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Abstract: This paper applies the direct construction method, symmetry/adjoint symmetry pair method
(SA method), symmetry action on a known conservation law method, Ibragimov’s conservation
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1. Introduction

Conservation laws are essential in many fields of applications. In particular, they are important in
studying the properties of solutions, integrability and in the development of numerical solutions for
partial differential equations (PDEs). From the famous Noether’s theorem for variational problems [1–5]
introduced in Noether’s celebrated 1918 paper, research on orientation has been transferred to
the derivation and application of conservation laws for PDEs. Several systematic approaches have
been established for the calculation of conservation laws, such as the symmetry/adjoint symmetry
pair method (SA method) [5–7], the direct construction method (multiplier approach, variational
derivatives approach) [3–5,7–9], symmetry action on a known conservation law method [5,10],
Ibragimov’s conservation theorem [11] (equivalent to the SA method [12]) and Cheviakov’s recursion
formul [13]. Wolf, Hereman, Temuerchaolu and Cheviakov [14–17] have presented some effective
computer programmes to calculate conservation laws for PDEs.

In the SA method, every conservation law results from a bilinear skew-symmetric identity and
includes the use of any pair consisting of a local symmetry and an adjoint symmetry of a given
PDE system. The symmetry action on a known conservation law method [5,10] directly seeks new
conservation laws for any PDE system from an admitted symmetry action on a known conservation law.
In Ibragimov’s conservation theorem [11], a general formula on conservation laws for arbitrary PDEs
is stated by combining the Lie symmetry generators and adjoint equations with formal Lagrangians.

A system of m-th-order PDEs in N-dependent variables u = (u1, u2, . . . , uN) and n-independent
variables x = (x1, x2, . . . , xn) is given as:

Gα[u] = Gα(x, u, ∂xu, . . . , ∂m
x u) = 0, α = 1, . . . , M (1)
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where ∂xu, ∂2
xu, etc., are all given order derivatives of uσ with respect to x up to m. We suppose

U = (U1, U2, . . . , UN) are arbitrary functions of x, and Uσ
i = ∂Uσ/∂xi, Uσ

ij = ∂2Uσ/∂xi∂xj, etc.
Corresponding total derivatives are written by:

Di =
∂

∂xi
+ Uσ

i
∂

∂Uσ
+ Uσ

ij
∂

∂Uσ
j
+ · · ·+ Uσ

ii1i2···il
∂

∂Uσ
i1i2···il

+ · · · . (2)

We let F[U] represent a function depending on x, U and derivatives of U with respect to x.

Definition 1. If a one-parameter (ε) Lie group of point transformations:

x∗ = x + εξ(x, u) + O(ε2),
u∗ = u + εη(x, u) + O(ε2)

(3)

leaves the PDE system (1) invariant, then (3) is named a point symmetry of PDE System (1), and
ξ = {ξ i(x, u)}n

i=1, η = {ησ(x, u)}N
σ=1 are called the infinitesimals of the point symmetry (3).

Let:

X = ξ i(x, u)
∂

∂xi
+ ησ(x, u)

∂

∂uσ
(4)

be the infinitesimal generator of (3). The k-th extension of the infinitesimal generator (4) is:

X(k) = X + η
(1)σ
i

∂

∂uσ
i
+ . . . + η

(k)σ
i1i2 ...ik

∂

∂uσ
i1i2 ...ik

, k > 1, (5)

where:

η
(1)σ
i = Diη

σ − (Diξ
j)uσ

j ,

η
(k)σ
i1i2 ...ik

= Dik η
(k−1)σ
i1i2 ...ik−1

− (Dik ξ j)uσ
i1i2 ...ik−1 j.

(6)

Here, σ = 1, 2, ..., N, i, ij = 1, 2, ..., n for j = 1, 2, ..., k with k = 2, 3, ...., and Di is the total differentiation
operator (2).

The generator:

X̂ = η̂σ ∂

∂uσ
= [ησ(x, u)− uσ

i ξ i(x, u)]
∂

∂uσ
(7)

is named the characteristic (evolutionary) form of (4).

Definition 2. A local conservation law of PDE System (1) is a divergence expression:

DiΦi[u] = 0, (8)

yielding for all solutions u(x) of (1), and Φi[u] are called the conserved densities (fluxes).

The layout of the rest of this paper is as follows: In Section 2, the direct construction method and
the recursion formula are discussed. In Sections 3 and 4, the SA method and symmetry action on a
known conservation law method for obtaining conservation laws for PDEs are reviewed, respectively.
In Section 5, these approaches are applied to seek conservation laws for a nonlinear telegraph
system, and a comparison is made between the SA method, Ibragimov’s conservation theorem and
the symmetry action on a known conservation law method for conservation laws admitted by such a
nonlinear telegraph equation. Finally, conclusions are summarized in Section 6.
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2. Direct Construction Method

In general, for a given PDE system (1) expressed in a standard Cauchy–Kovalevskaya form,
all non-trivial conservation laws arise from linear combinations of the PDE system (1) with multipliers
that hold non-trivial divergence expressions [4,5,9,18]. In this paper, we suppose that (1) is expressed
in a standard Cauchy–Kovalevskaya form.

Definition 3. A set of multipliers (factors, characteristics) {Λα[U]} yields a divergence expression for the PDE
system (1) if the identity:

Λα[U]Gα[U] = DiΦi[U] (9)

holds for arbitrary functions U(x).

For all solutions Uσ = uσ(x) of given System (1), if {Λα[U]} is non-singular, one has a local
conservation law:

DiΦi[u] = 0 (10)

of System (1).
There are many algorithms for determining the conservation laws of a given PDE system.

The direct construction method especially, introduced in [3–5,7–9], yields the formulas and multipliers
for the corresponding conservation laws when no variational principle exists. Specifically, {Λα[U]}
holds a set of multipliers for a conservation law of System (1) if and only if each Euler operator
(variational derivative):

EUσ =
∂

∂Uσ
+

∞

∑
s≥1

(−1)sDi1 . . . Dis
∂

∂Uσ
i1 ...is

(11)

annihilates the left-hand side of (9), i.e.,

EUσ (Λα[U]Gα[U]) ≡ 0, σ = 1, . . . , N, (12)

for arbitrary Uσ, Uσ
i , Uσ

ij , . . . , etc.
Condition (12) can be separated in regards to Gα[U] and its differential consequences to

hold a set of over-determined linear homogeneous PDEs named the determining system (adjoint
invariance conditions) for multipliers Λα[U]. If (1) is self-adjoint system, i.e., PDE System (1) has a
Lagrangian function, then its multipliers are generators of its admitted continuous (point, contact,
higher order) symmetries in characteristic form subject to additional conditions. For any multiplier
{Λα[U]} of adjoint invariance conditions (12), one can directly calculate the corresponding fluxes
Φj[u] under an integral formula (see [5,7–9]). Zhang [19] has studied successfully the existence of
multipliers for conservation law of PDEs by applying the property of nonlinear self-adjointness with
differential substitution.

Unlike the other methods reviewed in this paper, the direct calculation method yields all local
conservation laws and any order multipliers for PDE systems written in Cauchy–Kovalevskaya form.

Recently, a recursion formula [13] for the construction of local conservation laws of PDEs was
presented by Cheviakov and Naz, which produces a divergence expression including an arbitrary
function of all independent variables, summarized by the following lemma.

Lemma 1. Suppose that PDE System (1) admits a non-trivial local conservation law (8). Then, an arbitrary
differentiable function f = f (x), following the formal divergence expression, vanishes on any given solution
u(x) of (1):

DiΞi ≡ Di( f Φi[u]−
∫

∂ f
∂xi

Φi[u]dxi). (13)
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3. Symmetry/Adjoint Symmetry Pair Method

The symmetry/adjoint symmetry pair method [5–8,20] (SA method) contains the following steps:
(a) linearize the given PDE system using Fréchet derivatives; (b) find the adjoint system of the linearized
system by applying adjoint Fréchet derivatives; (c) find solutions of the linearized system; (d) find
adjoint symmetries of the adjoint system; (e) for any pair, consisting of a adjoint symmetry and a local
symmetry, seek a conservation law directly through the given conservation identity.

The linearizing operator (Fréchet derivative) associated with the PDE system (1) is given by:

Lσ
ρ [U]Vρ = [

∂Gσ[U]

∂Uρ +
∂Gσ[U]

∂Uρ
i

Di + · · ·+
∂Gσ[U]

∂Uρ
i1···ik

Di1 · · · Dik ]V
ρ, σ = 1, ..., M, (14)

with respect to arbitrary functions U(x) = (U1(x), ..., UN(x)) and V(x) = (V1(x), ..., VN(x)).
Suppose also that the PDE system (1) has a point symmetry (3) with an infinitesimal generator (4),

then the symmetry components Vρ = η̂ρ[U] arise from the solutions η̂ρ[u] of the symmetry determining
equations, i.e., the linearized system:

Lσ
ρ [u]η̂

ρ[u] = 0, σ = 1, ..., M (15)

for any solution u(x) of (1).
The adjoint operator (adjoint Fréchet derivative) L∗[U] connected with the PDE system (1) is

obtained formally through integration by parts and is given by:

L∗σρ [U]Wσ =
∂Gσ[U]

∂Uρ Wσ − Di(
∂Gσ[U]

∂Uρ
i

Wσ) + · · ·+ (−1)kDi1 · · · Dik (
∂Gσ[U]

∂Uρ
i1···ik

Wσ), ρ = 1, ..., N, (16)

with respect to an arbitrary function W(x) = (W1(x), ..., WN(x)).
For any solution U(x) = u(x) of (1), a set of functions {ωσ[u]}N

σ=1 that satisfies the adjoint
linearized system:

L∗σρ [u]ωσ[u] = 0, ρ = 1, ..., N, (17)

is named an adjoint symmetry [21,22] of System (1). As a rule, the adjoint system is a subset of
the linear determining equations for local multipliers in the direct construction method.

Theorem 1. For a PDE system (1), any pair consisting of a symmetry components η̂ρ[u] and an adjoint
symmetry {ωσ[u]}N

σ=1, with solution u(x) replaced by an arbitrary function U(x), satisfies the conservation
laws’ identity [5,7,20]:

WσLσ
ρ [U]η̂ρ − η̂ρL∗σρ [U]Wσ = Diψ

i[U] (18)

with:

ψi[U] =
k−1

∑
p=0

k−p−1

∑
q=0

(−1)q(Di1 · · · Dip η̂ρ)× Dj1 · · · Djq(ωσ
∂Pσ[U]

∂Uρ
j1···jqii1···ip

), (19)

where 1 ≤ j1 ≤ · · · ≤ jq ≤ i ≤ i1 ≤ · · · ≤ ip ≤ n.

If U(x) = u(x) in (18) and (19), we obtain a local conservation law Diψ
i[u] = 0 of the PDE

system (1), resulting from a pair of symmetry and adjoint symmetry for (1).
Recently, Ma [23] has utilized the pairs of symmetries and adjoint symmetries for presenting

conservation laws of discrete evaluation equations without a Lagrangian.



Symmetry 2018, 10, 182 5 of 17

4. Symmetry Action on a Known Conservation Law Method

More than a decade ago, symmetry action on a known conservation law method [5,10] was
introduced firstly by Bluman, Temuerchaolu and Anco. Since this method establishes a significant
relationship between the symmetries and conservation laws of given DE systems without a Lagrangian,
we review it in this section. In order to demonstrate the application of this method, we will introduce
the process of constructing conservation laws of a nonlinear telegraph system in Section 5.3.

In symmetry action on a known conservation law method, the authors have presented two
important formulas related to constructing new conservation laws for any system of PDEs from
the known conservation law through the action of an invertible transformation. The first formula
transforms any conservation law of a PDE system (1) to the corresponding conservation law of
the system obtained under a contact transformation. When the contact transformation is a symmetry,
the second formula checks a priori whether the action of a (continuous or discrete) symmetry on a
conservation law of (1) yields one or more new conservation laws of (1).

4.1. Contact Transformation Action on a Conservation Law

Consider an invertible contact transformation [5,10] acting on (z, W, ∂zW)-space:

xi = xi(z, W, ∂zW), i = 1, . . . , n,
Uσ = Uσ(z, W, ∂zW), σ = 1, . . . , N,
Uσ

i = Uσ
i (z, W, ∂zW)

(20)

with Uσ
i given by the formula: 

Uσ
1

Uσ
2
·
·
·

Uσ
n


= A−1[W]



D̃1Uσ
1

D̃2Uσ
2

·
·
·

D̃nUσ
n


(21)

with respect to the inverse of the Jacobian matrix of xi (i = 1, 2, · · ·, n) in (20) given by:

A[W] =



D̃1x1 D̃1x2 · · · D̃1xn

D̃2x1 D̃2x2 · · · D̃2xn

· · · · · ·
· · · · · ·
· · · · · ·

D̃nx1 D̃nx2 · · · D̃nxn


, (22)

and the total derivative operators:

D̃i =
∂

∂zi
+ Wσ

i
∂

∂Wσ
+ Wσ

ij
∂

∂Wσ
j
+ · · ·+ Wσ

ii1i2···il
∂

∂Wσ
i1i2···il

+ · · · (23)

in terms of the independent variables zi. Here, W = (W1, . . . , WN) expresses arbitrary functions
of z = (z1, . . . , zn); Wσ

i = ∂Wσ/∂zi, Wσ
ij = ∂2Wσ/∂zi∂zj, etc.; and ∂k

zW denotes all k-th-order partial
derivatives of Wσ with respect to zi.
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The contact transformation (20) naturally extends to the (z, W, ∂zW, ..., ∂k
zW)-space:

xi = xi(z, W, ∂zW), i = 1, . . . , n,
Uσ = Uσ(z, W, ∂zW), σ = 1, . . . , N,
Uσ

i = Uσ
i (z, W, ∂zW),
.
.
.

Uσ
i1···ik = Uσ

i1···ik (z, W, ∂zW, ..., ∂k
zW).

(24)

Through a contact transformation (20), a function Gα[U] is transformed to some function
Hα[W]. Especially,

Hα[W] = Gα[U] (25)

after the coordinates of Gα[U] are represented in regard to (24). If Uσ = uσ(x) solves PDE System (1),
then correspondingly, Wσ = wσ(z) solves PDE system:

Hα[w] = 0, (26)

involving dependent variables wσ(z) and independent variables zi. The following theorem and its
proof appear in [5,10].

Theorem 2. Suppose (10) is a conservation law of PDE System (1). Through the contact transformation (20),
there exist differentiable functions {Ψi[W]}n

i=1 such that the formula:

J[W]DiΦi[U] = D̃iΨi[W] (27)

holds, where Ψi[W] is given explicitly in light of the determinant obtained through replacing the i-th column of
the Jacobian determinant (see (22)):

J[W] =
D(x1, . . . , xn)

D(z1, . . . , zn)
= detA[W] (28)

by [Φ1[U], Φ2[U], . . . , Φn[U]]>, i.e.,

Ψi1 [W] = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1[U] D̃i2 x1 · · · D̃in x1

Φ2[U] D̃i2 x2 · · · D̃in x2

· · · · · ·
· · · · · ·
· · · · · ·

Φn[U] D̃i2 xn · · · D̃in xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (29)

where (i1, i2, . . . , in) represents all cyclic permutations of the indices 1, 2, ..., n and the “±” is chosen according
to (i1, i2, . . . , in) = (1, 2, . . . , n), (2, 3, . . . , 1), . . . , (n, 1, . . . , n− 1) being alternately even and odd.

From Theorem 2 above, one easily obtains the next important result.

Corollary 1. Through a contact transformation (20), a conservation law (10) for PDE System (1) is transformed
to the conservation law:

D̃iΨi[w] = 0 (30)

for PDE system (26) with fluxes Ψi[w] given by (29) for any W = w(z) solving PDE System (26).
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4.2. Symmetry Action on a Conservation Law

In this subsection, we show that the action of a symmetry on a conservation law of PDE System (1)
could yield new conservation laws of (1) when the contact transformation (20) is a symmetry. Since a
symmetry of (1) leaves invariant the solution manifold of (1), there exist specific functions Aβ

α [W] so
that (25) is of the form:

Gα[U] = Hα[W] = Aβ
α [W]Gβ[W]. (31)

Therefore, through Formulas (27) and (29), one obtains:

Corollary 2. If (20) is a symmetry of PDE System (1), then the local conservation law (10) of System (1) is
transformed to a conservation law:

DiΨi[u] = 0 (32)

of (1) with fluxes Ψi[u] where Ψi[W] is given by (29).

Corollary 2 explains that a symmetry (20) acting on a known conservation law (10) of PDE System
(1) holds the conservation law (32) of (1) with the help of Formula (27). Now, through the next
theorem [5,10], one can check a priori whether or not the action of a symmetry (20) on a conservation
law (10) yields new conservation laws (32) of (1).

Theorem 3. Suppose (20) is a symmetry of (1). If {Λα[U]} is a set of multipliers for a conservation law of
PDE System (1) with fluxes Φi[u], then:

Λ̂β[W]Gβ[W] = D̃iΨi[W] (33)

where:
Λ̂β[W] = J[W]Aβ

α [W]Λα[U], β = 1, . . . , M, (34)

with U = U(z, W) and its derivatives given by the transformation (24). In (33), Ψi[W] is given by (29), and
in (34), J[W] and Aβ

α [W] arise from (28) and (31), respectively.

Corollary 3. If {Λα[U]} is a set of multipliers of (1) admitting (20), then {Λ̂β[U]} yields a set of multipliers
of (1) where Λ̂β[U] is given by (34) after replacing zi by xi, Wσ by Uσ, Wσ

i by Uσ
i , etc.

Suppose contact transformation is a one-parameter (ε) Lie group of point transformation [2,24],
then one has:

xi = zi + εξi(z, W, ∂zW) + O(ε2), i = 1, . . . , n,
Uσ = Wσ + εησ(z, W, ∂zW) + O(ε2), σ = 1, . . . , N.

(35)

The extended infinitesimal generator X̃ associated with (35) can be written as:

X̃ = ξ j[W]
∂

∂zj
+ ησ[W]

∂

∂Wσ
+ ησ

i [W]
∂

∂Wσ
i
+ · · ·+ ησ

i1···ik [W]
∂

∂Wσ
i1···ik

+ · · · (36)

with:
ησ

i [W] = D̃iη
σ[W]− (D̃iξ j[W])Wσ

j , i = 1, · · · , n,
ησ

i1···ik [W] = D̃ik ησ
i1···ik−1

[W]− (D̃ik ξ j[W])Wσ
i1···ik−1 j, σ = 1, · · · , N,

(37)

where il = 1, · · · , n for l = 1, . . . , k, k > 2. In terms of (36), one has xi = exp(εX̃)zi, Uσ =

exp(εX̃)Wσ, Uσ
i = exp(εX̃)Wσ

i , ... . Let X = ξ j[U] ∂
∂xj

+ ησ[U] ∂
∂Uσ + ησ

i [U] ∂
∂Uσ

i
+ · · · +

ησ
i1···ik [U] ∂

∂Uσ
i1 ···ik

+ · · · .
Now, suppose (35) is a point symmetry of (1). Then, one has an important result:

XGα[U] = aβ
α [U]Gβ[U] (38)
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for some functions aβ
α [U]. Consequently, it is easy to see that:

XkGα[U] = (aβ
α [U]k)Gβ[U] (39)

where aβ
α [U]1 = aβ

α [U] and, for k > 1, aβ
α [U]k+1 = Xaβ

α [U]k + aγ
α [U]kaβ

γ[U].
Now, let two determinants:

J[U; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

D1(eεXx1) D1(eεXx2) · · · D1(eεXxn)

D2(eεXx1) D2(eεXx2) · · · D2(eεXxn)

· · · · · ·
· · · · · ·
· · · · · ·

Dn(eεXx1) Dn(eεXx2) · · · Dn(eεXxn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(40)

and:

Ψi1 [U; ε] = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣

eεXΦ1[U] eεXΦ2[U] · · · eεXΦn[U]

Di2(e
εXx1) Di2(e

εXx2) · · · Di2(e
εXxn)

· · · · · ·
· · · · · ·
· · · · · ·

Din(e
εXx1) Din(e

εXx2) · · · Din(e
εXxn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (41)

The following theorem and its proof appear in [5,10].

Theorem 4. Suppose (35) is a point symmetry of PDE System (1) and {Λα[U]} is a set of multipliers for a
conservation law of PDE system (1) with fluxes {Φj[u]}. Suppose J[U; ε] and Ψi[U; ε] are expressed by (40)
and (41), respectively. Then,

Λ̂β[U]p = ∑
n+k+l=p

1
n!k!l!

(aβ
α [U]l)(XkΛα[U])

dn

dεn J[U; ε]|ε=0, β = 1, . . . , M, (42)

defines sets of multipliers for conservation laws of (1) with fluxes given by:

Ψi[u]p =
1
p!

dp

dεp Ψi[u; ε]|ε=0 (43)

for p = 0, 1, 2, . . . ; Λ̂β[U]0 = Λβ[U], Ψi[u]0 = Φi[u], aβ
α [U]0 = δαβ.

If PDE System (1) involves x = (x1, x2) = (t, x) and u = (u1, u2) = (u, v), one obtains:

X = τ(x, t, u, v) ∂
∂t + ξ(x, t, u, v) ∂

∂x + η(x, t, u, v) ∂
∂u + φ(x, t, u, v) ∂

∂v + · · · ,
Dt =

∂
∂t + ut

∂
∂u + vt

∂
∂v , Dx = ∂

∂x + ux
∂

∂u + vx
∂

∂v .
(44)

Thus, for p = 1, one has:

Λ̂α[U]1 = (Dtτ + Dxξ)Λα[U] + XΛα[U] + aα
β[U]Λβ[U], (45)

Ψ1[U]1 = XΦ1[U] + Φ1[U]Dxξ −Φ2[U]Dxτ,
Ψ2[U]1 = XΦ2[U] + Φ2[U]Dtτ −Φ1[U]Dtξ,

(46)

in terms of multipliers {Λα[U]} for a known conservation law with fluxes Φ1[u] and Φ2[u].
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5. Conservation Laws for a Nonlinear Telegraph System

For the sequel, x1 = t, x2 = x, u1 = u(x, t), u2 = v(x, t), U1 = U(x, t), U2 = V(x, t), z1 = t̃, z2 =

x̃, w1 = ũ(x̃, t̃), w2 = ṽ(x̃, t̃) and W1 = Ũ(x̃, t̃), W2 = Ṽ(x̃, t̃), W = (W1, W2).
To illustrate the above approaches, we consider as an example nonlinear telegraph (NLT)

systems [10,25–27] of the form:

G1[u, v] = vt − P(u)ux −Q(u) = 0, G2[u, v] = ut − vx = 0, (47)

where P(u) and Q(u) are arbitrary functions with respect to u.
Suppose P(u) = sec2 u, Q(u) = tan u [26]. Then, (47) becomes:

G1[u, v] = vt − (sec2 u)ux − tan u = 0, G2[u, v] = ut − vx = 0. (48)

The NLT system (48) admits three translations [27]:

t = t̃ + ε, x = x̃, u = ũ, v = ṽ, (49a)

t = t̃, x = x̃, u = ũ, v = ṽ + ε, (49b)

t = t̃, x = x̃ + ε, u = ũ, v = ṽ (49c)

as well as the one-parameter Lie group of point transformation [26]:

t∗ = t cos ε− v sin ε, x∗ = x + ln | cos(u + ε)/ cos u |, u∗ = u + ε, v∗ = v cos ε + t sin ε, (50)

yielding four point symmetries with the infinitesimal:

ξ = −C1 tan u + C3, τ = −C1v + C2, η = C1, ζ = C1t + C4. (51)

5.1. Direct Construction Method for NLT Systems (48)

From the determining system (12) for multipliers, one obtains the five zeroth-order multipliers
Λ1 = Λ1(x1, x2, U1, U2) and Λ2 = Λ2(x1, x2, U1, U2) for the NLT system (48), given by:

(Λ1
1, Λ2

1) = (ex(2x + t2 + V2 − 2 ln | cos U |), 2ex(t + V tan U)), (52a)

(Λ1
2, Λ2

2) = (tex, ex), (Λ1
3, Λ2

3) = (Vex, ex tan U), (Λ1
4, Λ2

4) = (0, 1), (Λ1
5, Λ2

5) = (ex, 0). (52b)

Then, from (9) and (52), one has the five fluxes of (48) satisfying ∂
∂t Φt

i [u, v] +
∂

∂x Φx
i [u, v] = 0, i = 1, 2, ..., 5 with:

(Φt
1, Φx

1) = (ex[2tu +
1
3

v3 + v(2 + t2 + 2x− 2 ln | cos u |)],

ex[(−v2 − t2 − 2x + 2(1 + ln | cos u |)) tan u− 2(tv + u)]);

(Φt
2, Φx

2) = (ex(tv + u),−ex(v + t tan u));

(Φt
3, Φx

3) = (ex(
1
2

v2 − ln | cos u |),−vex tan u);

(Φt
4, Φx

4) = (u,−v);

(Φt
5, Φx

5) = (exv,−ex tan u).

(53)
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5.2. SA Method for NLT Systems (48)

The conservation laws for (48) are now derived by using the SA method. From (14) and (16), one
obtains the linearizing operator:

L =

[
− sec2 u(1 + 2 tan uux + Dx) Dt

Dt −Dx

]
(54)

and the adjoint linearizing operator:

L∗ =

[
sec2 u(Dx − 1) −Dt

−Dt Dx

]
. (55)

The NLT system (48) has four point symmetries (51) with infinitesimal generators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂v
, X4 = −v

∂

∂t
− tan u

∂

∂x
+

∂

∂u
+ t

∂

∂v
. (56)

Using (7), the corresponding four sets of η̂ρ[u] in characteristic form are given by:

X1 → η̂1 = (η̂1
1 , η̂1

2) = (−ut,−vt), X2 → η̂2 = (η̂2
1 , η̂2

2) = (−ux,−vx),
X3 → η̂3 = (η̂3

1 , η̂3
2) = (0, 1), X4 → η̂4 = (η̂4

1 , η̂4
2) = (1 + vut + tan uux, t + vvt + tan uvx),

(57)

these can be obtained from the combination of the linearizing system (15) and linearizing operator (54).
From (17) and (55), one obtains the adjoint linearized system:

L∗ωσ =

[
sec2 u(Dx − 1) −Dt

−Dt Dx

][
ω1

i
ω2

i

]
=

[
0
0

]
(58)

for functions ω1
i = ω1

i (x, t, u, v) and ω2
i = ω2

i (x, t, u, v). Solving (58), one obtains the following five
solutions (adjoint symmetries):

(ω1
1 , ω2

1) = (ex(2x + t2 + v2 − 2 ln | cos u |), 2ex(t + v tan u)), (ω1
2, ω2

2) = (tex, ex),
(ω1

3 , ω2
3) = (vex, ex tan u), (ω1

4 , ω2
4) = (0, 1), (ω1

5, ω2
5) = (ex, 0).

(59)

Now, after substituting η̂2 = (η̂2
1 , η̂2

2) in (57) and (ω1
1 , ω2

1) in (59) into (18) and after cancellation of
trivial conservation terms, one yields the conservation law with fluxes:

ψt
1 = ex[2tu + 1

3 v3 + v(2 + t2 + 2x− 2 ln | cos u |)],
ψx

1 = ex[(−v2 − t2 − 2x + 2(1 + ln | cos u |)) tan u− 2(tv + u)].
(60)

Using all pairs 〈η̂ρ, (ω1
σ, ω2

σ)〉(ρ = 1, 2, 3, 4, σ = 1, 2, 3, 4, 5) from (57) and (59), one obtains another
three conservation laws of (48), with flux components:

〈η̂1, (ω1
2 , ω2

2)〉, 〈η̂2, (ω1
5 , ω2

5)〉, 〈η̂3, (ω1
3 , ω2

3)〉 : (ψt
2, ψx

2 ) = [exv,−ex tan u];
〈η̂1, (ω1

1 , ω2
1)〉, 〈η̂2, (ω1

2 , ω2
2)〉, 〈η̂4, (ω1

3 , ω2
3)〉 : (ψt

3, ψx
3 ) = [ex(tv + u),−ex(v + t tan u)];

〈η̂3, (ω1
1 , ω2

1)〉, 〈η̂2, (ω1
3 , ω2

3)〉, 〈η̂4, (ω1
2 , ω2

2)〉 : (ψt
4, ψx

4 ) = [ex( 1
2 v2 − ln | cos u |),−vex tan u].

(61)

5.3. Symmetry Action on Known Conservation Laws for NLT System (48)

One can show that NLT System (48) has a conservation law with fluxes (60), and it produces a set
of multipliers (52a):

Λ1[U] = ex(2x + t2 + V2 − 2 ln | cos U |), Λ2[U] = 2ex(t + V tan U). (62)



Symmetry 2018, 10, 182 11 of 17

The NLT system (48) admits three continuous translation symmetries (49) and the point symmetry
with infinitesimal generator:

X = −V
∂

∂t
− tan U

∂

∂x
+

∂

∂U
+ t

∂

∂V
(63)

resulting from (51).
(I) Under the translation symmetry (49):
Under the symmetry (49), one has J[W] = 1, H1[W] = G1[U] = G1[W], H2[W] = G2[U] = G2[W].

Thus, in (31), one yields A1
1[W] = 1, A2

2[W] = 1, A2
1[W] = A1

2[W] = 0. After using the translation
symmetry (49a) for the known conservation law resulting from the multipliers (62) with fluxes (60),
from Formula (34) and Corollary 3, one obtains:

Λ̂1[W] = ex̃[2x̃ + t̃2 + 2εt̃ + ε2 + Ṽ2 − 2 ln | cos Ũ |] = Λ1[W] + 2t̃ex̃ε + ex̃ε2,
Λ̂2[W] = 2ex̃(t̃ + ε + Ṽ tan Ũ) = Λ2[W] + 2ex̃ε.

(64)

Then, applying the first formula (29), one obtains:

Ψ1[W] = Φ1[W] + 2ex̃(t̃Ṽ + Ũ)ε + Ṽex̃ε2,
Ψ2[W] = Φ2[W]− 2ex̃(t̃ tan Ũ + Ṽ)ε− ex̃ tan Ũε2.

(65)

Comparing (62) and (64), one sees that the O(ε) terms in (64) and (65) hold new multipliers:

λ1[U] = Λ̃1[U]1 = tex, λ2[U] = Λ̃2[U]1 = ex (66)

and the corresponding conservation law with fluxes:

φ1[u] = Ψ1[u]1 = ex(tv + u),
φ2[u] = Ψ2[u]1 = −ex(t tan u + v);

(67)

the O(ε2) terms in (64) and (65) hold the new multipliers and fluxes:

Λ̃1[U]2 = ex, Λ̃2[U]2 = 0, Ψ1[u]2 = vex, Ψ2[u]2 = −ex tan u. (68)

Similarly, after using the translation symmetry (49b) for the known conservation law resulting
from the multipliers (62) with fluxes (60), Formula (34) leads to:

Λ̌1[W] = ex̃[2x̃ + t̃2 + Ṽ2 + 2εṼ + ε2 − 2 ln | cos Ũ |] = Λ1[W] + 2Ṽex̃ε + ex̃ε2,
Λ̌2[W] = 2ex̃(t̃ + Ṽ tan Ũ + ε tan Ũ) = Λ2[W] + 2ex̃ tan Ũε.

(69)

Then, Formula (29) yields:

Ψ̌1[W] = Φ1[W] + ex̃( 1
2 Ṽ2 − ln | cos Ũ|)ε + Ṽex̃ε2,

Ψ̌2[W] = Φ2[W]− ex̃Ṽ tan Ũε− ex̃ tan Ũε2.
(70)

Comparing (62) and (69), one holds two conservation laws of NLT System (48). Firstly, the O(ε)

terms in (69) and (70) yield new multipliers:

Λ̃1[U]3 = Vex, Λ̃2[U]3 = ex tan U (71)

and fluxes:
Ψ1[u]3 = ex( 1

2 v2 − ln | cos u|),
Ψ2[u]3 = −vex tan u;

(72)

secondly, the O(ε2) terms in (69) and (70) hold also the multipliers and fluxes (68).
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(II) Under the point symmetry (63):
Under the point symmetry (63), one obtains XG1[U] = (Vt + Ux sec2 U + tan U)G1[U], XG2[U] =

(Vt + Ux sec2 U)G2[U], and thus, in (38), one obtains a1
1[U] = Vt + Ux sec2 U + tan U, a2

1[U] =

a1
2[U] = 0, a2

2[U] = Vt + Ux sec2 U. The admitted point symmetry (63) is used for the O(ε) term
conservation law with fluxes (67). Then, in (45) with Λ1[U] = λ1[U] = tex, Λ2[U] = λ2[U] = ex

given by (66), we have τ = −V, ξ = − tan U, Xλ1[U] = −ex(V + t tan U) and Xλ2[U] = −ex tan U.
Therefore, here, (45) obtains a third multiplier generated by:

λ̂1[U]1 = Vex, λ̂2[U]1 = ex tan U. (73)

Hence, Formula (46) with Φ1[U] = φ1[U], Φ2[U] = φ2[U] given by (67), obtains a conservation
law for NLT System (48) with fluxes:

φ1[u]1 = ex( 1
2 v2 − ln | cos u |),

φ2[u]1 = −vex tan u,
(74)

which is the same as (72).

5.4. Ibragimov’s Conservation Theorem for NLT Systems (48)

In order to further reveal the relationship between the SA method and Ibragimov’s conservation
theorem in the next subsection, the construction of conservation laws of NLT System (48) is firstly
viewed by using Ibragimov’s conservation theorem in this subsection.

With the help of Lie symmetry generators (4), formal Lagrangian L = µαGα[11,28] (where
µα = µα(xi, uσ) are new adjoint variables (multipliers)) and adjoint equation system:

G∗α [u, µ] = Euσ L = 0, α = 1, 2, ..., M, σ = 1, 2, ..., N, (75)

Ibragimov [11] proved the following so-called new conservation theorem.

Theorem 5. Every Lie point symmetry (3) with (4) of PDE System (1) holds a conservation law for PDE
System (1) and adjoint equation System (75). The conserved vectors are given by the formula:

Ti = ξ iL + Wσ δL
δuσ

i
+ ∑

s>1
Di1 . . . Dis(W

σ)
δL

δuσ
ii1 ...is

, (76)

where i = 1, ..., n, σ = 1, ..., N and Wσ = ησ − ξ juσ
j (characteristic functions of (7)).

We can obtain the Lagrangian of NLT System (48) with:

L = µ1(vt − sec2 uux − tan u) + µ2(ut − vx), (77)

where µ1 = µ1(x, t, u, v) and µ2 = µ2(x, t, u, v) are two new adjoint variables. Using (75), the adjoint
equation system can be obtained with the aid of formal Lagrangian (77) for NLT System (48) as:

F∗1 = EuL = µ2
t + (µ1 − µ1

x) sec2 u = 0,
F∗2 = EvL = −µ1

t + µ2
x = 0.

(78)

The multipliers determining Equation (12) are connected closely with the determining equations
for adjoint symmetries (17) [21,22] and the determining equations for adjoint variables µα = µα(xi, uσ)



Symmetry 2018, 10, 182 13 of 17

of formal Lagrangian L. Thus, with the help of the multiplier determining Equation (12), one can
obtain the solutions of adjoint equation System (78), which are given by:

(µ1
1, µ2

1) = (ex(2x + t2 + v2 − 2 ln | cos u |), 2ex(t + v tan u)), (µ1
2, µ2

2) = (tex, ex),
(µ1

3, µ2
3) = (vex, ex tan u), (µ1

4, µ2
4) = (0, 1), (µ1

5, µ2
5) = (ex, 0).

(79)

Now, after substituting X2 in (56) and (µ1
1, µ2

1) in (79) into (76) and after cancellation of trivial
conservation terms, one obtains the conservation laws with fluxes:

Tt
1 = ex[2tu + 1

3 v3 + v(t2 + 2x + 2− 2 ln | cos u |)],
Tx

1 = ex[(−v2 − t2 − 2x + 2(1 + ln | cos u |)) tan u− 2(tv + u)].
(80)

Similarly, using the combinations 〈Xi, (µ1
j , µ2

j )〉(i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5) for (56) and (79), one
obtains another three conservation laws of (48) from (76), with fluxes:

〈X1, (µ1
2, µ2

2)〉, 〈X2, (µ1
5, µ2

5)〉, 〈X3, (µ1
3, µ2

3)〉 : (Tt
2, Tx

2 ) = [exv,−ex tan u];
〈X1, (µ1

1, µ2
1)〉, 〈X2, (µ1

2, µ2
2)〉, 〈X4, (µ1

3, µ2
3)〉 : (Tt

3, Tx
3 ) = [ex(tv + u),−ex(v + t tan u)];

〈X2, (µ1
3, µ2

3)〉, 〈X3, (µ1
1, µ2

1)〉, 〈X4, (µ1
2, µ2

2)〉 : (Tt
4, Tx

4 ) = [ex( 1
2 v2 − ln | cos u |),−vex tan u].

(81)

5.5. Comparison of These Methods for Conservation Laws

We can calculate several conservation laws for the NLT system (48) under the direct construction
method, SA method, symmetry action on a known conservation law method and Ibragimov’s theorem.
Although these methods are different ostensibly, the constructions of the conservation laws are related
to each other virtually. Recently, Anco [12] has found that Ibragimov’s conservation law formula (76) is
a simple re-writing of a special situation of the bilinear skew-symmetric identity (18) using symmetries
and adjoint symmetries.

The adjoint system (58) for NLT System (48) from the Fréchet derivative identity (adjoint operator)
(16) is equivalent to the adjoint equation system (78) through the formal Lagrangian (77). Hence,
the solutions (adjoint symmetries) (59) of adjoint System (58) and solutions (79) of adjoint equation
System (78) are equal, i.e, (ω1

j , ω2
j ) = (µ1

j , µ2
j ), j = 1, 2, ..., 5. Moreover, the characteristic form (57) is

given directly from symmetry components in point symmetries (51) with infinitesimal generators (56).
From Table 1, we obviously investigate the relationship between (ψt

k, ψx
k ) and (Tt

k , Tx
k ) for NLT System

(48), which is as follows

(ψt
1, ψx

1 ) = (Tt
1, Tx

1 ), (ψ
t
2, ψx

2 ) = (Tt
2, Tx

2 ), (ψ
t
3, ψx

3 ) = (Tt
3, Tx

3 ), (ψ
t
4, ψx

4 ) = (Tt
4, Tx

4 ). (82)

The results again shows that the conservation theorem presented by Ibragimov along with some
of its extensions are shown to comprise a special case of a conservation identity (18) for the SA method.

Otherwise, we see that the action of the point symmetry X = X4 action on a multiplier (λ1, λ2) =

(ω1
3, ω2

3) and its corresponding conserved quantity (φ1, φ2) = (ψt
3, ψx

3 ) produce a new multiplier
(λ̂1

1, λ̂2
1) = (ω1

2, ω2
2) and its corresponding conserved quantity (φ1

1, φ2
1) = (ψt

4, ψx
4 ) in Section 5.3 (II)

with Section 5.2. This shows that the SA method and symmetry action on a known conservation law
method are connected strictly to each other for calculating conservation laws in the framework of
symmetry theory and multiplier algebra in this example.
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Table 1. Comparison of the symmetry/adjoint symmetry pair method (SA method) and Ibragimov’s
theorem for nonlinear telegraph (NLT) System (48).

Symmetry/Adjoint Symmetry Pair Method Ibragimov’s Theorem

〈η̂i, (ω1
j , ω2

j )〉 (ψt
k, ψx

k ) 〈Xi, (µ1
j , µ2

j )〉 (Tt
k , Tx

k )
〈η̂2, (ω1

1 , ω2
1)〉 (ψt

1, ψx
1 ) 〈X2, (µ1

1, µ2
1)〉 (Tt

1, Tx
1 )

〈η̂1, (ω1
2 , ω2

2)〉 (ψt
2, ψx

2 ) 〈X1, (µ1
2, µ2

2)〉 (Tt
2, Tx

2 )
〈η̂1, (ω1

1 , ω2
1)〉 (ψt

3, ψx
3 ) 〈X1, (µ1

1, µ2
1)〉 (Tt

3, Tx
3 )

〈η̂2, (ω1
2 , ω2

2)〉 (ψt
3, ψx

3 ) 〈X2, (µ1
2, µ2

2)〉 (Tt
3, Tx

3 )
〈η̂2, (ω1

3 , ω2
3)〉 (ψt

4, ψx
4 ) 〈X2, (µ1

3, µ2
3)〉 (Tt

4, Tx
4 )

〈η̂2, (ω1
5 , ω2

5)〉 (ψt
2, ψx

2 ) 〈X2, (µ1
5, µ2

5)〉 (Tt
2, Tx

2 )
〈η̂3, (ω1

1 , ω2
1)〉 (ψt

4, ψx
4 ) 〈X3, (µ1

1, µ2
1)〉 (Tt

4, Tx
4 )

〈η̂3, (ω1
3 , ω2

3)〉 (ψt
2, ψx

2 ) 〈X3, (µ1
3, µ2

3)〉 (Tt
2, Tx

2 )
〈η̂4, (ω1

2 , ω2
2)〉 (ψt

4, ψx
4 ) 〈X4, (µ1

2, µ2
2)〉 (Tt

4, Tx
4 )

〈η̂4, (ω1
3 , ω2

3)〉 (ψt
3, ψx

3 ) 〈X4, (µ1
3, µ2

3)〉 (Tt
3, Tx

3 )

5.6. Cheviakov’s Recursion Formula for NLT (48)

In [13], the relationships between the recursion formula (13) with symmetry action on a
known conservation law method and a direct conservation construction method are discussed.
Since the function f (x) is only related to the independent variables, this leads to this formula being
insufficient for constructing all conservation laws. We have found that if all equations of PDE System (1)
are divergence expressions, the recursion formula (13) can be used in f = f (x, u) with independent
variables x = {xi}n

i=1 and dependent variables u = {uk(x)}N
k=1. For example, if we introduce a simple

multiplier ex in the first equation of (48), it becomes an apparent divergence system as follows:

G̃1[u] = ex(vt − sec2 uux − tan u) = Dt(vex) + Dx(−ex tan u) = 0,
G̃2[u] = ut − vx = Dt(u) + Dx(−v) = 0.

(83)

With the help of (12), one obtains five multipliers:

( f 1
1 , f 2

1 ) = (2x + t2 + v2 − 2 ln | cos u |, 2ex(t + v tan u)),
( f 1

2 , f 2
2 ) = (t, ex), ( f 1

3 , f 2
3 ) = (v, ex tan u), ( f 1

4 , f 2
4 ) = (0, 1), ( f 1

5 , f 2
5 ) = (1, 0).

(84)

Using the recursion formula (13) with DiΞi = f (x, u)DiΨi[u], one obtains the first conservation
law for (48) with ( f 1

1 , f 2
1 ) of (84) given by:

(2x + t2 + v2 − 2 ln | cos u|)[Dt(exv) + Dx(−ex tan u)] + 2ex(t + v tan u)[Dt(u) + Dx(−v)]
= DtΞ1

1 + DxΞ1
2 = 0,

(85)

with corresponding fluxes:

Ξ1
1 = ex[2tu + v3

3 + v(t2 + 2x− 2 ln | cos u|)],
Ξ1

2 = ex{[−v2 − t2 − 2x + 2(1 + ln | cos u|)] tan u− 2(vt + u)}.
(86)

Similarly, using the pairs (13) and (84), one obtains another four conservation laws of (48), with
flux components:

(Ξ2
1, Ξ2

2) = (ex(tv + u),−ex(t tan u + v)),
(Ξ3

1, Ξ3
2) = (ex( 1

2 v2 − ln | cos u|),−exv tan u),
(Ξ4

1, Ξ4
2) = (u,−v),

(Ξ5
1, Ξ5

2) = (vex,−ex tan u).

(87)
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The conserved quantities (86) and (87) constructed by Cheviakov’s recursion method are
completely consistent with the conserved quantities (60) and (61) derived from the SA method,
and the directness of the former is revealed.

Remark 1. The NTL system (48) is a potential system for NTL equation:

utt − (sec2 uux + tan u)x = 0, (88)

which has four multipliers 1, t, ex, tex with corresponding fluxes respectively given by:

(Ξt
1, Ξx

1) = [ut,−(sec2 uux + tan u)];
(Ξt

2, Ξx
2) = [tut − u,−t(sec2 uux + tan u)];

(Ξt
3, Ξx

3) = [exut,−ex sec2 uux];
(Ξt

4, Ξx
4) = [ex(tut − u),−tex sec2 uux]

(89)

under the recursion formula (13). If one inserts a potential variable v through the first conservation law in (89),
one immediately gets the original system (48). Meanwhile, the point symmetry (63) is a potential symmetry
of (88).

6. Conclusions

In this work, we have summarized how to calculate conservation laws from the direct construction
method, SA method, symmetry action on a known conservation law method, Ibragimov’s conservation
theorem and a recursion formula when a symmetry transformation is admitted by a given PDE
system. The direct method yields all conservation laws resulting from the corresponding multipliers
for a PDE system written in Cauchy–Kovalevskaya form. The SA method uses pairs consisting
of symmetries and adjoint symmetries of an adjoint system to generate conservation laws from
a well-known Fréchet derivative identity. Here, the set of adjoint symmetries is a subset of
the set of multipliers. Under the action of the symmetry transformation on the set of multipliers
holding a known conservation law, one can determine a priori whether a new conservation law is
calculated. Ibragimov’s conservation theorem utilizes pairs composed by symmetries with differential
substitutions for the formal Lagrangian by means of the Euler operator, where the set of differential
substitutions is also a subset of the set of multipliers. Therefore, any conservation law of a PDE system
produces a corresponding set of multipliers, and the starting point for utilizing our study can be
the conservation law itself, as illustrated in our example.

In addition, a comparison is made between the SA method, symmetry action on a known
conservation law method and Ibragimov’s conservation theorem for conservation laws admitted
by nonlinear telegraph systems, which verifies that Ibragimov’s conservation theorem is equivalent
to the SA method, and the first two methods are connected strictly to each other for constructing
conservation laws in the framework of symmetry theory and multiplier algebra. We can also see that if
all equations of the PDE system are divergence expressions, the recursion formula (13) can be used
for f = f (x, u) with independent variables x = {xi}n

i=1 and dependent variables u = {uk(x)}N
k=1.

The direct method is a very complete method. It is important to reiterate that conservation laws arise
from multipliers for PDEs, and all local conservation laws constructed by the direct construction
method contain the conservation laws derived from all other methods.
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