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Abstract 16 

A slowdown in global agricultural expansion, spurred by land limitations, improved 17 

technologies, and demand for specific crops has led to increased agricultural intensification. 18 

While agricultural expansion has been heavily scrutinized, less attention has been paid to 19 

changes within cropland systems. Here we present a method to detect individual cropland field 20 

parcels from temporal Landsat imagery to improve cropland estimates and better depict the 21 

scale of farming across South America. The methods consist of multi-spectral image edge 22 

extraction and multi-scale contrast limited adaptive histogram equalization (CLAHE) and 23 

adaptive thresholding using Landsat Surface Reflectance Climate Data Record (CDR) products. 24 

We tested our methods across a South American region with approximately 82% of the 25 

2000/2001 total cropland area, using a Landsat time series composite with a January 1, 2000 to 26 

August 1, 2001 timeframe. A thematic accuracy assessment revealed an overall cropland f-score 27 

of 91%, while an object-based assessment of 5,480 fields showed low geometric errors. The 28 

results illustrate that Landsat time series can be used to accurately estimate cropland in South 29 

America, and the low geometric errors of the per-parcel estimates highlight the applicability of 30 

the proposed methods over a large area. Our approach offers a new technique of analyzing 31 

agricultural changes across a broad geographic scale. By using multi-temporal Landsat imagery 32 

with a semi-automatic field extraction approach, we can monitor within-agricultural changes at 33 

a high degree of accuracy, and advance our understanding of regional agricultural expansion 34 

and intensification dynamics across South America.  35 

Keywords:  cropland, field, Landsat, South America 36 

  37 
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1. Introduction 38 

In the latter half of the 20th century, growing food demand was met through intensification of 39 

agricultural production, while global agricultural expansion slowed down (Tilman et al., 2001). 40 

Farmers raised productivity through increased application of inputs such as fertilizers, 41 

herbicides, and pesticides, and by adopting modern plant varieties, mechanization, and new 42 

farming techniques (Deininger & Byerlee, 2012; Matson et al., 1997). While reduced land 43 

clearing for agriculture (Gibbs et al., 2010; Gibbs et al., 2015; Graesser et al., 2015) can 44 

contribute greatly to biodiversity preservation and habitat conservation (Foley et al., 2005), 45 

intensification can be environmentally harmful when inputs such as nitrogen and phosphorous 46 

are mismanaged (Barrett et al, 2001; Tilman et al., 2001; Tilman et al., 2002). Thus, there is a 47 

critical need for agricultural monitoring to assess the environmental implications of agro-48 

industrialization and intensification.  49 

Timely and consistent monitoring of agricultural intensification is challenging because 50 

the availability of data that describe intensification over large areas is limited. For example, 51 

agricultural censuses provide information about farm size, machinery, and fertilizers, but these 52 

data lack the spatial and temporal resolution needed to consistently monitor detailed changes 53 

over large areas. Remote sensing, however, offers a unique solution to this problem. Remote 54 

sensing provides the capability to detect indicators of intensification, namely indicators of 55 

physical agricultural characteristics. For example, agricultural morphology, i.e., field shape or 56 

size, is observable with moderate- to high-resolution sensors, and would be an invaluable piece 57 

of information for multiple reasons. Field size is important in order to understand farm 58 

management practices such as crop diversity and rotation, and to assess tradeoffs between 59 
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agricultural scale and efficiency, biodiversity monitoring, landscape fragmentation, and 60 

ecological diversity (Barrett et al., 2001; Fahrig et al., 2015). Field size is also complementary to 61 

farm size. For example, if a farmer’s capacity to expand land holdings is limited, farm size 62 

remains unchanged. But a farmer can still alter the landscape through changes in management 63 

such as field enlargement. Therefore, field size can provide important information about the 64 

planet’s rapidly changing agricultural systems that would not otherwise be captured with farm 65 

size data from agricultural censuses and surveys. Fortunately, Landsat, one of the remote 66 

sensing community’s long-standing pillars of global change monitoring, offers the geographic 67 

and temporal coverage as well as the spatial resolution necessary to detect cropland field 68 

parcels over large areas. The challenge is to exploit this vast resource and design practical and 69 

robust methods to accurately depict field parcels, which will complement growing information 70 

about agricultural expansion. 71 

While the remote sensing community has remarkably improved the capacity to monitor 72 

extensive land cover changes, particularly into forests (Hansen et al., 2008; Hansen et al., 2012; 73 

Potapov et al., 2012), less has been accomplished to remotely depict land use intensification 74 

such as field size changes. Part of the challenge is that traditional per-pixel based methods are 75 

not suitable for understanding landscape shape and context. Instead, image processing 76 

methods are essential to solving this problem. For example, contextual information, often 77 

referred to as image texture, can provide useful information about the structure and 78 

morphology of landscape context. This approach was used in combination with linear 79 

regression to estimate field sizes at a continuous scale in Eastern Europe (Kuemmerle et al., 80 

2009). Though computationally simple and shown to produce accurate estimates, the method 81 
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restricts the data output to large area units rather than individual field parcels. Similar to this 82 

work, European-wide field size estimates were conducted from interpolation of survey data 83 

(Kuemmerle et al., 2013). A very different approach from the previous studies made use of 84 

crowdsourcing to rapidly produce many field size samples from satellite imagery (Fritz et al., 85 

2015). By doing so, the authors produced, to our knowledge, the first and only global estimate 86 

of field sizes, offering a first look at the major global patterns on the scale of food production. 87 

However, the methodology does not provide wall-to-wall estimates, instead interpolating 88 

between crowdsourced samples. Although somewhat expected in global studies, the result is 89 

an over-generalization of field sizes because of categorical field size classes and assumptions 90 

about field size patterns over interpolated space. Still, Argentina—particularly scrutinized 91 

because of our paper’s regional focus—is a case in point of the limitations of this approach. 92 

Only remnants of small fields (although ‘small’ is not explicitly defined) were estimated, when 93 

in fact many small fields exist throughout the country, as we shall show later.  94 

The limitations (reliance on third-party data, coarse field estimates) of the approaches 95 

above warrant a solution that can produce wall-to-wall, large-scale estimates of individual 96 

fields. Yan and Roy (2014) developed a novel procedure to detect individual parcels from multi-97 

temporal Landsat imagery by combining image-processing techniques such as image 98 

morphology and segmentation. The authors employed temporal Web-enabled Landsat Data 99 

(WELD) (Roy et al., 2010) to extract fields over a five-year period in the United States and 100 

presented the first large-scale estimate of individual fields. More recently, the authors reduced 101 

the timeframe to one year, refined the methods, and applied their algorithm to the contiguous 102 

US (Yan and Roy, 2016). Their approach, utilizing a combination of image processing methods, is 103 



 6 

more promising than previous approaches. Another European-wide study illustrated the 104 

potential for ‘field patch’ segmentation from satellite imagery (Weissteiner et al., 2016). 105 

However, whereas the estimates of Yan and Roy (2016) were kept at the field level, Weissteiner 106 

et al. (2016) aggregated their data to a much coarser scale than individual fields. 107 

In this study, we present an image processing method to detect individual field parcels 108 

from multi-temporal Landsat imagery, with some key differences from the Yan and Roy studies, 109 

and with application over different agricultural landscapes across much of South America. 110 

South America’s agricultural landscape has changed rapidly over the past several decades 111 

(Berdegué and Fuentealba, 2011; Dros, 2004; FAO, 2015; Graesser et al., 2015; Martinelli, 112 

2012). Better estimates of cropland and data that describe the nature of the agricultural 113 

changes are needed in order to accurately monitor and understand the consequences of these 114 

rapid changes. Field-size data, in particular, would greatly enhance the capacity to monitor the 115 

scale of these changes. This study addresses two questions:  1) Is Landsat a reliable sensor for 116 

cropland observations? and 2) Can individual field parcels be detected at the continental scale 117 

from multi-temporal Landsat imagery over a broad range of crop types and field 118 

configurations? To characterize cropland, we used all available Landsat scenes over a 1.5-year 119 

period, from 2000 to 2001. We then estimated cropland at a parcel level using multi-temporal 120 

Landsat imagery and contemporary edge-based methods, and tested the robustness of our 121 

methods over a large and complex agricultural region of South America. 122 

 123 
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2. Data and study area 124 

2.1 Study area 125 

We identified individual crop field parcels across a selected region of South America, broadly 126 

defined as cropland south of the Amazon River and north of Patagonia (Fig. 1). The test region 127 

was chosen from Landsat scenes that intersected selected world ecoregions (Olson et al., 2001) 128 

in order to include a wide range of crop types and landscapes. This selected region contained 129 

approximately 82% of the 2001 South American cropland area (Graesser et al., 2015). Argentina 130 

and Brazil comprise the majority of the agricultural land within the study region. Bolivia, 131 

Paraguay, and Uruguay have substantially less agricultural land, but are important agricultural 132 

economies. Chile’s agricultural landscape is perhaps the most diverse, with a wide range of 133 

small, specialized production, to large-scale grain production. Of the countries included, only 134 

Argentina, Paraguay, and Uruguay are completely within the study boundary. In contrast, the 135 

area included of Bolivia, Brazil, and Chile generally comprises land outside of the Amazon and 136 

Andes regions, but still includes a large portion of the respective country’s agricultural area. 137 
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 138 

Figure 1. South America test region for semi-automatic crop-field extraction. The study area (shown in black 139 

outline) consists of Landsat scenes that intersect selected ecoregions. For field parcel validation, 10 km x 10 km 140 

grids were generated to cover the test region. The grids were then restricted to those with >=10% cropland area 141 

(shown in cyan). Finally, we randomly sampled 1,000 grids (shown in red) from this >=10% cropland grid to use for 142 

crop field parcel validation. Inset A illustrates a larger-scale view of the sample grids. 143 

2.2 Data and timeframe 144 

The Landsat Surface Reflectance Climate Data Record (CDR) product is freely available by 145 

request through the U.S. Geological Survey (USGS) Earth Resources Observation and Science 146 
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Center (EROS) Science Processing Architecture (ESPA) (http://espa.cr.usgs.gov). The USGS 147 

creates the CDR product by converting Landsat data to surface reflectance using the 6S 148 

radiative transfer model (Vermote et al., 1997). We acquired all Landsat 5 Thematic Mapper 149 

(TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) CDR scenes over the study area for 150 

the 2000/2001 season that had 70% or less cloud cover. The temporal range of the coverage is 151 

January 1, 2000 to August 1, 2001 and captures one full cycle of the agricultural growing season 152 

in the study area. Each image comprises 6 reflective bands (1-5 and 7, specifically the blue 153 

(0.45—0.52 µm), green (0.53—0.61 µm), red (0.63—0.69 µm), near-infrared (0.76—0.9 µm), 154 

and mid-infrared (1.55—1.75 µm and 2.08—2.35 µm) wavelengths) and the Fmask atmospheric 155 

mask with cloud, water, and shadow flags (Zhu & Woodcock, 2012).  156 

 Our objective in this study was to test the field extraction methods over a large 157 

geographic space. We could have chosen any timeframe to apply the methods. We used 158 

imagery from 2000 and 2001 because there was a plentiful supply of Landsat data and it 159 

roughly represents the starting point from which agriculture began to expand rapidly in South 160 

America (FAO 2015). 161 

 162 

3. Methods 163 

The proposed methodology uses Landsat satellite time-series composites to detect crop field 164 

parcels over an agricultural growing season, using a semi-automatic approach. The generalized 165 

workflow is shown in Figure 2 and broadly defined as: 1) image time-series computation over 166 

one agricultural growing season; 2) multi-scale contrast limited adaptive histogram equalization 167 

(CLAHE) and adaptive thresholding (ATh); 3) morphological edge cleaning; and 4) delineation of 168 
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individual cropland field parcels. The details are described in the following sub-sections and 169 

explain the semi-automatic procedure to extract land-cover object edges and label individual 170 

crop fields. 171 

 172 

Figure 2. The general workflow of Landsat processing, cropland classification, and cropland field parcel detection, 173 

with the main components:  A) Landsat pre-processing; B) time-series computation; C) land-cover object 174 

extraction; and D) cropland and field parcel intersection. 175 
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3.1 Field definition 176 

None of the literature reviewed clearly defined an agricultural field. The definition of a crop 177 

field may vary by disciplines and research questions. For some, a field may represent land 178 

tenure, which is related to rules of property rights allocation rather than how the plot of land is 179 

managed. But tenure is more closely associated to farm size rather than field size. Here we 180 

defined fields as representing individual crops planted throughout a year (Fig. 3). In Figure 3 we 181 

illustrate one plot of land under the same ownership over one year, with three crops planted 182 

during the first phase of the rotation and two crops planted during the second, with a double 183 

crop of soy replacing wheat. Although the land tenure did not change during the year, the type 184 

and number of crops did. The objective of this study is to identify the highest parcel-level 185 

resolution at which crops were cultivated during a growing season, illustrated by the three 186 

crops in the first half of the rotation. 187 

 188 

Figure 3. Illustrative diagram of field sizes under one tenure system. The left panel displays three crops that were 189 

grown during the first phase of the crop rotation. The following rotation phase brought a double crop of soybeans 190 

(wheat to soybean rotation). This study considers the highest field resolution of cultivated crops throughout the 191 

example season to be 3. 192 
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3.2 Landsat pre-processing 193 

Prior to field extraction, we processed Landsat imagery in the following steps:  1) climate 194 

surface reflectance (CDR) imagery were acquired from USGS; and for each scene we 2) 195 

normalized cross-track surface reflectance variations; 3) computed spectral indices; and 4) 196 

computed temporal descriptive statistics from step 3.  197 

 198 

3.2.1 Radiometric adjustments   199 

Radiometric normalization is desirable to remove scene-to-scene variations and allow for 200 

standardized land cover sampling across scenes. Atmospheric conditions and surface 201 

inconsistencies impede image normalization and standard classification models, particularly 202 

over large areas. Thus, radiometric adjustments are necessary to account for varying 203 

atmospheric conditions (Flood et al., 2013). The 6S radiative transfer model, used to produce 204 

the CDR product, converts Landsat data to atmospherically corrected surface reflectance. 205 

However, the CDR products are not corrected for cross-track degradation, an issue observed in 206 

Landsat imagery (Hansen and Loveland, 2012; Toivonen et al., 2006), and observed in the bulk 207 

of the scenes covering our study region. We used the MODerate-resolution Imaging 208 

Spectroradiometer (MODIS) bidirectional distribution function (BRDF) satellite product 209 

(MCD43A4) to normalize the CDR cross-track spectral response. First, for each pixel we 210 

computed the two-year (2000 and 2001) median of the MODIS BRDF MCD43A4 product 211 

(hereafter, referred to as MODMED). Following methods similar to Gao et al. (2011) and 212 

Potapov et al. (2012), we fit robust linear functions of each individual CDR band against the 213 

matching MODMED wavelength. Each Landsat band was downsampled to 500 m to match the 214 
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spatial resolution of the MODMED composites. Then the Landsat values were subtracted from 215 

MODMED (MODMED minus Landsat reflectance bias) for each MODMED-Landsat paired band. 216 

Starting in the western scan edge all values within a 40 km-wide (i.e., 0 km to 40 km from scene 217 

edge) column were extracted. Any cloud or shadow pixels in the CDR Fmask, or poor-quality 218 

pixels in the MODIS MCD43A2 quality layer, were removed. We then used the mean of the 219 

remaining MODMED-Landsat bias pixels. The mean column bias ( ) and the distance (km) from 220 

the western scene edge to the column center ( ) were recorded. The next 40 km-wide column 221 

was selected by moving the column selection 20 km east of the current scan column, creating 222 

columns with 20 km overlaps. This process was repeated until the eastern scene edge was 223 

reached. Lastly, the set of bias values ( ) and distance to column centers ( ) were regressed 224 

with a Theil Sen linear regression (Theil, 1992). As mentioned, we used the CDR Fmask and 225 

MODIS MCD43A2 quality products to mask “bad” pixels. However, the Theil Sen model was 226 

used in order to address any misclassifications (extreme outliers) in the mask products. Finally, 227 

the predicted bias was applied to the original 30 m CDR band to create the final adjusted band. 228 

An illustration of the procedure is shown in Figure 4. Scenes where we could not extract 229 

sufficient cross-track column samples were adjusted using a linear function of all clear 230 

MODMED pixels (  ) to estimate CDR surface reflectance (  ) (i.e.,         , with no cross-231 

track adjustments). The cross-track method improved the scene-to-scene normalization after 232 

visually comparing the results to the CDR bands (i.e., with no cross-track adjustments) for the 233 

study region. 234 
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 235 

Figure 4. Landsat cross-track adjustment using the 500 m MODIS Bidirectional Reflectance Distribution Function 236 

product-derived MODMED. Starting at the western scene edge, Landsat and MODMED pixel values are extracted 237 

from a    km-wide column (  =40). After removing atmospherically contaminated pixels, the mean of the 238 

remaining column (C1) pixels is computed and stored in the y vector. For the X vector, the distance from the scene 239 

edge to the center of C1 is recorded. The column is then shifted half the width of    (20 km), overlapping the first 240 

column, and the process is repeated until the eastern scene edge is reached. The y and X vectors are used to 241 

normalize the image. 242 

 243 

3.2.2 Spectral transformations 244 

The timing of crop planting and harvesting can vary from field to field and over large regions. 245 

Therefore, we used multiple spectral transformations to exploit the complete spectrum of 246 

different crops. We used descriptive statistics computed from temporal composites of spectral 247 
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indices—instead of the CDR spectral bands—for image edge extraction and classification. 248 

Initially, we computed five vegetation spectral indices from each CDR image:  the normalized 249 

difference vegetation index (NDVI), the enhanced vegetation index (EVI2), the green normalized 250 

difference vegetation index (GNDVI), the normalized difference soil index (NDSI), and the 251 

normalized difference bareness index (NDBaI) (Table 1). Each spectral index image array and its 252 

image information were stored in a HDF5 (Hierarchical Data Format) database (Alted & Vilata, 253 

2002--) for efficient storage and fast query indexing. 254 

 255 

Table 1. Spectral vegetation transformations. 256 

Vegetation Index Equation Reference 

NDVI                       Tucker, 1979 

EVI2       
         

                 
  

Jiang et al., 2008 

NDSI                           Rogers & Kearney, 2004 

NDBaI                           Zhao & Chen, 2005 

GNDVI                           Gitelson et al., 1996 

 257 

3.2.3 Time series composites 258 

Seasonal satellite composites are necessary to accurately estimate row-crop agriculture 259 

because cropland typically produces a unique spectral response if measured over an entire 260 

growing season.  Landsat time series compositing methods have become more commonplace 261 

since the opening of the Landsat archive in 2008 (Woodcock et al., 2008), which allowed 262 

researchers to develop composite datasets at a higher spatial resolution than previously 263 
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possible. Compositing methods range from the selection of single statistics over a year or multi-264 

year timespan (Maxwell and Sylvester, 2012; Yan and Roy, 2014; Yan and Roy, 2016), ‘best 265 

available pixel’ selection based on probability scoring functions over several years (Griffiths et 266 

al., 2013; White et al., 2014), spatial and temporal gap-free (proxy value) composites 267 

(Hermosilla et al., 2015), atmospheric coverage rules (Roy et al., 2010), preferential seasonal 268 

selection (Potapov et al., 2012), synthetic time series generation (Schmidt et al., 2016), and 269 

descriptive statistics of spectral indices and transformations from an image time series 270 

(Gebhardt et al., 2014). Regardless of the compositing technique, pixel-based compositing 271 

offers advantages over previous scene-based approaches, particularly by the inclusion of 272 

(potentially) thousands of cloud-free samples that were otherwise excluded in scene-based 273 

criteria. In this study, we used pixel-based compositing to produce radiometrically consistent 274 

data across the study region. The composites were then used to estimate cropland and extract 275 

individual field parcels across the study area. 276 

To compute a time series composite for a single Landsat path/row, we automatically 277 

checked each image in the path/row for:  1) extents larger than two standard deviations from 278 

the path/row mean extent size (indicating large image shifts); and 2) images with valid data 279 

(i.e., non-background) totals smaller than two standard deviations from the path/row mean 280 

valid data count. If any of the two checks were true, then the image was discarded from further 281 

use. A third, visual, check was performed to identify mis-registered images (pixel shifts as 282 

opposed to large image offsets) post time-series compositing, and automatically adjusted using 283 

cross-correlation (Guizar-Sicairos et al., 2008). If a path/row time-series composite was found 284 

to contain a mis-registered image, we cross-checked the mis-registered image in the path/row 285 
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for alignment against the nearest Julian day reference image with sufficient clear observations, 286 

and recorded the   and   coordinate shifts (derived from the cross-correlation procedure) 287 

against the nearest reference image. The   and   coordinate shift was inverted to apply the 288 

shift adjustment. To limit atmospheric contamination in the cross-correlation process, test and 289 

reference images were scanned for clear image blocks. The image was scanned for blocks with 290 

99% clear data, starting with the largest square block that fit an image’s valid data area. The 291 

block size was reduced by 64 pixels on each side and the image was re-scanned until an 292 

uncontaminated block was found. The final set of images for the path/row was then used for 293 

time series calculations. 294 

Next, the images were sorted by year and Julian day, and cloud and shadow pixels were 295 

flagged using the CDR Fmask at each acquisition date. Missing observations in each spectral 296 

transformation were interpolated using the flagged pixels and linear interpolation following: 297 

     
                 

       
    (1) 

where,    and    are index positions around the position to be interpolated,   , and    and    298 

are the values around the day to be interpolated,     , at pixel location    . After interpolation, 299 

we applied a second order Savitsky-Golay filter (Savitsky & Golay, 1964) to smooth the time 300 

series at each pixel. We then computed 10 time-series statistics, namely the minimum, 301 

maximum, mean, coefficient of variation (CV), 25th, 50th, and 75th percentiles, maximum slope, 302 

minimum slope, and day of maximum value. The maximum and minimum slopes were 303 

computed with a moving window ( =7). The resulting set of variables was: 304 
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where,    is the set of annual statistics for image  , and the superscript denotes the number of 305 

time series statistics computed. Thus, there were fifty statistical layers for each path/row time 306 

series. 307 

 308 

3.3 Edge and object extraction overview 309 

The large range of field sizes in South America prevents the use of global thresholds on dense 310 

concentrations of small fields (generally less than 2 ha), particularly at the Landsat spatial scale 311 

of 30 m. Here, small field size is relative to the study region, where farm and field sizes are 312 

larger than what is found in regions such as sub-Saharan Africa and South and Southeast Asia. 313 

High global edge-thresholds that appeal to large fields with strong edges tend to under-314 

segment small, dense field clusters. Alternatively, lower edge-thresholds that address dense 315 

regions with very small fields over-segment large fields. Our solution was to apply a series of 316 

multi-directional convolution kernels to extract the edge gradient magnitude (EGM) from 317 

selected    variables (explained in detail in section 3.3.1), and then use multi-scale contrast 318 

limited adaptive histogram equalization (CLAHE) and adaptive thresholding (ATh), followed by 319 

image morphology to extract land cover object edges. The multi-scale approach reduced the 320 

threshold bias that might occur with one window size. Image edges were subsequently 321 

“cleaned” with image morphology, where edges were morphologically thinned and edge ends 322 

linked to close small gaps. Finally, detected object edges were intersected with thematic 323 

cropland estimates (procedure described in section 3.4) to predict individual cropland field 324 

parcels. The following sub-sections describe the edge extraction methods in detail. 325 

 326 
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3.3.1 Edge extraction 327 

A subset of    was required for field extraction, because whereas a machine learning approach 328 

can ‘learn’ to set aside noisy data, our object segmentation approach uses all input data given. 329 

The set of variables used for field extraction is given as:  330 

                    
                          

where the new superscript denotes the 50th, 75th, and 95th percentile variables, and the CV, and 331 

excludes the remaining 6 time-series statistics. After visual analysis, this subset of time series 332 

statistics provided the most consistent set of variables that were least affected by cloud mask 333 

errors. Prior to edge extraction, each       variable was smoothed using a bilateral filter 334 

(Tomasi & Manduchi, 1998). A bilateral filter is a weighted average of local pixels but, 335 

importantly, considers pixel neighbors in the color and spatial domain. This has the effect of 336 

smoothing image noise while preserving true edges. Next, we applied a series of  ,   337 

convolution kernels to extract the normalized EGM (dynamic range of 0-1) from      . Image 338 

convolution is the sum of the local product of a kernel pair ( ) (Fig. 5) and an image.  339 

 340 

 341 

Figure 5. Pre-defined convolution kernel pairs. Each bracket consists of a  ,   symmetric kernel pair used to detect 342 

object edges. 343 

 344 
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The pairs are reflections of each other, so we computed a set of EGM images by image 345 

convolution as: 346 

 347 

 
(2) 

where      
         is the set of     and      EGM values for image  , sub-variable set   348 

(e.g.,           ), at pixel location    . The image gradient, (     
           ), for kernel 349 

pair   is computed by convolving a       time series statistic (  ) with a kernel as: 350 

 

(3) 

 351 

where   is the set of kernel pixel offset locations relative to the image pixel location (   ). The 352 

EGM was computed over the set of 8 convolution kernel pairs, applied independently to each 353 

      time series statistic, and the mean and maximum EGM of the 8 EGMs were calculated to 354 

produce      
        . A crop field edge should have a high EGM maximum and mean over all 355 

sub-variables. Thus, in order to give preferential treatment to consistently high and strong 356 

EGMs, we weighted them by the      and     EGM, followed by a gamma transform 357 

(     ) to increase low EGM values relative to higher values (Eq. 3). 358 

 359 

 (4) 

 360 
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In the next step, we used CLAHE to adjust and standardize the local contrast of EGM values. The 361 

CLAHE procedure is a histogram equalization applied tile by tile, as opposed to traditional 362 

histogram equalization that uses the entire image for contrast adjustment. The CLAHE approach 363 

only considers the range of data within a particular tile, and therefore produces a 364 

transformation function for each tile, relevant at the tile’s center pixel. All other pixels within 365 

the tile are bi-linearly interpolated with the adjusted tile center values, for computational 366 

efficiency and to produce smooth transitions between tile borders. The ‘contrast limited’ 367 

portion of the method is derived from clipping the local histograms to predetermined 368 

thresholds prior to computing the cumulative distribution function (Zuiderveld, 1994). We used 369 

a range of tile sizes (5 x 5, 7 x 7, 9 x 9, or 150m x 150m, or 210m x 210m, and 270m x 270m, 370 

respectively) and clip percentage limits (1, 2.5, 5), and then used the mean adjustment over all 371 

combinations (i.e., 9 iterations): 372 

 373 

 
(5) 

 374 

where      
           is the locally CLAHE adjusted EGM at pixel location    , at CLAHE tile 375 

size     and clip percentage threshold      pairs. Next, we applied a binary, edge or no-edge, 376 

threshold to the CLAHE results using an adaptive threshold (ATh) approach. As mentioned, a 377 

single threshold value cannot be consistently applied to an entire image or image region. 378 

Therefore, we used ATh to convert object edges to binary edge or no-edge values. For each 379 

local tile, a threshold value was considered from the local pixels only. A threshold was explicitly 380 
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computed (as opposed to interpolated) for each pixel, for each local tile centered around pixel 381 

   . We used the tile median EGM to determine the threshold at scale  . The binary object edge 382 

estimate for image   is thus: 383 

 384 

 

(6) 

 385 

where             is either a land cover edge or no-edge and             is the ATh 386 

procedure at scale     . The     results are cumulatively combined ( ) by taking the 387 

product of each successive CLAHE process, where   is initialized at 1. 388 

 389 

3.3.2 Edge morphological cleaning  390 

After adaptively thresholding image edges, we applied a series of morphological thinning (Lam 391 

et al., 1992), endpoint linking, and endpoint trimming to clean edges. First, we morphological 392 

thinned the cumulative edges with 1 iteration. Then gaps between endpoints were closed by 393 

linking the shortest path between the two endpoints following a set of rules:  1) gaps between 394 

two endpoints that were less than 4 pixels wide were closed; 2) gaps between two endpoints 395 

that were between 4 pixels and 8 pixels wide were closed if the endpoints were at inverse 396 

angles. Here, we estimated the directional angle of each endpoint and considered inverse 397 

rounded angle pairs as 0 and 180, 45 and 225, 135 and 315, and 90 and 270 degrees; 3) gaps 398 

between an endpoint and an edge that were greater than 8 pixels wide were closed if there was 399 
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sufficient EGM (mean EGM > 0.1) along the shortest connecting path and the endpoints were at 400 

inverse angles, as described in the second criteria. This last check was to ensure field 401 

boundaries with true gaps were not incorrectly closed. The connecting path between endpoints 402 

was determined by the shortest distance between endpoints that did not cross land cover 403 

edges. After thinning and closing small gaps, the final edges were thinned with a morphological 404 

skeleton operator, which is morphological thinning with infinite iterations (Zhang and Suen, 405 

1984), that ensured all edges were a maximum of 1 pixel wide. The final edge image after the 406 

morphological cleaning process is: 407 

 (7) 

 408 

where                  is the final binary object estimate for image  , at pixel    , and       is 409 

the morphological cleaning operations of thinning, endpoint linking, and skeleton. The final 410 

procedure (inverse) was an inversion of edges to objects and the removal of small objects with 411 

a predetermined threshold of 5 pixels (~0.45ha) for the minimum field size. The lower threshold 412 

was determined from visual observation of the minimum detectable object from Landsat in the 413 

study region. The steps described above are illustrated in rows A—D of Figure 6. 414 
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 415 

Figure 6. Principal steps of the field extraction process. Each row represents a step in the workflow and each 416 

column a sample grid within the test region. The methodological steps are:  A) Time-series variable, NDVI CV, 417 

smoothed with a bilateral filter; B) Edge gradient magnitude after multi-scale CLAHE normalization; C) Binary edges 418 

after multi-scale adaptive thresholding; D) Binary edges after morphological cleaning; E) Thematic land cover 419 

classification (orange illustrates cropland); F) Land cover objects after intersection with cropland (color display is 420 

random); and G) Field parcels after intersection with cropland, where the field size is illustrated according to the 421 

color ramp on the bottom. The center coordinates for each sample grid are:  I) -31° -59’ -9.44” S, -61° -57’ -58.57” 422 

W; II) -27° -45’ -12.89” S, -53° -21’ -8.83” W; III) -17° -12’ -45.13” S, -62° -8’ -24.1” W; IV) -24° -44’ -25.49” S, -64° -8’ 423 



 25 

-42.96” W; V) -25° -26’ -2.47” S, -63° -44’ -56.13” W; VI) -12° -52’ -12.8” S, -45° -40’ -39.62” W; VII) -12° -38’ -57.96” 424 

S, -46° -10’ -40.07” W; VIII)  -12° -50’ -42.67” S, -45° -23’ -36.3” W. 425 

 426 

3.4 Field labeling 427 

The object extraction approach using localized edge thresholding was fully automated, whereas 428 

we used a semi-supervised approach to label objects as cropland or not. We collected samples 429 

for 9 land cover categories (Cr=cropland; Pg=pasture/grassland; Tr=trees (natural); Ub=Urban; 430 

Wt=Water/Wetland; Ba=Bare; Sh=Shrub; Pl=trees (plantation); and Cl=Cleared trees (during 431 

study timeframe)), and used the samples collected across the study region to train a supervised 432 

predictive model to estimate cropland and non-cropland land covers from   . Land cover was 433 

sampled similarly to Graesser et al. (2015), yet whereas the reference study was restricted to 434 

high-resolution imagery, this study supplemented high-resolution acquisition gaps by sampling 435 

directly from Landsat imagery. As in Graesser et al. (2015), Latin America regional experts and 436 

image interpretation experts used high-resolution imagery from Google Earth and the Landsat 437 

time series composites to distinguish between the 9 land covers. 438 

We used the classification model, Extremely Randomized Trees (ERT) (Geurts et al., 439 

2006), which is an ensemble of randomized decision trees similar to Random Forests (RF) 440 

(Breiman, 2001). However, rather than bootstrap sampling as typically performed in RFs, the 441 

entire set of samples is used in each tree with ERT. Additionally, a RF searches for the best split 442 

from a random subset of predictor variables, whereas an ERT randomly chooses a split, typically 443 

resulting in smoother decision boundaries in feature space. We used the Scikit-learn 444 

implementation of ERTs (Pedregosa et al., 2011) to construct the predictive land cover model. 445 
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To identify individual crop fields, per-pixel cropland estimates were intersected with the 446 

segmented objects described in section 3.3.1. If estimated cropland pixels accounted for 50% or 447 

more of a segmented object, the object was identified as a crop field. Otherwise, the object was 448 

removed. 449 

 We conducted a predictor variable ranking and ERT parameter optimization prior to 450 

training the classification model. First, we ranked the importance of all fifty possible predictor 451 

variables from    with a    test (Liu & Setiono, 1995) and the ERT feature importance, and 452 

removed features that fell in the lower 50th percentile of both of the respective ranking 453 

methods, resulting in fourteen of the fifty possible predictor variables removed. This reduced 454 

predictor set was supplemented with Shuttle Radar Topography Mission (SRTM) 1 arc-second 455 

(~30 m) elevation and slope data, as well as  ,   coordinate information of each sample, 456 

culminating in forty predictors. Then, we applied a 5-folds cross-validation of a range of ERT 457 

parameters on the forty predictor variables. At each fold, 50% of the land cover samples were 458 

randomly selected with replacement. We then tested the overall accuracy on the samples 459 

withheld after each parameter combination of trees (500 and 1,000), maximum depth (5, 10, 460 

15, 20, 25, 30, and 50), and minimum samples to split a node (2, 5, and 10). The parameter 461 

combination with the highest overall accuracy on withheld samples was 500, 30, and 2 for 462 

trees, maximum depth, and minimum samples, respectively, and we used defaults for the 463 

remaining parameters. This final set of parameters was used to train an ERT model using all 464 

available land cover samples. 465 

 466 
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3.5 Validation & assessment 467 

3.5.1 Sampling & assessment 468 

We conducted two accuracy assessments:  1) an assessment of the thematic map accuracy of 469 

the cropland ERT estimates; and 2) an object-based assessment of randomly stratified fields 470 

throughout the study region to evaluate the field parcel accuracy. For the thematic land cover 471 

assessment, we assessed model performance on 30% of the samples randomly withheld from 472 

the ERT model. Note that the model assessment on 30% of the withheld samples was 473 

conducted post-parameter optimization (section 3.4) on the final parameter set, and not on 474 

cross-validated samples.  475 

We also assessed the local error of the land cover map by using the complete set of land 476 

cover samples with a spatially constrained systematic sampling approach following methods 477 

described in Foody (2005), and illustrated in Figure 7. For the spatially constrained map 478 

assessment, we systematically created a point grid of local assessment locations every 200 km 479 

across the study area. At an assessment location, we recorded the  -nearest ( =100 for this 480 

study) land cover samples described in section 3.4. We constrained the sample search by 481 

limiting the maximum search distance to 300 km around each assessment location. The 482 

cropland class f-score, a weighted average of the producer’s and user’s accuracy           483 

                
               

 , was then recorded for those  -nearest 100 land cover samples, at an 484 

assessment location. This was repeated for all assessment locations, and the cropland  -scores 485 

were interpolated to create a continuous grid for the entire study area. We used the  -score in 486 

place of overall (or global) accuracy because the cropland class was of most interest for this 487 
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study. The subsequent grid is indicative of model fit rather than map accuracy because we used 488 

the same set of samples to train the classification model.  489 

 490 

 491 

Figure 7. Spatially constrained systematic sampling for thematic accuracy assessment. At each sample location 492 

(black dots, currently at   ), the n-nearest land cover samples (red dots) are selected for map assessment. The local 493 

assessment scores are stored at each sample location. The land cover sample selection is first limited to the  -494 

nearest samples and then by the search radius around the current sample location (here, set at 300 km). 495 

For the object-based assessment we created wall-to-wall 10 km x 10 km grids across the 496 

test region and randomly selected 1,000 grids with at least 10% crop area (estimates based on 497 

2000/2001 Landsat cropland estimates from this study) (Fig. 1). Our goal was to have more crop 498 

field samples throughout the entire region rather than many samples from one area. Using the 499 

Landsat time series composites and Google Earth imagery, we manually digitized at least 2 500 

fields within each grid for a total of 5,480 validation field parcels, limiting delineated parcels to 501 
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those in which we had high confidence that they were indeed crop fields. In each grid, we 502 

included the range of field sizes and shapes found throughout the study region. Moreover, we 503 

attempted to delineate fields with ‘weak’ edges or where field interiors were not clean. Still, an 504 

entire field must be visible for an interpreter to identify it from imagery. Thus, we did not 505 

include all fields within each grid.  506 

 Traditional per-pixel validation approaches are not appropriate for object-based 507 

validation. Instead, we assessed individual field parcels following proposed metrics (Persello 508 

and Bruzzone, 2010; Whiteside et al., 2014; Yan and Roy, 2014). Land-cover objects can be 509 

evaluated based on location (the spatial coherence between a predicted and reference object) 510 

and overlap (over- and under-segmentation, shape comparison). The Euclidean distance of 511 

object centroids was used to measure offset errors, while over- and under-segmentation, 512 

fragmentation, and shape eccentricity were used to measure object overlap and shape errors. 513 

We only considered overlapping objects when evaluating these object-based metrics. That is, 514 

for each reference object we extracted all overlapping, predicted objects. Only the object with 515 

maximum overlap was used for over- and under-segmentation, whereas all overlapping 516 

predicted objects were considered with fragmentation (see Persello and Bruzzone (2010) for 517 

detailed explanation). In Persello and Bruzzone (2010), error metrics are defined in a 0-1 518 

dynamic range, with perfect agreement being values of 0. We express error metrics in inverted 519 

percentages (i.e.,                 ). Therefore, perfect agreement equals 100. 520 

 521 
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3.5.2 Field distribution curves 522 

To evaluate inequality in field size distributions, we plotted Lorenz curves (Lorenz, 1905) 523 

(commonly used to show economic inequality) of field parcel sizes within each province. The 524 

Lorenz curve shows the crop field deciles in a province on the x-axis versus the cumulative 525 

percentage of total cropland on the y-axis. We computed the Gini index (as a measure of field 526 

size inequality) from the Lorenz curve as:        
   

 , where   is the area between the 1:1 527 

line and the plotted distribution (Lorenz curve), and   is the remaining area under the curve. 528 

The Gini coefficient ranges from 0 to 1, where 0 is equally distributed and 1 is high inequality. 529 

 530 

4. Results 531 

4.1 Composite, cropland, & field parcel estimates 532 

The seasonal compositing resulted in seamless path/row boundaries throughout the study area, 533 

which allowed the use of a single classification model and limited artificial image edges. Two 534 

subsets of the composites illustrate the effectiveness of the normalized CDR surface reflectance 535 

products to produce a standardized continental Landsat dataset (Fig. 8). The CV and the 50th 536 

and 75th percentiles illustrate the seasonality fluctuations of row-crop agriculture. Generally, 537 

dark blue and purple shades are those with high seasonal variance and low to medium 50th and 538 

75th percentile values, and pink illustrates land cover with a high CV and high 75th percentile. 539 

Stable values are generally shades of yellow, where the CV is very low and the 50th and 75th 540 

percentiles are high. 541 
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 542 

Figure 8. Examples of annual composites, with the 75th percentile displayed as red, the 50th percentile displayed as 543 

green, and the coefficient of variation displayed as blue. Each location shown, highlighted by a blue or orange 544 

frame in the top left inset, covers an area of 450 km x 150 km. The gray overlapping grids illustrate overlapping 545 

Landsat path/row grids. 546 

 547 
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The thematic cropland results capture the key cropland areas of the study area and the 548 

detection of individual field parcels illustrates the broad range of field sizes across this vast area 549 

(Fig. 9). Small fields and larger (displayed in shades of green and orange) are distributed 550 

throughout the study area, but generally more prevalent in the southern half. In southern 551 

Argentina and southern Brazil, small fields tend to be mixed with larger fields (shades of blues), 552 

but the broad pattern is one of large-to-small fields emanating from core areas. For example, 553 

the densest cluster of small fields in the Argentine Pampas is in central Santa Fe province, on 554 

the northern fringe of the agricultural core. Elsewhere in Brazil’s most southern state, Rio 555 

Grande du Sol, small fields surround larger fields in the main agricultural centers. This pattern is 556 

also similar through the Brazilian states of Santa Catarina, Paraná, and São Paulo, and to some 557 

extent in Santa Cruz, Bolivia. However, newer agricultural regions have contrasting field 558 

arrangements. For example, the configuration of larger fields is more prominent in the 559 

Argentine Chaco (Salta and Santiago del Estero provinces), with the exception of small fields in 560 

the Andes foothills. Similarly, the u-shaped agricultural belt in the Brazilian Cerrado, covering 561 

states of Mato Grosso, Mato Grosso do Sul, Goías, and Bahia, consists principally of fields 562 

around, or larger, than 100 ha. Finally, results for central Chile and southwestern Uruguay 563 

illustrate landscapes dominated by small fields during the 2000/2001 timeframe. 564 
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 565 

Figure 9. Cropland and field size results for the January 1, 2000 to August 1, 2001 period. Here, the cropland 566 

footprint is shown by field size and is illustrated by non-gray colors. The right inset shows a large-scale map view of 567 

marker A in the left map. 568 

 Figures 10 and 11 illustrate crop field extraction results at a larger scale than shown in 569 

Figure 9. The 3-band time series sub-samples showcase the importance of seasonal information 570 

for cropland detection. In the center column, detected fields are displayed by random colors, 571 

while in the right column, detected fields are displayed by area, on a scale of 0.45 to >=100 ha 572 

(0, or black, is non-cropland). Many small fields (although small may be relative for this part of 573 
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the world) exist in the core agricultural region of Argentina. Small and large fields are mixed 574 

throughout the Argentine landscape, as illustrated in the Río de la Plata basin, where there are 575 

many fields less than 10 ha (Fig. 10). Elsewhere, in the main agricultural region of Rio Grande du 576 

Sol, Brazil, the field size range spans the entire scale spectrum, but very large fields dominate 577 

this landscape (Fig. 11). A noticeable difference between the Brazilian example (Fig. 11) and the 578 

Argentine example (Fig. 10) is the field morphology, or shape. The flat, Argentine Pampas 579 

allows for regularly gridded farming patterns, whereas a much different pattern exists in 580 

southern Brazil, where field shapes follow tree corridors, water bodies, and the topography. 581 

Elsewhere throughout the region, settlement patterns produce a complex agricultural 582 

landscape, with very small fields approaching the limitations of Landsat’s detectable scale. In 583 

some agricultural landscapes, such as in Santa Cruz, Bolivia, fields approaching 5 ha and smaller 584 

are more difficult to detect because they are long and narrow.  585 
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 586 

Figure 10. Field extraction examples from Santa Fe province, Argentina.  Left column:  RGB display of temporal 587 

statistics computed from 1.5 years of Landsat imagery. Generally, blue, purple, and pink represent row-crop 588 

agriculture, green and blue represent pastures, and yellow represents trees. Center column:  Field extraction 589 

results, displayed by random colors. Right column:  field extraction results, colored by increasing field size. Each 590 

inset is 60 km x 30 km. 591 

 592 
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 593 

Figure 11. Field extraction examples from Rio Grande do Sul state, Brazil. Left column:  RGB display of temporal 594 

statistics computed from 1.5 years of Landsat imagery. Generally, blue, purple, and pink represent row-crop 595 

agriculture, green and blue represent pastures, and yellow represents trees. Center column:  Field extraction 596 

results, displayed by random colors. Right column:  field extraction results, colored by increasing field size. Each 597 

inset is 60 km x 30 km. 598 

Field size distributions at the second administrative unit (i.e., provincial or state) are 599 

shown for 5 countries (Figure 12). The figure illustrates the provincial-level Lorenz curves and 600 

Gini coefficients of field size for each country. The highest Gini scores (i.e., most unequal 601 

distribution of cropland by field size) among all administrative units assessed were in Piauí, 602 

Brazil (0.73), Neuquén, Argentina (0.70), Alto Paraguay, Paraguay (0.68). The high Gini scores 603 

are illustrated by the dominance of large fields in the respected provinces (Fig. 9). Provinces 604 
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with cropland dominated by large fields are found in Argentina, Brazil, and Paraguay. However, 605 

Chile and Uruguay show more equal distributions of small fields, which noticeably dominate the 606 

cropland landscape (Fig. 9). 607 
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 608 

Figure 12. 2000/2001 field size distributions in selected second level administrative units (province or state) in 609 

Argentina, Brazil, Chile, Paraguay, and Uruguay. Lorenz curves and Gini coefficients of provincial-level field size 610 

distributions. The x-axis represents the cumulative crop field deciles within a province, while the y-axis represents 611 

the cumulative percentage of total crop area at each decile. The colors illustrate the province’s Gini coefficient 612 
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scores (1=unequal distribution of cropland area toward large fields; 0=equal cropland distribution among all field 613 

sizes). 614 

 615 

4.2 Map and object accuracy 616 

The thematic cropland accuracy assessment resulted in cropland producer’s, user’s, and f-617 

scores of 90.7%, 97.1%, and 91%, respectively (Table 2). The other classes included in the 618 

classification model are also shown but not highlighted, along with overall (84%), kappa (0.8), 619 

and the sample-adjusted (Olofsson et al., 2013) overall score (88%). Figure 13, panel A shows 620 

the results of the f-score spatially constrained assessment. Cropland f-scores were in the upper 621 

90s across the region, indicating a spatially well-balanced and generalizable predictive model. 622 

Pockets of poorer estimates, such as in central Chile, decreased the overall f-scores (Table 2).  623 

In general, over-segmentation errors were worse than under-segmentation (Table 3), 624 

particularly on the northwestern and northeastern fringes of the study region (Fig. 13, panels B-625 

C). The highest under-segmentation errors were in and north of São Paulo, Brazil. Overall, 626 

object-based errors are clustered near the ideal target of 70 and higher (Fig. 14). Segmentation 627 

and fragmentation errors decrease as field size enlarges (top left and bottom left insets). 628 

However, the eccentricity shape error and centroid offset do not indicate any relationship with 629 

field size (top right and bottom right insets).  630 

 631 

 632 

 633 
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Table 2. Error matrix for thematic classification results (From section 3.4:  Cr=cropland; Pg=pasture/grassland; 634 

Tr=trees (natural); Ub=Urban; Wt=Water; Wd=Wetland; Ba=Bare; Sh=Shrub; Pl=trees (plantation); Cl=Cleared trees 635 

(during study timeframe)). Nine land cover classes were sampled, but we highlight cropland (in gray) for the 636 

purposes of this study’s interests. (UserA and ProdA refer to sample-adjusted producer’s and user’s accuracy, 637 

respectively, following Olofsson et al., (2013); *=Overall accuracy; **=Kappa score; ***=Sample-adjusted overall 638 

accuracy). 639 

 640 

 641 

 642 

  Observed 

  Cr Pg Tr Ub Wt Ba Sh Pl Cl Total User UserA 

Pr
ed

ic
te

d Cr 997 9 1 4 3 -- -- 13 -- 1,027 97.1 97.1 

Pg 91 1,002 24 55 8 6 32 8 3 1,229 81.5 81.5 

Tr 10 8 946 8 1 -- -- 30 2 1,005 94.1 94.1 

Ub -- 2 -- 620 -- 8 -- 1 -- 631 98.3 98.3 

Wt -- -- -- -- 244 2 -- -- -- 246 99.2 99.2 

Ba -- 2 -- 1 39 86 2 -- -- 130 66.2 66.2 

Sh -- 2 1 1 -- 3 152 -- -- 159 95.6 95.6 

Pl -- -- 3 -- -- -- -- 93 -- 96 96.9 96.9 

Cl 1 -- 1 -- -- -- -- -- 50 52 96.2 96.2 

Total 1,099 1,025 976 689 295 105 186 145 55    

Prod 90.7 97.8 96.9 90 82.7 81.9 81.7 64.1 90.9  *84 **0.8 

ProdA 67.5 98.8 97.2 32.2 56.2 78.7 78.9 8.1 25  ***88.1 
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Table 3. Object assessment summary of 5,480 fields. The range of over- and under-segmentation, eccentricity 643 

error, and fragmentation is 0 to 100, with 100 being perfect agreement. The offset error is given in meters. 644 

 Over-
segmentation 

Under- 
segmentation Eccentricity Fragmentation Offset Relative 

% error 
  68.02 86.58 90.23 99.85 7.18 -10.07 
50th 
percentile 75.96 94.44 95.26 99.89 2.98 -16.78 

Number of 
Fields 
greater 
than   

3,473 4,346 3,730 3,340 4,098 3,574 

Percentage 
of fields 
greater 
than   

63 79 68 61 75 65 

Margin of 
error 
(p=0.05) 

 0.64  0.63  0.34  0.004  0.29  2.03 

 645 

 646 
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 647 

Figure 13. Spatially constrained errors of:  A) Cropland f-scores (the f-scores are scaled to percentages). For every 648 

systematically sampled point location (200 km spacing), the local cropland f-scores of the n-nearest (n=100) land 649 

cover samples was calculated. The results for all points were then interpolated to produce a continuous error 650 

estimate for the entire study area. The points used for accuracy assessment were the same points used to train the 651 

classification model, thus the illustration is a better representation of model accuracy than map accuracy; B) Mean 652 

of over- and under-segmentation. C) Over-segmentation; and D) Under-segmentation. Each metric was masked by 653 

a 1,000 m x 1,000 m grid of cropland, where areas in white do not contain any cropland. 654 

 655 
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 656 

Figure 14. Object accuracy binned scatterplots. For each object metric, 5,480 manually delineated fields were 657 

assessed against the predictions of the crop extraction algorithm. The best possible score for the ‘Over-Under’, 658 

‘Eccentricity’, and ‘Fragmentation’ metrics is 100, whereas the distance metric is optimal at 0. The dashed lines 659 

represent the median score for the respective metrics. Top left:  Over- and under-segmentation. Note that over-660 

segmentation ranges from 0 to 100, while under-segmentation was inverted (0 to -100) for illustration purposes. 661 

Top right:  Eccentricity shape error (range 0 to 100). Bottom left:  Fragmentation error (range 0 to 100). Bottom 662 

right: Distance offset (units in meters). The x-axis is logged for display, with real units shown. 663 
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5. Discussion 664 

Cropland mapping is often reliant on a seasonal profile to accurately distinguish it from other 665 

vegetation. Previously, dense time series stacks were a major limitation with the Landsat 666 

satellite because of computational limitations and the cost and access to Landsat imagery 667 

(Woodcock et al., 2008). The opening of the archive and computational advancements have 668 

since made Landsat a more viable option for regional (Yan and Roy, 2016) and global earth 669 

observation (Hansen et al., 2013). As shown from Figure 9 and Table 2, the extent of cropland 670 

can be accurately estimated in South America using multi-temporal Landsat imagery, and is 671 

comparable to MODIS cropland estimates that utilized higher temporal but coarser spatial 672 

resolution (Graesser et al., 2015). At the field parcel level, the object validation showed that 673 

parcels can be extracted across a large region. Additionally, the more general field-size patterns 674 

across the region illustrated that the older, traditional agricultural regions of southern Brazil, 675 

Santa Cruz, Bolivia, and the Argentine Pampas comprise a wide range of field sizes, whereas the 676 

newer agricultural frontiers of northern Argentina and the Brazilian Cerrado have a greater 677 

presence of large fields. This is also reflected in the Lorenz plots, where there is a larger 678 

distribution spread in administrative units closer to the agricultural frontiers. 679 

 680 

5.1.1 Temporal challenges  681 

In this study, we extracted field parcels for the period January 1, 2000 to August 1, 2001. This 682 

timespan presented few limitations to data coverage and sensor issues (Kovalskyy and Roy, 683 

2013). However, time series compositing with pre-2000s Landsat data will prove more 684 

challenging because of less coverage over the South American continent. Moving forward, 685 
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Landsat availability for the 21st century is generally plentiful. However, while applications of 686 

post-2000 field detection can utilize the ETM+ sensor, SLC-off corrections will be imperative in 687 

order to eliminate potential artificial field boundaries introduced from the scan line errors. This 688 

will be an important challenge for detecting fields in the SLC-off/pre-Landsat 8 period. While 689 

linear interpolation might suffice for uses such as visual aid and per pixel land cover 690 

classification, it will likely hinder object segmentation methods. Gap-filling methods that utilize 691 

spatial context are more promising. We consider two such methods that have proven to 692 

provide better estimates of missing data gaps:  1) Geostatistical kriging (Zhang et al., 2007) and 693 

2) the USGS Phase 2 method (USGS, 2004). Both of these methods use neighboring pixels from 694 

multiple scenes to fill SLC-off data gaps. Future work should assess the tradeoffs between the 695 

Zhang et al. (2007) method, which is more statistically rigorous, but more computationally 696 

intensive, and the USGS Phase 2 least squares approach. The recent launches of Landsat 8 and 697 

Sentinel-2 series should ensure continued broad temporal coverage at a sub-30 m scale beyond 698 

the SLC-off period, though. 699 

 700 

5.1.2 Spatial challenges 701 

At 30 m spatial resolution, Landsat can be used to detect a large range of field sizes, and much 702 

of the sub-Andean row-crop agriculture in our study area is at or above Landsat’s minimum size 703 

requirements. However, fields smaller than 1 ha are not as reliably detected, depending on the 704 

field’s configuration. In the Argentine Pampas, for example, the gridded settlement, road, and 705 

agricultural patterns produce many uniform-sized fields. Thus, fields around 0.5 ha are 706 

detectable. However, land cover objects are only detectable if there is sufficient separation 707 
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between an object’s interior and its edges. Otherwise, the object simply becomes a line. 708 

Elongated fields under 1 ha are more challenging to detect because of a lack of separability in 709 

the object’s interior. In addition to field size, shape, and configuration, another obstacle to 710 

accurately identify field boundaries is crop type. In the absence of natural or man-made 711 

borders such as streams, wetlands, or roads, field parcel detection is reliant on the detection of 712 

salient features to distinguish one crop from another. Neighboring crops may often be different 713 

species types (e.g., maize or wheat), and therefore have different growing patterns. Or, the 714 

crop’s temporal signature may be sufficient to identify boundaries. However, when neighboring 715 

crop fields are of the same species or are only separated by a small gap or fence line, the 716 

minute separation becomes saturated at the Landsat scale.  717 

These scale impediments were illustrated in the object accuracy results, where the worst 718 

observed scores were in the main sugarcane region of Brazil and in northeastern Brazil. 719 

Sugarcane is challenging to segment because of the homogeneous connectivity from field to 720 

field (especially in the absence of fence lines), as well as the terraced planting methods 721 

employed by farmers. In some cases, even high-resolution imagery is not sufficient to visibly 722 

distinguish between field boundaries in this region. In northeastern Brazil, the scale of 723 

agricultural production affected the results, where very small-scale agriculture led to poor 724 

results in the region. An obvious solution to the issue of very small fields or subtle borders is the 725 

employment of higher-resolution imagery. If the tradeoffs between spatial, temporal, and 726 

radiometric resolution do not limit the parcel detection, then Landsat’s panchromatic band 727 

(15m) and the newly launched Sentinel-2 (10m and 20m) could be valuable for future field 728 

extraction. Future work on field parcel detection from satellite imagery should utilize the 729 



 47 

growing resource-base of high-resolution imagery, as well as assess possibilities for algorithmic 730 

improvement to reduce over-segmentation errors.  731 

 732 

5.1.3 Large-scale estimates beyond land cover 733 

Rich satellite datasets and technological advancements are changing the nature in which we 734 

can observe and monitor vegetation across the planet (Hansen et al., 2013). However, global 735 

datasets, especially agricultural land cover maps, still lack in precision and detail (Fritz, 2013). 736 

Information that describes agriculture beyond area, such as agricultural intensification, is 737 

especially absent (Kuemmerle et al., 2013). Land cover maps that describe agricultural area are 738 

not sufficient to improve our understanding of rapidly changing agricultural landscapes 739 

(Vallejos et al., 2015). Global agricultural expansion has slowed in recent decades, and future 740 

agricultural changes will likely stem from greater intensification rather than expansion. Remote 741 

sensing, image processing, data storage, and compute infrastructures can provide the capacity 742 

to improve agricultural datasets at the field level (Fritz et al., 2015; Yan and Roy, 2015). The 743 

scientific community will likely still rely on censuses and surveys for information such as 744 

agricultural inputs and mechanization, but remote sensing can contribute a great deal toward 745 

monitoring of agricultural intensification, crop rotations, and crop productivity, often in near 746 

real-time.  747 

 748 



 48 

5.1.4 Caveats and uncertainties 749 

The cropland field object accuracy assessment was objective in the sampling of the 10 km x 10 750 

km grids (Figure 1), but not in the field delineation within the 1,000 randomly sampled grids. 751 

Our decision to include parcels that we had high confidence in was a subjective one. Given a 752 

lack of ground data about crop boundaries for South America, we considered this the best 753 

option to assess the method over a large region. Moreover, any field manually delineated from 754 

satellite imagery is biased from human image or photo interpretation. Though it is more costly 755 

and time consuming, future work should make use of ground-collected field data for optimal 756 

and unbiased validation. 757 

 758 

6. Summary & conclusion 759 

The methods presented in this paper describe the detection of individual crop field parcels from 760 

multi-temporal Landsat imagery across a large region of South America. We employed a multi-761 

directional and multi-spectral object extraction technique that was able to identify cropland 762 

field parcels at a high percentage, intersected with thematic cropland estimated at a rate of 763 

91% (f-score). We performed two levels of assessment to address whether the methods could 764 

prove robust across varying landscapes and field types. The two, per-pixel thematic and object-765 

based, validation assessments were spatially rigorous and included multiple ecoregions and 766 

countries. With a continuous spectrum of field-size data, we generated Lorenz curves for 767 

selected states and provinces in the study region, illustrating how the scale of farming at the 768 

field level varies among and within countries across much of South America.  769 
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We applied the experimental field detection in a continent that has experienced 770 

profound agricultural changes. South American agriculture has been at the forefront of 771 

environmental concerns, but largely because of its role in tropical deforestation. Agricultural 772 

changes have not been limited to expansion into tropical forests, or forests alone for that 773 

matter. With increasing awareness of agriculture’s role in South American deforestation, plus 774 

fewer land expansion options in many areas, the remaining avenues for farmers to increase 775 

productivity are often to acquire existing cropland from other landholders, increase inputs, or 776 

sell and move to areas of expansion. There is evidence of expansion (Graesser et al., 2015), but 777 

further research is needed to identify cropland intensification from remote sensing. The 778 

methods in this study can contribute greatly to understanding the dynamics of agricultural 779 

changes, whether they be extensive in the form of forest or grassland clearance, or intensive in 780 

the form of increased mechanization, scale of production, or altered crop rotations. 781 

 Agricultural technological advancements are changing the face of farming across the 782 

globe. Global deforestation watchdogs, data access, and computational improvements have 783 

augmented our understanding of expansion into grasslands and forests. Perhaps as important, 784 

though, are the results of land use changes and the implications for a host of environmental 785 

issues. Agro-industrialization is changing how food is grown across the globe, yet it is not easily 786 

observed with current monitoring programs. Satellite data availability, advanced image 787 

processing techniques, and computational advancements will continue to be valuable resources 788 

to help fill this data gap. 789 

  790 
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