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ABSTRACT 

The world’s future is strongly connected to energy consumption trends. There are bi-directional relations 

between energy consumption and the average temperature of Earth, leading to positive causal loops. 

Increasing temperatures cause activity of more cooling systems most of which are electrified by burning 

hydrocarbons that consequently yield more carbon dioxide concentration and warmer climates. This paper 

is a trial to estimate the loop-gain by employing a bottom-up regional model. The model is a spreadsheet 

containing a sort of parameters and variables to estimate the amount of electricity used for cooling 

buildings in the residential and commercial sectors of 12 regions around the world. The share of fossil-

fuel based power plants determines the share of contribution of each region in CO2 emissions. Then by 

processing data on the global emission trend and land temperature anomaly, a linear ARMAX relationship 

is estimated to compute the loop-gain. The results show that, even in the optimistic scenario of IPCC 

(A1B), emission from cooling electricity will double up by the end of the century. With the estimated 

1+1.4×10-6 loop-gain, even if fossil-fuel electricity generation is gradually reduced to 40%, it will decrease 

first but will start growing again in the century mid. 

Keywords: Cooling electricity demand; Energy consumption; GHG emission; Global warming; 

Accelerating loops; Loop-gain estimation.  

Introduction 

Nowadays, nobody can neglect the global warming phenomenon, since most people can sense and see 

its consequences in all seasons of their life. Climate change acceleration has been a serious concern of 

researchers for decades [1]. The intergovernmental panel for climate change predicted that the average 

temperature of our planet will increase by 1.4–5.8 °C by the end of the 21st century [2]. There are 
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researches that propose more pessimistic estimates [3]. The warming speed has been estimated at more 

than 0.02°C per year for recent decades. Some researchers estimate the global warming from 1850 

conditions to 2080-2100 ranges from 1.5 °C to 4.4 °C under different scenarios [2]. They also address 

recent acceleration in warming. There exist an extensive literature that discusses the phenomenon by large 

models, among from System Dynamics (SD) models are of interest [4], used for policy analyses too [5].    

The acceleration is probably because of positive feedbacks in the entire carbon concentration system 

addressed in the literature [3], some of which are represented by Figure 1. Three main resources of carbon 

dioxide are supplying the fuel for a long-term dynamics of this system: solar radiation, CO2 emitted by 

volcanic activities, and the only anthropological one, i.e. fuel burning by human beings. The first loop, 

denoted by +R1, which accelerates solar radiation absorption, is the effect of temperature rise on the polar 

ice melting, as well as fewer winter snows cover, which in turn causes expansion of oceans and more 

darkness of Earth’s surface [6]. The second, +R2, is in fact inside the first; even more ocean expansion is 

in progress because of more waves and storms that eat the shores. Although the oceans act as a giant lung 

that absorbs CO2, scientists have found that its performance is a function of the atmosphere temperature. 

Thus, a third positive loop is activated weakening Earth’s lungs and reduces both land and ocean uptake 

of CO2, respectively by 54% and 35%, if the CO2 concentration is four folds [7]. The fourth positive loop 

has been also warned by scientists several times. The warming atmosphere speeds up the decomposition 

of belowground organic matter [8]. This also leads to more greenhouse gases (GHG) released into the 

atmosphere and closes another positive loop, +R4. The next positive loop, +R5, accelerates deforestation, 

including two other re-enforcing loops that worsen the case by decreasing rainfalls [9].    

Before explaining the simple sixth loop, it is worth mentioning how critical is to study the dynamics of 

these loops. Although many articles have been modeling and analyzing the climate change phenomenon 

[10], not any paper has quantitatively discussed how exactly these loops affect climate change 

acceleration. Nonetheless, there are few papers that have estimated one of the individual loop gains, mostly 

focusing on the third loop. However, wild rapid changes, nonlinearities, and the complicated dynamics 

have made the researchers to revise and correct their estimates frequently [11].  

The Global Carbon Project organization publishes the most recent reports revealing various statistics such 

as trends for carbon emission (CE) and global warming, as well as predictions of what can happen under 

different scenarios. The conceptual framework including most of the above-mentioned loops plus some 

other could be found in reports of the organization which are provided by collaborative efforts of the 

global carbon cycle science community [12].     

Research shows that climate change has an undeniable impact on electricity consumption. The increase 
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of cooling energy demand in Switzerland [13], California [14], and the entire United States [15], studied 

by researchers, are just a few examples for evidence of such impact. The warmer is going the weather the 

more electrical energy is needed for cooling and the more fossil fuel is burned for electricity generation. 

For instance, it is shown by simulation that the peak cooling energy use will increase in the US about 7% 

to 9% in 2020 w.r.t. 1960 [15]. Moreover, the more fuel is consumed for either heating or cooling by 

electricity, the more important its side effects appear in the climate, i.e. the CO2 emission, global warming, 

and climate change  [16]. This paper aims to analyze one of the factors of the warming acceleration 

represented by Figure 2.    

On one hand, there are limited resources of energy, mostly fossil fuels. On the other hand, using fossil 

energy resources for both cooling and heating, with the consequence of CO2 emission, causes the average 

temperature of Earth to increase [17]. Figure 2 shows this mechanism in three loops. Energy consumed 

for cooling emits CO2 that accelerates warming in the middle loop, while in the left side loop, the energy 

required for heating decreases for the fact that the average temperature has a positive trend. In System 

Dynamics methodology these are called reinforcing and balancing loops respectively. Apparently, all 

reinforcing loops exacerbate the problem in the future of the global climate. Focusing solely on the 

positive trend, other probable positive loops due to colder winters and hotter summers, which are counted 

as a consequence of meandering phenomenon in jet streams [18], are not shown in these figures and need 

separate research to conclude their effects.   

 

Figure 1: Causal loops relating energy consumption to climate change 
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Figure 2: Causal loops relating energy consumption to climate change – Space cooling/heating loops 

(Each flesh indicates a cause-effect relationship.) 

Hence, researchers ought to think for any solution that adjusts the middle loop with a negative effect and 

attenuates the corresponding positive gain as much as possible.   

Regarding the positive loop, one can make a rough calculation that energy needed for keeping a 100 m2 

sample house 1C colder than the outdoor temperature for an hour is approximately 0.5 kWh. This energy 

is mostly provided by electricity, which can be generated by fossil fuels or renewable (clean/carbonless) 

energies. Both technologies based on cooling by fossil fuel directly, or by fuel-based electric power cause 

CO2 emission which in turn leads the average temperature of the globe to increase, and so need more 

energy for cooling. Moreover, other energy demand supplied by fossil fuel, especially in the industrial 

and transportation sectors, accelerates the warming loop even more. Adding these factors to Figure 2 in 

its right-hand loop leads to what is presented in Figure 3. 

 
Figure 3: Space cooling needs electricity that is generated by either fossil fuel or renewable resources.  
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consumption will reduce, and the warming rate of the global climate will be lowered. Therefore, it seems 

essential to investigate climatic factors effect on energy consumption in two warm and cold seasons 

separately. 

There are a few studies reporting estimates on the share of cooling electricity in the total electricity 

consumption all around the world. Although there are accurate engineering methods to calculate the 

heating/cooling loads, on large-scale, e.g. for a country, it is too difficult to estimate the total worldwide 

load by such detailed methods. Detailed bottom-up electricity demand estimates are performed for 

buildings of the European service sector [19], A household energy use breakdown is done in 2009 for the 

United States [20]. The researchers have found that almost 11% and 14.1% of electricity is consumed for 

cooling and air-conditioning in these two regions, respectively. Updates can be found for 2014 in Europe 

[21] and 2015 in the US [22], which refer to 13.7% and 18%, respectively. There are many other works 

that address how temperature and other climatic variables can impact electricity consumption, both from 

a technical viewpoint [23]-[24], or in a macro level for a specific city or country [25]-[26].  

This paper aims to follow up a bottom-up analysis of electricity use in the world and then present a 

simple method for estimating the loop gain that is comparable with the results obtained by other top-down 

electricity demand models. An intelligent design of electricity demand model for a sample residential-

commercial region [24]-[31], which includes climatic variables, particularly the temperature, might be 

used to estimate the total electricity used for cooling. The results are compared with those could be found 

in the literature to confirm the accuracy of the estimates. Finally, gathering data for the share of fossil-fuel 

based power plants, the total GHG emissions are calculated and then the global warming acceleration rate 

caused by cooling the residential-commercial sectors is estimated.  

The organization of the paper is as follows. The second section is dedicated to the analysis of electricity 

demand for space cooling through a bottom-up approximate, yet complicated and efficient model. It is 

tried to relate almost everything to the temperature. Then the calculation is tracked for a sample region 

and the results are summarized for 12 regions of the world. In the next section, by using linear approximate 

models the relationship between GHG emission and the average global temperature anomaly is estimated, 

where the loop gain is found. A long-term simulation is also designed in two scenarios and the results are 

compared. Section four concludes the paper.          

The regional analysis of electricity demand for space cooling 

There are too many works on the estimation of the energy demand of buildings [27]. They utilize various 

techniques and methodologies [28]. The methods applied for the estimation of buildings cooling/heating 
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energy demands are classified into two main groups: statistical and engineering methods [29]. The 

engineering methods can be divided to elaborate and simplified methods, based on the availability of data 

and the accuracy needed. However, there is no apparent boundary to separate the simplified and elaborate 

models [30]. Elaborate engineering (bottom-up) method is indeed the most accurate [23], [31]; however, 

it is almost impossible to collect all data for all parameters needed for a thorough calculation. Instead, 

statistical data analysis (top-down) methods can result in almost accurate estimates too, if they consider 

all the relevant socio-economic, dwelling and appliance-related factors [32]. Evidently, the critical factors 

affecting energy consumption in buildings include human behavioral elements [33]. Hence, hybrid 

methods that benefit from statistical data and consider both technical and human-being based factors can 

be applied as well [34]. However, in this paper, a simplified version of the engineering method is followed 

to overcome the lack of detailed data for all regions across the world. Moreover, statistical data of energy 

consumption is used to verify the results, wherever available. 

To approximate the energy demand for cooling houses/working spaces all over the world, a regional 

division is applied to the worldwide available data. The world regions are grouped into six groups: North 

America (USA and Canada), Europe (including Eurasia and Russia), Oceana, Asia (West Asia, South 

Asia, Southwest Asia, Central Asia and Middle East), Africa (North Africa and Sub-Saharan Africa) and 

Latin America (including Central America and Caribbean). In the rest of this paper, each of these 12 

regions is indexed by k, appearing as a subscript for the variables and parameters. In addition to climatic 

factors, i.e. temperature and humidity, this division considers other demographic and social specifications 

including households, living space sizes, cooling equipment penetration, as well as other technical 

parameters including the fossil-fuel share for electricity generation, efficiencies, energy wastes, etc. For 

each of the regions, based on data gathered for these factors, the energy needed for cooling is estimated. 

Table 1 exhibits a list of categorized factors.  

 
Table 1: Factors influencing electricity need for cooling of living and working spaces 

Category Sub-categories 

Demographic Population Household size Homeless  

Residential Per capita living space A typical house specifications Technical Architecture 

Weather Summer temperature data Regional solar radiation data Warm hours and days  

Commercial Per employee working space Labor force Unemployment rate  

Electricity Cooling equipment penetration rate Generation system specifications Fossil fuel shares  
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1.1 Approximate cooling load of buildings via a bottom-up formulation  

To keep the temperature of a living space of A [m2] comfortable, the heat rate from walls, roof, and 

windows should be compensated by a cooling (heating) equipment. The electric power of a cooling system 

for each typical house in region k should be able to compensate the following heat rates, caused by the 

well-known heat transfer modes; conduction, convection, and radiation [35]-[36]: 

1) Heat entering from the surfaces because of indoor-outdoor temperature difference, 

2) Heat generated by the residents’ bodies, lights, and other equipment, 

3) Global sun radiation heat that transfers to the living space through the walls, 

In addition, cooling systems usually consume electricity for air conditioning and ventilation, which stands 

as the fourth part:  

4) Electricity for ventilation and air conditioning (VAC).    

These parts are first formulated per household and per one degree of temperature difference. Then, the 

total buildings square meter which is assumed to be proportional to the number of households, who utilize 

an electrical cooling system in each region, or employees in workspaces will be used as bases to estimate 

the total cooling load. After relating the load to temperature differences, the well-known degree-hours 

method converts the load to energy. The share of cooling energy demand in total electricity consumption, 

reported by [19], [20], [21], and [22] for Europe and the US, will be the criteria to verify final results 

obtained by formulations and approximations.   

1.1.1 Buildings Cooling Load    

To estimate the cooling load of buildings, the focus is first on the residential sector. The results are 

extended to cover the commercial sector, based on some specifications of the sector, such as working 

space and employment ratio, to obtain an acceptable estimate of cooling energy demand of all buildings 

utilized for dwellers, services, commercial, public purposes, etc. Finally, available statistics are used to 

verify the estimates and adjust by tuning some uncertain parameters.  

Based on the Fourier’s law of heat transfer through conduction, the basic formula: Q =A.(K/L).∆θ can be 

manipulated to include all the heat rates incoming to a house with four walls, roof, celling, and several 

windows in separate. Hence, the first part is heat transfer from the surfaces, i.e. walls, ceiling, floor, and 

windows:   

   ]W[)(14 ,,41,
,

kkkwinkkwallkHf
q

kkk θwqwqAAHP
kk

kroof   (1) 

where ∆휃(푡) = 휃(푡) − 휃  is the indoor-outdoor temperature difference, A [m2] is the house size, which is 
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assumed in a square shape, H [m] is its wall’s height, w [%] is window-wall ratio, and qwall and qwin 

[W/ºC/m2] are the heat transfer coefficients of the walls/roof and windows respectively (known as U-

values). It is assumed that the buildings in each kth region are fk –floor in average, so that one of every f 

roofs/floor among all houses are exposed to the outside temperature. Also, it is assumed that the heat 

transfer coefficient of the roof is half of that of the walls. 

The second part includes heat emission from the body of residents, plus bulbs that are on at the night.    

]W[101202, kkk AbP   (2) 

It is assumed that each alive body inside a building emits about 120 W [16], so bk is the number of persons 

living/working indoors. Also, if incandescent light bulbs are commonly in use, in average 10 W is needed 

to light on each square meter (about 200 lumen/m2 by bulbs with the efficiency of about 20 lumen/W). 

Since the cooling load in summers may happen in night dark or in daylight, let us assume that only 50% 

of the load happens at night. Hence, the coefficient for heat generated by bulbs is halved, i.e. 5 W/m2 is 

replaced for the corresponding coefficient in the formula.  

Last, but not least, is the sun radiation effect which is the most important part of heat transfer to a building, 

especially when it is exposed to direct sunlight. Like the formulation of (1), this part is calculated by:  

   ]W[14 ,,,3, kkwinkkwallkkkrooff
A

k wrwrAHrP
k

k   (3) 

The components are like that of (1), except that rroof, rwall and rwin [W/m2] are solar irradiances absorbed 

and transmitted into the house from the roof, walls and windows, respectively [35]. These terms are 

replaced for q × ∆θ products in (1) to represent heat transfer caused by sun radiation. Avoiding 

complicated calculations with azimuth and altitude angles that are dependent on regions latitude, days of 

a year and hours of a day, we had to follow some simplified relations. To relate the heat rate in (3) to the 

temperature, first we use an approximate version of (3) by factorizing the global irradiance:  

   ]W[12 ,,,43,
,

kgkkwinkkwallkHf
p

kkk rwpwpAAHP
kk

kroof   (4) 

where rg,k [W/m2] is the global (a combination of the direct, diffuse and reflected) irradiance, averaged 

over summer days of the region k, and proof, pwall and pwin [%] are overall receiving-absorption-transmission 

coefficients for the roof, walls and windows respectively. Each coefficient is formed by three parts: 

absorption percentage, transmission percentage, and the incidence angle (to adjust local radiation angle 

with that of the basis region). The transmission percentage is related to the surface heat transfer 

coefficients by a linear regression estimated using experimental data in [35] as: 

γj,k = 0.22 qj,k – 0.0032   ; 0.1 ≤  qj,k  ≤ 0.7 (5) 

Hence, the following coefficients should be used: 
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 pj,k = βj,k γj,k sin(δj,k);        j ϵ S={roof, wall, window}     (6) 

where βj,k is the decimal part of the radiation absorbed by the surface j, and is assumed to be 70%, 50% 

and 80% for the three members of the surfaces set, S, respectively [35]. In addition, sunlight altitude angle 

is represented by δj,k, so we have: δwall,k = δwindow,k = 90 – δroof,k ; where   

δroof,k = 113.45 – latitudek  (7) 

is found for the highest irradiation in summer, given the average latitude angle for the kth region in degrees. 

Finally, the total heat load which should be pumped out of the typical house in the kth region for cooling 

a building is found by summing up the three parts (1), (2), and (4), as follows: 

Pk = Pk,1 + Pk,2 + sk Pk,3   [W] (8) 

Due to the shadows of clouds, other building, trees, etc., not all the houses are exposed to sunlight energy 

from windows or walls all the daytime; thus, the third term is multiplied by an adjustment ratio, sk, which 

is about 0.25 to 0.35 depending on the density of buildings and trees, etc., to exclude the hours that 

buildings are not receiving direct irradiations. 

This amount of heat that warms up a typical house is pumped out by a cooling device, the performance of 

which is called the Coefficient of Performance (CoP) of the appliance. The electrical energy required to 

cool a house should be multiplied by the number of houses (buildings) with cooling systems. We have 

also to add an extra electrical power needed for ventilation and air conditioning (VAC), which is 

experimentally approximated by [37]:  

]W[)()5.315.0(23.14, kkkk θbAP   (9) 

where the parameters have the same definitions as in (1) or (2).  

Since energy is simply calculated by the product of time and power, summarizing all the components 

explained above in one formulation, the total electricity to supply the total demand for cooling residential 

is estimated by: 

  ]GWh[.
.
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. (10) 

In this formulation, Dhk represents the total Degree-hours of region k during warm hours in a summer (see 

Figure 5), ℎ , defined as: 

퐷ℎ = ∆휃(푡)
 

= 휃 − 휃  (11) 

where 휃  is the desired temperature in summer days, and Nk denotes the number of houses employing 

coolers in the kth region. 
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1.1.2 Estimation of Commercial Buildings Cooling Load 

Cooling load of a building depends mostly on the physical specifications, although the behavioral factors 

affect energy consumption as well. However, as mentioned above, this research is focusing on a simplified 

engineering method including demographic data to estimate cooling electricity consumption, by world 

regions. This is cumbersome enough and includes unavoidable uncertainties. Differentiation between 

behaviors of people using buildings in various regions around the world is much more complicated, and 

so is ignored herein.  

In addition to (10), now we must consider energy needed for cooling working spaces (building) in all other 

sectors (commercial/public, manufacturing and industrial). Knowing that repeating the above calculation 

for all various types of these buildings in all regions is extremely cumbersome or even impossible. There 

is no detailed data for specifications of all types, and based on an assumption that there is not a big 

difference between the specifications in average [21], a simplified approximate extension is applied here. 

To obtain an appropriate estimate for the total cooling load, including commercial buildings, the following 

approximation is applied in this research: 














  tCoefficien Correction

householdaformeterSquare

employeeanformeterSquare

householdsofNo

employeesofNo
1_ reskk EE  (12) 

where, Ek_res is calculated by (10) considering the households only. The last ratio in (12) is assumed to be 

about 1.1 to 1.3, varying for various regions. This adjustment is justified below, based on the existing 

researches. 

Statistics on the cooling load of buildings used for workspace are not available. However, a few research 

works can be found in comparing total energy use by buildings dedicated to various purposes. Some report 

an average of 39.75 [kWh/m2] for cooling energy demand in commercial buildings in Europe [19] is 

reported. Averaging the demand for all the buildings (including houses, apartments and offices) among 

ten cities with various climates around Europe comes to 26.6, 14.5 and 27.7 [kWh/m2], respectively; hence 

the load is almost the same for houses and offices but about 50% less demand is for apartments [21].  

These numbers, which will are considered as bases for verification of the results obtained for both sectors, 

indicate about 30% difference in specific cooling energy between the two sectors, knowing that most of 

the households live in apartments (the statistics for EU-28 [38] implies that the ratio was 58% in 2015, 

and so, the ratio of residential to commercial cooling load would be around 70.7%)*.  

                                                
* According to EU statistics: “In 2015, more than 4 out of every 10 persons (42.0 %) in the EU-28 lived in flats …”. Thus, the average 

specific cooling load for the residential demand would be: 42% x 26.6 + 58% x 14.5 = 19.58 [kWh/m2], which is 70.7% of 27.7 [kWh/m2]. 



11 
 

Although many behavioral and technical factors may affect this, regardless of other factors, it can be 

related to the difference between the heights of buildings in the two sectors. Based on the above statistics, 

it seems that for developed countries 1.25 to 1.3 is a proper adjustment, while for others it is assumed 

lower, regarding the fact that the official buildings are less equipped by cooling systems. This can be 

verified by comparison of electricity demand in the sectors of different countries around the world. It is a 

fact that the total electricity consumption by these two sectors in developed countries, e.g. the US and 

European countries are almost the same, while in non-OECD countries commercial sector consumes 

almost half of the households [39]. Clearly, the gap is mainly because of fewer devices that can be found 

in offices, hotels, restaurants, schools, and universities of less developed countries. Nevertheless, the 

specific cooling electricity is somewhat higher than what is consumed in residential buildings, for 

differences in both building specifications and people’s behavior.  

1.1.3 GHG Emission Estimate 

The electricity demand obtained in (12) should be divided by the overall efficiency of transmission-

distribution and fossil fuel electricity generation systems to result in the total fossil fuel primary energy 

required for cooling houses in the kth region, assuming that only φk percent of electricity is generated in 

fossil fuel power plants [41]:  

k
k

k
k E

η
φF     [GWh]. (13) 

where ηk = ηG,k × ηTD,k  is found by the production of efficiencies of electricity generation [40] and 

transmission-distribution systems in each region [39]. The emission factors equal to 2.08, 1.22 and 1.68 

kgr of CO2e per kWh of electricity generated by power plants using each of coal, NG and oil products, 

respectively, are then applied to find the total emission for cooling electricity. The required data, such as 

the share of fossil fuel in electricity generation and shares of power plant types, are obtained from various 

references including [39], [40], [41], [42] and [43].  

1.2 Relating solar radiation to air temperature 

For our specific goal of estimating the positive loop gain in Figure 2, we must relate solar global radiation 

to the air temperature. There are many experimental static models that estimate global radiation to daily 

minimum and maximum air temperatures and their difference: 

∆휃̅ = 휃 − 휃    [ºC] (14) 

Almost all the models use the total daily extraterrestrial radiation calculation which has quite 

straightforward computations for any specific day of a year, given the latitude for any specific location on 
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the Earth [44]. For example, given the solar constant to be 1367 [W/m2] the total radiation to the horizontal 

surface at top of the atmosphere, namely 퐻 , , is found to be around 11 – 12 [kWh/m2-day] in summer for 

most regions with latitudes between 0° to ±65°[44]. The simplest way for relating it to the temperature 

difference was a one-parameter model proposed by Hargreaves and Samani in 1982 [45]:  

퐻 , = 푎 .퐻 ,  . (∆휃̅) .       [Wh/m2-day] (15) 

The ratio of 퐾 = 퐻 , /퐻 ,  is called clearness index which is dependent on factors such as humidity and 

cloudiness. The formula is calibrated parametrically to fit characteristics of different locations [46] with 

different characteristics such as arid and semiarid regions [47]. The history of works attempting to find a 

relationship between solar irradiation and temperature is a long one [48]; however, for this study, the 

simplicity of the original formula suffices. Statistical data shows that in summer days the clearness index 

is around 0.45 to 0.67 (µ ± σ) for almost all regions [49]. Many other models are also developed in a wide 

range of complexity [50], from using linear regressions to implementing artificial neural networks [51].  

However, these models are not applicable for our purpose, first because of the “non-causality” problem 

that almost all the models have (because they use temperature data to estimate solar irradiation), and 

second, for their complexity and the vast number of variables and data requirement. Evidently, it is a fact 

that the air temperature is a function of solar radiation. Hence, ignoring all other factors, such as wind and 

humidity, we can write: 

휃(푡) = 휃 + 푓 ∫ 퐻 (휏)푑휏        [ºC]. (16) 

Nevertheless, the models are following the opposite direction by estimating average irradiation based on 

temperature data. So, non-causality appears in most of the models in the literature. However, for the 

specific purpose of this research, a simple model is adequate to relate the global irradiation to the 

temperature with an approximate relation.  

In this research, sets of 10-minute data for daily temperature, radiation and wind in summer for a 

moderately dry climate zone, Nahavand (34.18° N, 43.37° E), is used to develop a linear dynamic causal 

relation  that connects daily temperature variation, 휃 , to the global irradiance, 퐻 , and the wind speed, 푤  

(See the Appendix: ARMAX models):  

휃 = 휃 + ∑ 훼 휃 + ∑ 훽 퐻 (푡 − 푡 ) + ∑ 휔 푤 + ∑ 훾 푒        [ºC]. (17) 

where 푒  is a white noise unknown error term. Many different time periods and parameters number (푛 ’s) 

are examined by the ARMAX model, and based on the DC gain of the best selected model [52], the 

relation is approximated by: 

∆휃 = 푎′ .퐻 ;      푎′ ≅ 0.01412 (18) 
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with 퐻  denoting the global irradiation per day. This is quite compatible with the linear slopes obtained 

for high radiation at warm and hot temperatures in Figure 4. 

Moreover, a static relationship is estimated fitting various curves to the data of cooling degree-hours of 

420 sample days (of four summers) versus the cumulative daily radiations in warm hours. The results are 

shown in Figure 4, as well.  

However, like as the clearness index, this coefficient also depends on various factors, mostly the altitude 

and relative humidity. To verify the coefficient, we have also estimated the coefficient 푎′ in (18) using 

hourly data for summer days, in a sample region, Los Angeles (34.05° N, 118.25° W), with the same 

latitude but a very lower latitude and higher humidity, resulting in 푎′ ≅ 0.00945. The corresponding data 

is illustrated in Figure 5 for a sample warm (July) summer day of that sample region.  

For the lack of any probability density function for the clearness index, this range of uncertainty is dealt 

with by means of fuzzy numbers. Replacing the inverse of (18) in (4) in terms of the midday average 

extraterrestrial radiation for each region, 퐻 , , we will obtain a fuzzy† value as an effective irradiation in 

the third term of the cooling load: 

퐻 , = 퐾 , .퐻 , , (19) 

where, 

퐾 , =
(Δ휃̅)
푎        (20) 

is a fuzzy clearness index for the kth region, obtained based on the average maximum temperature 

difference in summer and a fuzzy coefficient, 푎 = (7.75, 1.85), which is a triangular fuzzy coefficient 

with a center equal to 7.75 and spread of 1.85. Since 푎 = 1/(푎 퐻 ), its fuzzy set is obtained multiplying 

the two sides of 퐻 ,  (e.g. 10.5 [kWh/m2-day] and 11.7 [kWh/m2-day]), by the two values found for 푎′. 

This way, 퐾 ,  is obtained between 0.494 to 0.693 in average for these regions, by which the third term 

can be rewritten in terms of the temperature difference, if only we can relate (Δ휃̅)  to (Δ휃) . It should be 

noted that θmin is usually lower than θd in (11), so Δθ here differs with that of the indoor-outdoor difference, 

i.e. (Δ휃) > (Δ휃̅) , which is assumed to be around 2ºC to 3ºC, depending on the humidity, not exceeding 

4.5ºC for the driest regions. This value is adjusted for each kth region such that the uncertainty range, i.e. 

the spread obtained for the fuzzy clearness indexes, 퐾 , , fall in the ranged obtained from the statistics in 

                                                
† Many other parameters and variables could be easily considered as fuzzy numbers, assuming a center value (μ: average), and a spread (σ: 

deviation) and presented for instance as: ũ = (μ, σ). However, since we have used the average values, this doesn’t significantly impact final 

conclusions.  
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[49], with the sense of equality possibility that fuzzy numbers can have [53].  

 
Figure 4: Hot (warm) hours cumulative sun radiation (Y in kWh) versus cooling degree-hours (X in °C-hrs) 

measurements in Nahavand. Nonlinear and partially linear curve fitting results are also included.  

1.3 Emission estimate via an example region: Europe  

The above bottom-up calculation is applied for all the 12 regions around the world, the results of which 

are given in this section. We are also following the calculations for an example region. Because of more 

accurate and accessible data Europe region is chosen, to which Russia is augmented, and the specifications 

for buildings are assumed as follows:  

The average living space is about 105 m2 per household [58], with about H=3 m of wall height on average. 

The windows cover about w=20% of the walls surface, and qwall and qwin are assumed to be 0.9 and 2.7 

W/m2-ºC, respectively (somewhat lower than the average U values in Table 2 of [21]).  

Then, according to (1), the “per degree” part of PEurop,1 for each typical house is estimated around 138 

W/ºC/hh, where with a rough average temperature difference of 5 ºC between outdoor temperature and 

the convenience temperature for summer days:  

PEU,1= 687 [W/hh].  

Given that the average household size is 2.4, the second part is estimated by (2) as:  

PEU,2 = 809 [W/hh]. 

To calculate the third part, knowing that the latitude is between 40º to 65º, 퐻 ,  is obtained averagely 

around 40 [MJ] (39.1 to 41.5; i.e. 11.1 kWh), and so, 퐻 , = (3.99, 0.671) [kWh/hh/day] is found by 

(19). Finally, by assuming that the warm hours of a summer day in Europe is roughly ℎ = 8 hours (e.g. 

10 am to 6 pm, based on the illustration in Figure 5), a fuzzy 푟̃ , = 퐻 , /ℎ  is applied into (4), and a 

fuzzy PEU,3 is found, which is simply defuzzified by averaging to obtain sEU PEU,3 = 1401 [W/hh]; while 

sk in (8) is assumed to be 25%. This parameter is indeed one of the most sensitive parameters which are 

50 100 150 200 250 300

3

4

5

6

7

8

 

 

Y vs. X
  ax^b+c
  a exp(bx) + c exp(d x)
  Linear (X>100)
  Linear (X>150)
  Linear (X>200)



15 
 

adjusted so that the results admit the existing statistics. 

 
Figure 5: Illustration of the variables defined for relating the solar radiation to the temperature difference based on 

variations of the solar radiation and temperature in a sample summer day of a sample region.  

There is a straightforward calculation to obtain PEU,4 = 147.7 W per household.  

The other parameters and assumptions to be put in (10) and (12) to estimate the total electricity needed 

for cooling in Europe are as follows:  

 No of households (2014): 308 million (0.1% homeless are excluded), 

 Total cooling degree-hours in a year (estimated from cooling degree-days in [57], and [59]-[61]): 

Dhk = 110 (days) × 8 (hours) × 5 (degrees) = 4400, 

 Cooling appliance penetration rate: 60% [42] 

 Cooling appliance average coefficient of performance: CoPEU = 3.7 

 Labor forces: 366 million (2014) [62][42] 

 Unemployment: 11.6% (2014) [62][42] 

 Average working space: 30 m2 [21] 

Thus, through (10) we have estimated that cooling of the residential and total buildings need around EEU_res 

= 151 TWh/year, i.e. 13.8% of the total electricity consumed by households in the Europe region, which 

was 1091 TWh in 2015 [39]. This share, which is sensitive to the parameters estimated/assumed above, is 

very close to the estimate given by [19]. Recall that Russia is included in this region and needs less 

electricity for cooling. Moreover, the annual specific cooling electricity demand is found equal to 17.72 

kWh/m2, which is very close to a weighted average of SCE’s given in [59] for EU-28 countries, if the 

populations are used as weightings, i.e. 17.82.  

Regarding (12), for about 324 = (1 – 0.116) × 366 million employees, each occupying about 30 square 

meters of working space on average [19], and by setting the adjustment ratio in (12) to 1.3, the cooling 

electricity demand for the commercial buildings is estimated at about 225 TWh/year, which means 23.2 

kWh/m2. Reminding again that Russia is also included, this amount of specific electricity consumption is 
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comparable with what can be deduced by [21], i.e. 27.7 kWh/m2. This way, verification of (12) is 

completed, which yields EEU =376 TWh/year, i.e. equal to 8.5% of the total electricity consumption by 

the region in 2015.  

At the final stage, based on the following parameters [62][42]: 

 Transmission and distribution system loss [62][42]: 7% 

 Average efficiency for fossil fuel electricity generation [40]: 40% 

 Share of fossil fuel in electricity generation [41]: 52%  

One can easily find that ηk = (1 – 0.07) × 0.4 = 0.372, and:  

FEU = 526 [TWh/year]. 

Finally, given that coal, natural gas and oil products take part in electricity generation by 47.9%, 45.7% 

and 6.4% shares respectively, burning this combination of fossil fuel releases about 0.285 kilograms CO2 

per kWh of fossil fuels [41], equivalent to about 0.4 kg/kWh GHG for electricity generation [42],[67] 

[65]. This is calculated by a weighted average between different emission factors for fuels and GHGs. It 

translates to the emission of 150 k-tonnes a year to keep the temperature of all living spaces convenient 

for people with air conditioners in the Europe area. This amount is 2.6% of the total amount of 5676 k-

tonnes emitted due to electricity consumption by all sectors of the region in 2014 [42]. Knowing that the 

relations are nonlinear, a simple sensitivity calculation can deduce that the emission of CO2 for cooling in 

summers of this region is between 26 and 27 k-tonnes per degree.   

The same calculation procedure is implemented for all other 11 regions similarly, the data of which are 

summarized in Table 2, along with the final results. It should be mentioned that the collection of data for 

all regions is not an easy task and many estimations should be made to accomplish the procedure. For 

instance, finding numbers for homeless people, people living in slums or urban habitats around the world, 

particularly for Asian and African countries is so difficult, costly, cumbersome and time-consuming. This 

had to be followed searching many different websites such as [63], [64], [65], and [66].   

However, the electrical energy demand for the convenience of human beings in summers, all over the 

world, is estimated by aggregating the values of all groups; that is 2662 TWh, resulting in more than 1558 

k-tonnes of CO2, i.e. around 4.5% of the global emission of CO2 in 2014 [62][42]. Similarly, the total 

global emission to make buildings temperature convenient for people living indoors is somewhat between 

240 and 246 k-tonnes of CO2 per one degree of global warming. It means that if the average global 

temperature increases by one degree, then around 243 k-tonnes of more CO2 will be emitted into the 

atmosphere; i.e. ten folds of what the Europe and Russia region emits. This number will be used for 

simulation in the next section. 
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Table 2: Fossil energy needed for cooling using consumption indices in each region 

Region                                 Index                                         

Living space 

per 

household 

[m2] 

Houses with 

coolers 

[million] 

Degree-

hours per 

year 

[°C-hours] 

Share of 

cooling in 

residential 

electricity 

Residential 

space 

annual 

cooling 

electricity  

[kWh/m2] 

Working 

space 

annual 

cooling 

electricity 

[kWh/m2] 

Fossil fuel 

share in 

electricity 

generation 

[%] 

Annual 

fossil fuel 

consumed 

[TWh/year] 

Average 

CO2 

emission for 

power 

generation 

[gr/kWh] 

Total CO2 

emission for 

cooling 

[kT/year] 

Share in 

total CO2 

emission 

[%] 

[42] 

North America 
USA 205 105.6 8775 18.0 29.9 37.4 68 773 309 

241 4.2 
Canada 186 7.7 2160 0.9 7.5 9.8 20 5.8 315 

Europe 104 184.6 4400 13.5 17.7 23.2 52 519 285 148 2.6 

Oceana 217 6.7 7800 17.5 26.3 32.9 90 76.2 339 26 4.1 

Asia 

East Asia 94 174.1 5445 16.2 23.9 28.7 80 1219 321 391 3.2 

South Asia 98 30.2 10150 14.7 58.5 65.5 81 954 264 252 9.7 

South East 94 27.1 9800 13.7 53.9 60.4 76 440 291 128 9.2 

Central Asia 123 4.9 3850 13.1 19.8 23.7 85 45.9 250 
188 6.4 

Middle East 176 33.6 12400 23.6 57.7 69.2 96 743 238 

Africa 
North Africa 111 8.7 12000 26.9 70.9 78.0 93 200 218 

86 6.5 
Sub-Saharan 107 15.3 12250 18.3 63.7 70.0 64 168 251 

Latin America 140 34.2 9100 26.8 39.4 47.3 50 390 249 97 5.1 

Average 138 - 8094 - 39.1 48.90 71.3 - 278 - - 

World - 630.1 - 17.0 12.6 41.5 69.6 5534 - 1558 34463 
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Loop gain and long-term evolution estimates  

Evidently, there are complexities and nonlinearities between GHG (carbon dioxide) concentration 

and the average global temperature referred to by the pioneers [2]. There are very sophisticated 

almost complete models that can simulate climatic changes [67] or calculate GHG emissions. 

There are estimates on the total effect of CO2 concentration on the temperature that range from 

(1.5-4.5) °C for doubled carbon volume in the atmosphere, where no feedback effect is considered 

[68], to 11.5 °C, if the feedback effects are also simulated [3]. In the literature, there are attempts 

to estimate the parameters using a general simplified system of differential equations as follows: 

푉̇ = 푓(푉,휃) 

휃̇ = 푔(푉, 휃) 

(21)  

(22) 

where 푉 and 휃, as state variables, denote GHG volume in the atmosphere and its average 

temperature, respectively. For instance, a linear equation for 푓(푉, 휃) = 0 and a logarithmic one 

for 푔(푉,휃) = 0 are assumed by [69] to estimate the equilibrium lines. Then, historical data series 

are applied to estimate the probable equilibrium displacement due to anthropogenic emissions.    

However, relying on that the more decomposed is an analysis, the more accurate will be the results, 

the present research merely aims the feedback impact of a single loop made by cooling systems. 

In this regard, the following two differential equations simply describe the dynamics of carbon 

emission and the other GHGs due to the electricity generation/consumption for cooling in 

summers: 

푉̇ = 푢 (푡) + 푓(휃) 

휃̇ = 푔(푉) 

(23)  

(24) 

Herein, 푓(휃) and 푢 (푡) represent GHG emission by cooling electricity generation and all the other 

resources, respectively. Temperature increase caused by GHG concentration is shown by 푔(푉) in 

the second equation. Regardless of sophisticated models, and thinking of a simplified linear model, 

we focus on the estimation of a loop gain at a snapshot, i.e. by freezing the time at the current 

moment.  

Based on the results obtained in the last section, a linear approximation can be substituted for 푓(휃) 

in (23) resulting in: 

Δ푉 = Δ푢 (푡) + τ Δθ (25) 

 with τ = 240 k-tonnes per °C; i.e. a single degree increase in the average temperature around 
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living/working spaces in summer days of each year will cause about 240 k-tonnes of GHG for 

cooling those spaces, in addition to ΔuG emitted from all other resources of GHG.  

1.4 Linearization and approximate relationships  

One may linearize (24) by the first two terms of the Taylor series around a fictitious point, (푉 ,휃 ), 

as follows:  

휃 = 휃 + 푔 . (푉 − 푉 ) (26) 

where 휃  is assumed to be an equilibrium value equal to zero, and 푔 = |  is the slope of a 

tangent line. Assuming a linear relationship between concentrations of CO2 in the atmosphere and 

the average temperature, replaced for (24), we must estimate an almost constant slope (a steady-

state ratio), say κ, to relate annual changes in the temperature anomaly, denoted by Δθ*, to the 

annual carbon dioxide emission in the world: 

Δθ* = κ Δ푉. (27) 

Let us name κ by warming coefficient. Both simulations results made by climate-carbon models 

and linearized approximations reported by researchers indicate that for every trillion tonnes of 

carbon (TtC) emitted to the atmosphere temperature rise would be between 1.0 and 2.1 °C [70]. It 

is noteworthy that research reveals that the proportionality has been historically steady between 

global temperature change and cumulative CO2 emissions for hundreds of years [71]. Moreover, 

recent works mention that the relationship is nonlinear during periods of net negative emissions. 

In fact a hysteresis-like relation appears when a negative emission starts due to a lag in ocean 

response, and then an almost linear relation shows up again [71].  

However, statistics show that the anomaly on the land surface has started to increase noticeably 

faster than the global anomaly since the 1980s. Figure 6 demonstrates how the temperature 

anomaly has been increasing during the last century, where we can clearly observe a distinction 

between the two signals. By sketching statistical data of land surface anomaly since 1960 to 2016 

versus cumulative CE, CCE (Figure 7), one may test if linearization can be successfully applied to 

describe the relationships. The linear curves fitted to data indicate that (26), and consequently (27), 

are acceptable approximations, where κ = 푔 ≈ 0.0074 [°C/GtC]. This implies that the coefficient 

is more than three times of what reported for the global temperature anomaly changes versus 

carbon emission. To be a bit conservative, the coefficient may be assumed κ ≈ 0.0035 [°C/GtC] in 

this paper. 
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Figure 6: Temperature Anomaly, θ*  

Data Source: National Oceanic and Atmospheric Administration: http://www.ncdc.noaa.gov/cag/time-
series/global [72] 

 

Figure 7: Average Land Temperature Anomaly, θ* versus Cumulative Carbon Emission [GtC]  

 

In order to achieve more confidence, we apply a simple one-variable time series model on the 

smoothed variation of temperature anomaly, Δθ*, which is depicted in Figure 8. The two signals 

in the figure are outputs of the two following smoothing filters. 

1) A moving average (MA) smoothing filter (m=n=2): 

푦(푡) = 푀퐴{푥(푡)} = ∑ 푥(푡 + 푖), (28) 

2) A single-rule fuzzy smoothing filter (FS) represented by the following symbol [73]: 

푦(푡) = 퐹푆{푥(푡)}. (29) 

The oscillation pattern due to the sunspots’ cycles with periods between 8 and 14 years (11 years 

on average) is clearly recognizable. Obviously, there is also a random component which is 

probably caused by the amount of CO2 absorbed by oceans [12]; however, modeling of those parts 

of the signal by distinct exogenous variables are not aimed in this research for the sake of 
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simplicity. There are other multi-variant models that employ several variables other than carbon 

emission [74].  

The corresponding power spectrum of Δθ* is estimated by a simple FFT‡ algorithm and the result 

is shown in Figure 9. Although derivative of the anomaly was approximately integrated to zero by 

the middle of the century, it exhibits an obvious trend for after the 1950s, the slope of which is 

gradually shifting to higher tilts in recent decades. Therefore, we would prefer to choose data from 

the recent 61 years for estimation of the warming coefficient, κ, in (27), or 푔  in (26). To do so, 

several (p, q)-order autoregressive (AR) models with a first order moving average (MA) model on 

the error term are chosen to be applied (See the Appendix: ARMAX models): 

푦(푡) = 훼 + ∑ 훼 푦(푡 − 푖) + ∑ κ 푢(푡 − 푗 + 1) + ∑ ε 푒(푡 − 푘), (30) 

where 훼  is the intercept, 훼 ’s, ε ’s and κ ’s are unknown coefficients, the extra input (X), 푢(푡) is 

replaced with the CE or CCE, and 푒(푡) is a normal white noise. The dependent variable 푦(푡) 

maybe either change in the land temperature anomaly, Δθ*, or θ* itself. In both cases, the signals 

can be smoothed by (29). Indeed, we could regress the land temperature anomaly on the 

atmospheric growth of carbon, since these two have higher correlations. However, since it is not 

known how much of the emitted carbon for cooling is absorbed by land or oceans, only the total 

amount participates in the model. Figure 10 shows the trend in 푢(푡), i.e. the total global carbon 

emission, along with the carbon’s atmospheric growth variations [75], [76].  

Depending on the definition of 푦(푡), 푔  or κ would be estimated by the DC-gain from 푢(푡) to 

푦(푡), i.e. global land temperature anomaly, as follows:  

κ = lim
→

∑ κ 푧
1 − ∑ 훼 푧

 (31) 

Among from all cases that (30) could be built by various combinations of the input and output, the 

results are reported just for 푦(푡) = CE and 푢(푡) =  퐹푆{Δ휃∗(푡)}, which won the competition 

between all models [77]. Table 3 includes a summary result of the estimates on κ, varying with (p, 

q), the dynamic orders of the ARMAX model, and with various data sets defined by different 

starting year.   

                                                
‡ Fast Fourier Transform 
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Figure 8: Difference in Temperature Anomaly, Δθ* [°C], smoothed by both moving average (solid line) 

and fuzzy smoothing (dashed line) 

 
Figure 9: Power spectrum of smoothed Δθ*; the high-frequency oscillations are filtered. 

 
Figure 10: Carbon emission trend (billion metric tons of carbon per year) 

Data Source: The Global Carbon Budget, 2016 [75], [76]. 
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Here are more details on the table content. The results obtained based on three sets of data samples 

picked up amongst data given in Figure 10 indicate that κ is in line with the static estimate, but 

perhaps decreasing. For further clarification, κ(t0; p, q) is estimated by setting t0 = 1960 (when 

anomaly was approximately zero), 1970, 1980; p = 2, …, 9, and q = 1, …, 7. This means 3 × 8 × 

7 = 168 parallel models participate in a competition. Then, the estimated models are sorted based 

on a utility proxy computed via the model selection method introduced in [77]. The first three 

models for each of the three data sets are given in the table. It is important to emphasize that 

ranking of the models is based on fourteen various characteristics including the adjusted 

explanatory coefficients, R , the randomness of residuals, significance and dynamic properties of 

the estimated parameters, etc.   

  
Table 3: Estimates of the warming coefficient, κ(t0; p, q) [°C/TtC] 

Data Set 1960 – 2015 (t0 = 1960)  1970 – 2015  1980 – 2015 
(p, q) Utility κ (p, q) Utility κ (p, q) Utility κ 

(5, 1) 0.857 6.20 (3, 1) 0.919 5.83 (3, 1) 0.865 5.87 

(2, 2) 0.857 9.96 (2, 2) 0.859 4.53 (2, 2) 0.854 5.04 
(2, 1) 0.832 9.68 (2, 1) 0.844 3.44 (3, 2) 0.851 4.59 

Weighted 
Average 
κ(푡 ) 

7.267  4.363  5.283 

 

The oscillations period derived from the roots of AR part of the best winning models varies 

between 6.8 to 14 years, mostly centered around eight years. This confirms that the global climatic 

conditions are oscillating with this period (See Figure 9). The best dynamics found showed that 

higher order models would not result in more accurate models, and orders between p=2 and p=5 

have led to the most optimum models.      

The table also contains weighted average values, applying the overall utility value of the models 

as weightings: 

κ(푡 ) =
∑ ( ; , ). ( ; , ),

,

∑ ( ; , ),
,

, (32) 

where 푈(. ) denotes the Utility concerning each estimated κ, and 푁 , =12. Based on the best results 

obtained for each data set, similar calculations are replicated for: 

(p, q) = {(2, 1), (3, 1), (5, 1), (2, 2), (3, 2), (5, 2)}, (33) 

 i.e. the dynamics with higher utilities on average, leading to time-varying κ(푡)’s, where 푡 is the 

starting date of the chosen data set. Because of the increasing uncertainty, the values obtained for 
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푡 > 1995 are omitted to avoid over-parameterized models, with low statistics, e.g. t-student and 

R . It is seen in Figure 11 that the warming rate, κ, was almost constant and lower before the 

energy boost era after the second war. The increasing κ(푡) in 1970 – 1985 indicates an acceleration 

of global warming. Although with lower utility and higher uncertainty, fortunately, the coefficient 

estimated for the last few years has a falling trend, but its behavior in these years is under a big 

question due to its variance, which has signs of future increase. 

Based on the best regressions, κ, as a factor of global warming acceleration, has experienced a 

persistent growth (hitting its highest values in 1985 to 1987) after the Second World War, for fast 

industrial development by widely burning fossil fuels. It seems that thereafter, technological 

progress has gradually helped to control the speed of CO2 emission growth. However, referring to 

Figure 8 and Figure 10, the recent decade witnessed again a rising period with oscillations. Yet, 

there are not enough data samples to apply higher order models in the form of (30) to estimate the 

coefficient for the last two decades. The spreading 16th to 84th percentiles in Figure 11 reveals that 

the uncertainty is more than that one can assure about the future of the coefficient. 

  
Figure 11: Variation in the average values (and µ ± σ) of κ(푡) [°C/TtC]                                                                                                                              
based on the six models as a function of the starting date of the data set     

In summary, the results indicate about 4.3 to 7.2 °C increase in the average land temperature per 

terra tons of additional carbon emitted each year by fossil fuel consumption in the world. It is 

noteworthy that DC-gain refers to a long-term effect (unlike an instant effect) of an input to a 

system. As a pessimistic average, and regarding the slope obtained in Figure 7, let’s take it equal 

to 6 °C/TtC; thus, according to (27) it is estimated that the 1558 kt of additional CO2 in the 

atmosphere for cooling (see Table 2) in a year will cause: 

Δθ = κ Δ푉 = (6 × 10-12) [°C/tonne] × (1558 / 3.667§) × 103 [tonne] = 2.55 × 10-6 °C warmer land 

                                                
§ It should be mentioned that one metric ton of carbon is equivalent to 3.667 metric tons of CO2 [75]. 
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temperature in the next year, just for cooling of buildings. Combining (25) and (27), which simplify 

the cooling positive loop in Figure 2 to Figure 12, it means a loop gain equal to: 

1+6 [°C/TtC tonne] × 240 [kilo tonne/°C] = 1.0000014. 

 
Figure 12: Simplified cooling positive loop     

Although this number seems a tiny one, the point is being grated than one which means a positive, 

and so, reinforcing loop. It is noticeable that due to (25) the total emission of Δ푉 = 36.79 Giga-

tonnes, emitted by all the GHG resources in 2017 [75], warmed up the average global land 

temperature by: 

κ Δ푉 = 6 [°C per TtC] × (36.79 / 3.667) × 109 [tonne] = 6.0 × 10-2 [°C], which is not a small 

amount for an annual increment of the global temperature anomaly. Accordingly, such an increase 

has led to 240 [k-tonnes/°C] × 6.0 × 10-2 [°C] = 14.4 k-tonnes more carbon dioxide in the next year 

to cool buildings.  

 

1.5 Simulation results of temperature anomaly 

Many valuable works that have summarized different forecasts of future global warming are 

published. However, there are too many uncertainties to provide a reliable prediction of the 

climatic responses to the anthropogenic GHG emission changes [3]. Among many, two are referred 

to hereby, which exclude feedbacks. Under different scenarios, it is estimated that until 2100 the 

globe will be warmed up to at least 1.5°C, in the best scenario, and above 4.5°C, hitting 6.1°C, 

even more, in the worst cases, with different probabilities [78], [79].  

In this section, ignoring the short-term oscillations in the temperature anomaly, and based on the 

above mentioned simple linear approximation model, (25) and (27) are used for simulation towards 

the end of the current century. Figure 13 shows the simulation results for two scenarios.  

Other GHG
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Figure 13: Simulation results for the average global anomaly [°C] along with carbon emission 
[GtC/yr] (right), and projection of CO2 emission [kt/yr] from cooling (left); main scenario (low 

emission growth), and the clean energy scenario.                                                                                                                                                         

Noting that the emission from cooling electricity is a very minor part of Δ푉(푡) in (25), for the first 

scenario (low growth) it is assumed that the growth in CO2 emission starting from Δ푢 (푡 = 2017) 

= 3.68 × 1010 tonnes (≈ 10 GtC) is 1.6%, which is the average growth rate of the last decade. Then, 

annual mitigation by 5% will reduce it to about 0.1% by the end of the century.  In a second 

scenario it is assumed that the 30.4% of electricity generation by non-fossil fuels (see Table 2 last 

row) can increase by 1% from 2018 ahead, reaching 60% by the end of the century, while its 

growth rate will be falling by 0.03% annually** (See the negative loop marked in Figure 3). This 

way, although the annual growth rate of carbon emission will be less than 1%, based on a rough 

assumption that half of the emission is absorbed by either oceans or the lands (i.e. the average ratio 

since 1990), the global concentration of carbon will reach to almost 5200 Gigatonnes of CO2 

(equivalent to 1420 GtC or 666 ppm) by the end of the century. This is very close to the projections 

made by the Intergovernmental Panel on Climate Change (IPCC), under the most optimistic 

scenarios [68]. Apparently, if the positive feedbacks from other loops are included, higher rates 

would be achieved [80].  

Consequently, the global average (ocean and land) temperature anomaly will increase from about 

0.8 °C in 2017 to more than 2.8 °C in 2100. The warming is accelerated by about 2% a year at the 

beginning of the simulation period. Based on the above assumptions, this will fall gradually to 

make an average of around 1% a year until the end of the century. This is also the same as the 

results of A1B and B2 scenarios in IPPC reports. However, based on the A1FI (fossil-intensive) 

scenario, the global average temperature may increase by about 4 °C [68], even exceed it hitting 5 

                                                
** Although the past trends were stalled in 2015, and IEA reports show flatness of emission from energy sector for third straight 

year, new reports indicate that global CO2 emission (including all sectors) set to rise 2% in 2017, mostly caused by coal consumption 

in China (https://insideclimatenews.org).  
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°C (median) [78], [79]. Nevertheless, by applying κ = 6 [°C/TtC], the land temperature which will 

be perceived by building residents may pass 7 °C at the end of the century. Hence, in the main 

scenario (low growth) emission from cooling electricity hits 3174 k-tonnes, which causes 

approximately an extra 0.002 °C increase per year.    

The figure also contains results for the “clean energy” scenario, where emission will optimistically 

limit to 13 GtC finally leading to less than 2.6 °C. Since the amount of emission from the cooling 

loop is ignorable compared to the emissions from other sources, there won’t be a remarkable 

change in the temperature anomaly; however, the emissions from this loop will drop to around 

1500 k-tonnes, and then the positive reinforcing loop will bring the growth back to almost the same 

speed as the main scenario, although the total emission will be gradually stalling.   

Electricity generation holds about 16% of the total energy production in the world and the sector 

is responsible for about 12% of CO2 emissions. These ratios are much more for OECD countries 

[81]. Thus, in the second scenario, the global emission may reduce by 10% at most, which doesn’t 

sound a solemn solution for the serious problem of global warming. Whilst, because of the 

electrification growth, it is expected that within the rest of the century the energy sector burns more 

fossil fuel for electricity generation.  

Conclusion and remarks 

There are many causes that are making the globe warmer every year. Many of these causes are 

positively activating closed loops, known as “snowball effect”, which accelerate the changes over 

time. Since a complex system is better analyzed and understood if its components are separately 

analyzed first, one of those positive loops is studied in this research. A bottom-up spread-sheet 

model is developed to estimate cooling electricity load for 12 regions all around the world. The 

load is formulated so that is related to the temperature variations in summer. This way, it can be 

estimated how much more electricity would be consumed for each centigrade of warmer summers. 

Then, fossil fuel shares in electricity generation are used to estimate the amount of GHG (CO2 

equivalent) emission, and to find out how much more GHG would be released in the atmosphere 

per unit of global warming. The estimates show that at the current conditions, almost 240 k-tonnes 

of more GHG would be emitted for cooling per each centigrade of warmer summers. 

On the other hand, by means of parallel ARMAX models, which are fed by historical data of 

carbon-equivalent emissions and temperature anomaly. The coefficient by which the average land 

temperature would increase per each unit of GHG emissions is then estimated based on the model 
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DC-gain. It is concluded that each Gigatonne of GHG would cause about 0.006 °C higher 

temperature anomaly perceived over lands. Hence, the cooling positive loop currently would have 

a loop gain of about 1.0000014.    

Although the loop-gain sounds to be ineffective on the acceleration of global warming, the system 

is nonlinear and so the number would increase fast. Indeed, interconnected positive closed loops 

in Figure 1 may lead to very faster warming. Therefore, it is highly recommended to extend the 

current efforts as much as possible to reduce this gain by renewable energies as shown in Figure 

3. Future studies may focus on the other side of the system to assess how much the lowered heating 

in winters can compensate this positive loop, or how much the fluctuations caused by a wild jet 

stream pattern that has led to colder winters and hotter summers can deteriorate the situation.     

Many scientific reports have addressed the climatic changes caused by natural and/or 

anthropogenic carbon emissions, few have considered feedback effects [3], [69]. A complete 

model is required that connects all subsystems and includes all loops to conclude with higher 

certainty; however, the numbers indicating current growth rates of the factors worsening the case 

imply that the currently ongoing solutions are not promising, and other effective alternatives 

should be considered by the world society. It would be striking to remind that East Asia, North 

America, and Europe are responsible for 34%, 18%, and 17% of CO2 emission and so the global 

warming problem, respectively [81]. Thus, the world community expects these majorities to 

establish applicable solutions before reaching the irreversible point.   
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Appendix: ARMAX models. 

System Identification is a math field for exploring relationships between measured variables in a system, where 
statistical methods are applied for modeling dynamic systems. One common approach is modeling systems regardless 
of any internal complicated interactions (like what is seen in Figure 1)  as black-boxes. It means that no information 
from inside the system is needed/available. Among from various structures used for black-box system identification, 
the Autoregressive Moving Average (ARMA) model provides a parsimonious description of a (weakly) stationary 
stochastic process. The model can be described by two lag polynomials, one for the autoregression (AR) and the 
second for the moving average (MA). The latter usually involves modeling the error term; however, including eXtra 
independent input signal(s) an ARMAX structure is formed as follows:  

푦(푡) = 푐 + 훼 푦(푡 − 푖) + 훽 푢(푡 − 푖) + 훾 푒(푡 − 푖) 

where 푦(푡) is the black-box’s output variable, 푢(푡) denotes its input, and 푒(푡) is an independent identically distributed 
random variable (i.i.d.), sampled from a normal distribution with zero mean, so called white noise. The model structure 
can be represented by a thriple (푛 , 푛 , 푛 ), where the three parameters define system lags fir the output, the input, and 
the error term, tespectively. 
ARMAX models are applied in this research for the development of experimental relationships between variables, 
where the parameters are estimated based on historical measurements. Although static linear curve fitting might be 
sufficient for extracting the required coefficients, ARMAX model is preferred to capture effects of the past values of 
both dependent and explanatory variables, as well as the dynamics in error terms. 
 
See L. Ljung, System Identification: Theory for the user, 1998, Prentice Hall. 
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