exp
k and HΨ,exp

k , can easily be obtained in
advance from Mexp in that period Ψ:

RΨ,exp
k =

φk/t

∑
t=1

h

∑
j=1

MΨ,exp
k,j,t , (13)

and:

HΨ,exp
k =

p

∑
i=1

φi/t

∑
t=1

MΨ,exp
i,k,t . (14)

For simplicity, we will relax the constraint (12) to the following:

BΨ
k − αRΨ,exp

k + βHΨ,exp
k + ηΨ

k ≥ 0, ∀k ∈ {1, 2, ..., u}, Ψ ≥ 1. (15)

This way, user connectivity has been taken into account, and more cooperation is expected to be
done, while leaving the possibility that a user’s balance becomes lower than zero after task period Ψ
such that the user will need to earn back enough credit before asking for more help.

5.5. Response Delay Optimization

In our work, we emphasize the importance of low task execution time towards a requester’s
QoE. In each task period, there is n = T

∆t time slots, and we define the expected completion time,
texp
i , for each requester pi as follows:

texp
i = arg mint

t

∑
τ=1

(h+1)

∑
j=1

Mexp
i,j,t ≥ γi, (16)

where i ∈ {1, 2, ..., p}, j ∈ {1, 2, ..., h}, t ∈ {1, 2, ..., T
∆t}. Therefore, our optimization problem becomes:

Minimize:
p

∑
i=1

texp
i

Subject to: (7)− (11) (13)− (16).

(17)

Calculation of the optimal computation assignment matrix M is similar to the famous knapsack
problem that is NP-hard [27]. Here, the computational powers of helper devices are like knapsacks
with different sizes, and the computational tasks from requesters are like items with different sizes.
Solving for the optimal solution for the task scheduling resembles solving for an optimal solution
for the knapsack problem: it is NP-hard. For effectiveness, especially considering the trend of an
increasingly massive number of smart mobile devices in D2D networks, we proposed a light-weight
heuristic algorithm to efficiently find the sub-optimal solution for the computation assignment matrix
M illustrated in Algorithm 1. Note that we make substantial use of the linprog function [28] in
MATLAB for calculating the computation assignment matrix M by transforming M element-wise into
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a one-dimensional unknown vector ~x with p · (h + 1) · T
∆t entries from elements in M. According to

linprog [28], A, b in Algorithm 1 represent the inequality constrains for ~x, and Aeq, beq represent the
equality constrains for ~x. The function get_linprog_parameter in Algorithm 1 is transforming the
constraint functions in (17) from a matrix from to a one-dimensional vector form, which is basically
a simple reshaping of the matrix. There is no upper bound for ~x, and the lower limit for elements
of ~x is zero. The maximum wait time of a requester is the longest time the requester can wait before
she/he needs to compute the task result herself/himself. However, it is possible that the task can
be completed much sooner than the maximum wait time. Each iteration of Algorithm 1 tries to find
lower feasible task assignment solutions by halving (up to an integer value) a randomly-selected
requester’s maximum wait time. Since the duration of each task period is limited, the maximum
wait time is up to the length of a task period. Therefore, the complexity of Algorithm 1 is subject to
ln(p) ·O(linprog) where p is the number of requesters at the task period and O(linprog) represents
the complexity of MATLAB’s linprog function [28]. Unfortunately, MATLAB claims improvement on
efficiency of linprog over time, but releases no detail about the complexity. Yang in [29] claims that
his algorithm on top of linprog may achieve polynomial complexity with the best known complexity
bound on linear programming problems.

Algorithm 1: The algorithm to obtain ~φ, which corresponds to a sub-optimal solution for (17).

Input: Maximum wait vector ~φ
Output: Modified maximum wait vector ~φ that corresponds to a sub-optimal solution for (17)

1 function heuristicMaxWait(~φ)
2 [A, b, Aeq, beq] := get_linprog_parameter(~φ)
3 [x, f easible] := linprog(~0, A, b, Aeq, beq,~0)
4 if f easible then
5 C := {1, 2, ..., p}
6 while C 6= ∅ do
7 for random i ∈ C do
8 ι := ~φi

9 ~φi :=
⌊
~φi
2

⌋
10 [A, b, Aeq, beq] := get_linprog_parameter(~φ)
11 [x, f easible] := linprog(~0, A, b, Aeq, beq,~0)
12 if ! f easible then
13 ~φi := ι
14 C := C\{i}

15 return ~φ

6. Experiment

In a D2D network, a variety of factors may affect the performance of our cooperative network
with the credit system. In this section, we will examine the following effects:

• Effect of initial credit: we vary the initial credit provided to each user to see how our system will
be affected.

• Effect of mean maximum wait time: we vary the mean maximum wait time during the random
generation to see how the performance will be affected.

• Effect of mean task size: we vary the mean task size of each requester in a task period during the
random generation to see how the performance will be affected.

• Effect of time elapsed: we run the simulation on multiple task periods and see how system
performance changes over time.

In our simulation, we compare the performance of the computational resource sharing system in
four different cases:



Future Internet 2017, 9, 85 14 of 21

• Greedy D2D task cooperation without our credit system: Without connectivity awareness, each helper
device will equally contribute its available computing power to all connecting requesters at the

beginning of a task period. For example, helper h5 will assign ch
5
3 computing power to each of p1,

p3, p4 for the current task period if and only if p1, p3, p4 are the only requesters in connection
with h5 at time τ = 0.

• Greedy D2D task cooperation with our credit system: This is very similar to the above case, except
that our blockchain-based credit system is added in to enforce fairness. Therefore, the supernode
at BS will check on requester balances before task assignment, ensuring that the assistance
expected to be received by a requester will not exceed her.his available balance in that task period.

• Connectivity-aware task scheduling without our credit system: At the start of each task period,
the supernode at BS will perform task scheduling calculation according to Algorithm 1 without
our blockchain-based credit system.

• Connectivity-aware task scheduling with our credit system: This is very similar to the above case,
except that our blockchain-based credit system is added in to enforce fairness, as illustrated
in (15).

Apart from being a reasonable incentive for users to provide help and gain credit for future needs,
the blockchain credit also provides selfishness avoidance to our system. That is, it prevents certain
users who only want to get help from peers, but not contribute to other users’ need. We define hereof
the level of selfishness, LoS, to reflect whether users have been contributing relatively equally over
task periods Ψ ∈ {1, 2, 3, ..., χ}:

LoS =
1
u

u

∑
k=1

(
χ

∑
Ψ=1

RΨ
k −

χ

∑
Ψ=1

HΨ
k −v)2 (18)

In the following experimental illustrations, we show the comparison of LoS in a normalized way:
with respect to the greedy D2D task cooperation without our credit system case since LoS for this
case is much larger than the other three cases and it appears to be stable over the changing factors.
For simplicity, the mining process is simplified to a random selection of idle users to be miners in the
network. To validate the performance of our proposed system, we set up the following experiment.
Default simulation parameters are illustrated in Table 1, where the uniform distribution between two
values a, b is denoted as U[a, b]. We used three real-world traces “Intel” (Trace 1), “Cambridge” (Trace 2)
and “Infocom” (Trace 3) in the Cambridge/Haggle dataset in [30] for our simulations. Traces 1–3
were recorded by 8, 12 and 41 mobile iMotes using Bluetooth with a 30-metre radio range, respectively.
Although these iMotes were not smartphones or tablets, the connection states recorded in these traces
can be used to reproduce the dynamic topology for mobile users. The interval of each iMote sending a
beacon (i.e., hello message) is 120 ± 12 s.

The connectivity between mobile users is assumed to be symmetric in our work. However,
the connect and disconnect events in traces were recorded by each iMote individually.
Thus, we consider that a pair of iMotes was connected (or disconnected) as long as one of them
detected a connect (or disconnect) event. In the real-world traces, an iMote has recorded a connect
event with a zero contact duration when it was connected with another iMote for a short period of
time such that the iMote failed to receive two or more consecutive beacons. Thus, for a record with
the zero contact duration, we assume that the actual contact duration is uniformly distributed on
[0 s, 120 s]. We concatenate the contact and inter-contact durations recorded by each pair of iMotes in a
chronological order to reproduce the connect and disconnect events for both of them. We then run
trace-driven simulations with the D2D topologies reproduced by all iMote pairs in each trace.
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Table 1. Default simulation parameters.

Number of users u 10
Mean number of requester p̄ 0.4u
Mean number of miners 0.1u
Tasks period T 60 s
Size of time slots ∆t 5 s
Total number of periods χ 30

Initial credit v 5000
Block reward credit per task period η 50
α 1
β 1
Maximum computation capacity cmax 100
Minimum computation capacity cmin 40
Computation capacity cp

i or ch
j U[cmin, cmax]

Mean task size per second σ 30 (U[15, 45])
Mean maximum wait time 40 s (U[20 s, 60 s])
λi,j U[10−5, 10−3]

µi,j U[10−3, 10−2]
Initial connection probability at τ = 0 50%

6.1. Effect of Initial Credit

The choice of initial credit is a rather significant factor in our system. The initial credit is an
indication of how much helper work can be received before a requester has to help others or perform
mining to get system credits. If the initial credit is set too low, users are discouraged from performing
D2D cooperation. In the extreme case in Figure 5, where initial credit is set to zero, the users cannot
perform any D2D cooperation, resulting in a self-computing performance with a high average task
execution time and no selfishness.
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Figure 5. Effect of initial credit. (a) Effect on average task execution time; (b) effect on the level
of selfishness.

As initial credit increases, users are encouraged to perform D2D cooperation, leading to a fast
drop in average task execution time in the two cases with our credit system. Particularly, the average
task execution time of the heuristic case with our credit system drops to <5% more than that without
our credit system, while remaining 20% less selfish. This is an indication that with a proper selection
of initial credit, a little sacrifice on average task execution time can be exchanged for a much higher
level of fairness. The greedy-credit case has much lower LoS than that without the credit system,
but its performance is much worse than the heuristic-credit case, implying the importance of our
heuristic algorithm.
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6.2. Effect of Mean Maximum Wait Time

During a task cooperation in the D2D network, the requester typically wants the task to be done
in a timely manner. For example, if a requester wishes to perform a neural network-based stock
index prediction task [31] that predicts the price of a stock in 30 s, this requester will want to get the
computation result within 30 s (could be 20 s, 25 s, etc., depending on the specific application logic and
handling behind).

As shown in Figure 6a, two heuristic cases started with a decrease in average runtime from mean
maximum wait time changing from 15 s to 20 s. This may be due to the fact that when the mean
maximum wait time is too low, the probability of finding a feasible solution in the cases with our
heuristic algorithm is much lower. As mean maximum wait time continues to increase thereafter,
the average task execution time increases in all four cases: the enlarged solution space is increasing the
difficulty of our heuristic algorithm in finding the optimal solution; and in the greedy cases, the helpers
cannot focus on helping fewer requesters since most requesters have similarly high mean maximum
wait time. Particularly, the performance on the average task execution time of the greedy-credit case
deteriorates approximately 36% from 14 s–19 s, while that for our heuristic case with our credit system
deteriorates only 9% for the same change. This further proves the necessity of our heuristic algorithm.
However, the normalized level of selfishness decreases with respect to the greedy-non credit case,
with the two heuristic cases scaling down faster. Comparing the heuristic cases with and without
our credit system, the sacrifice of around 10–15% of average task execution can bring us at least 40%
less selfishness at a 50-s mean maximum wait time and almost 100% less at a 15-s mean maximum
wait time.
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Figure 6. Effect of mean maximum wait time. (a) Effect on average task execution time; (b) effect on
the level of selfishness.

6.3. Effect of Mean Task Size

The generation of task sizes in a period T is a uniform distribution U[0.5σT, 1.5σT]. Note that it is
possible that the mean task size for a requester within a period is over the computing capacity of the
requester device itself. Therefore, a D2D cooperation is necessary if the task needs to be done within
the maximum wait time.

As illustrated in Figure 7a, the average task execution time increases with respect to the mean
task size almost directly proportionally. The performance of our heuristic cases starts at a very close
performance at the beginning when the mean task size is small; a requester does not need too much
assistance work from helpers, leading to a relatively lower level of selfishness and average task
execution time. When the mean task demand from requesters increases, the level of selfishness in
the heuristic case without our credit system increases much faster than that with our credit system.
When the normalized mean task size is 60, though the heuristic case without our credit system is 15%
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better on the average task execution time, it is yet more than 250% higher in the level of selfishness.
This shows how important it is to use our credit system to enforce fairness among users.
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Figure 7. Effect of mean task size. (a) Effect on average task execution time; (b) effect on the level
of selfishness.

6.4. Effect of Time Elapsed

Here, time elapsed is represented in the unit of the number of task periods elapsed. Effect of time
elapsed generally gives an idea of how the performance of the four cases will stabilize over time.

As shown in Figure 8, the performance of our credit system starts to stabilize beyond the point
of the 50th period. As the task period goes on, our blockchain-empowered credit system maintains
a good level of selfishness with decreasing normalized selfishness, while the cooperative system
without the blockchain-empowered credit system, regardless of whether or not our heuristic algorithm
is used, builds up more and more selfishness. Although the performance of the heuristic-credit
case on the average task execution time is around 20% worse than that without our credit system,
the level of selfishness of the case without our credit system is more than three-times higher. Therefore,
the adoption of our credit system is highly recommended to enforce fairness in the network.
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Figure 8. Effect of ongoing number of periods. (a) Effect on average task execution time; (b) effect on
the level of selfishness.

7. Discussion

As shown in Section 6, our blockchain-empowered D2D computational resource sharing
system is able to achieve lower average task execution time while enforcing fairness among
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users. Possible application scenarios include computation virtualization [32] in the D2D network.
The authors in [33] presented the feasibility of computational resource virtualization within a personal
cloud so that a weak device can utilize computational resources from stronger devices for graphics
rendering and other applications. The authors clearly claimed one of the key challenges to be the
dynamic nature of a personal cloud caused by the mobility of the user. With our proposed system
in this paper, we can extend the idea of computational resource virtualization presented in [33]
to a D2D network. A cooperative computational task may be executed in a virtual machine and
migrated to different devices in the D2D network. Although virtualization introduces performance
and management overhead, the flexibility it can bring to network resource management still makes
it very appealing. The fact that virtual machines can be migrated to a different physical host while
keeping applications alive makes the computational resource virtualization and sharing in the D2D
network even more fascinating [34]. Furthermore, our system enforces fairness among users by
incorporating the blockchain-based credit system.

Apart from the pros and cons explained in the Section 6, the benefits of adopting the
blockchain-base credit system for our proposed D2D computational resource sharing system are
as follows:

• Decentralized and trustless: The blockchain is a public ledger of all transactions in the network.
This public ledger is maintained by all participating nodes, and this consensus mechanism makes
central authority unnecessary. Therefore, blockchain technology enables a decentralized and
trustless network where peers do not need any trusted third party to interact with each other.
Note that the supernode in our system mainly works to assign computational resource sharing in
an efficient and fair way by considering user mobility and credit balances. Our supernode also
provides a public transaction pool as a reference to system users, but the supernode in no way
participates in the mining operations. All mining operations are performed by system users in
the D2D network.

• Autonomous: Blockchain technology can enable devices in the D2D network to communicate with
each other and perform transactions autonomously, since each device can assess the blockchain
and a trusted intermediary is not needed. Again, although the supernode helps system users by
assigning cooperation tasks in an efficient and fair way, the credit balance system is not controlled
by the supernode and remains autonomous.

Our system also faces a few challenges as follows:

• Efficiency: Since all miners in the network perform the same computations trying to get the
next block reward from the blockchain, there remains efficiency concerns. In our proposed
blockchain-empowered D2D computational resource sharing system, the block reward is credits
that could be used to exchange for computational resources, which can also be granted when
helping peers computing in the D2D network. Therefore, users in the system are not merely
encouraged to compete for the block rewards, but also encouraged to assist other peers, which
enhances the efficiency of users’ idle computational resources.

• Privacy: Because the blockchain is a public ledger and any node can see all transactions in the
network, privacy concerns remain for the transacting parties.

• Interference in the D2D network: In this work, we de-emphasized the effect of mutual interference
in the D2D network due to the limited D2D communications’ duration and the coordination from
the supernode. To realize a more realistic model, we will elaborate on how mutual interference
can be tackled by supernode coordination in future works.

8. Conclusions

In this work, we build a blockchain-empowered credit system on top of the connectivity-aware
computational resource sharing system in the D2D network. A supernode at the base station,
with knowledge of user mobilities and thus the probability model of device connectivities, will perform
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task scheduling to reduce average task execution time for requesters in the network and enhance user
quality of experience. Based on the blockchain-based credit system, selfish users who only want to get
help from peers, but not contribute, will not be assigned any helper assistance if their balance is not
sufficient. The supernode also possesses a publicly accessible transaction pool for miners’ reference on
building up a trustworthy blockchain network. Simulation results based on a realistically examined
mobility model show that our system substantially reduces average task execution time for requesters
in the D2D network. Sacrificing a minor amount of average task execution time allows the system to
remain at a rather low level of selfishness. To enforce fairness and encourage users, the adoption of our
credit system is highly recommended. With the help of blockchain technology, our system becomes
more favourable for users by providing incentives to helpers and enforces fairness among users.
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