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Highlights 

Physiological changes during pregnancy influence many aspects of maternal health 

Steroid and peptide hormones are elevated dramatically during gestation 

Reduced grey matter is detected in multiple regions after motherhood 

Physiological changes with motherhood are detected years after giving birth 
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Sex differences exist in development, physiology, behaviour, disease prevalence, manifestation, and 
outcome. It is vitally important to consider sex differences in research towards a better understanding of 
precision medicine for both men and women. However, for substantial progress in women’s health we 
need to acknowledge that female physiology is different from males and uniquely female experiences 
such as pregnancy and motherhood can affect the physiology of females. Pregnancy is associated with 
dramatic changes in physiology (cardiac, pulmonary, immune, and metabolic) and endocrinology 
(steroids and peptide hormones, many of which are unique to pregnancy). Thus, it is not surprising that 
there can be repercussions both in the short and in the long-term for the health of the female. Here, we 
discuss research demonstrating that pregnancy and the postpartum period are associated with changes 
in neuroplasticity and cognition, and a greater risk of developing certain mental health disorders with 
some of these effects having lifelong consequences. As a potential implication, we also discuss how drug 
treatments may work differently in parous women. Finally, we argue that, in addition to sex differences, 
the physiological challenges unique to women need to be taken into consideration for a better 
understanding of women’s physiology and disease. 
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Pregnancy and the postpartum are times of dramatic changes in a woman’s lifetime. Many physiological 
processes are inundated during pregnancy to allow for fetal growth and are orchestrated by the newly 
created endocrine gland, the placenta. During gestation, cardiac, and pulmonary systems are increased 
in capacity, immune tolerance is upregulated, and steroid hormone levels skyrocket [1]. In terms of 
hormones, in pregnant women, the placenta releases progesterone at least 20 times normal levels, and 
glucocorticoids around twice the normal levels [2]. In addition, estrogens show arguably the more 
dramatic increases during pregnancy, with 17β-estradiol rising up to 200 times normal levels by week 20 
and 300 times by week 30 of pregnancy [2]. The placenta secretes a variety of bioactive hormones and 
enzymes at levels that are generally not seen outside of pregnancy and/or hormones not detectable 
except during pregnancy such as placental lactogen and human chorionic gonadotropin [2,3].  Estriol, 
one of the estrogens, is secreted at much higher levels during pregnancy than at any other time point in 
a woman’s lifespan [4]. These hormones are needed to ensure successful gestation; however, the long-
term consequences of exposure to these hormones to the host mother have not been frequently 
addressed in the literature. This is an important consideration as maternal physiology is altered for 
decades after giving birth in the mother. These changes in physiology likely affect drug efficacy, and 
disease susceptibility, outcome, and manifestation, and yet reproductive experience is not often 
considered in women’s health research. In this opinion piece, we argue that reproductive experience is a 
critical determinant of female physiology that has been grossly overlooked in the health and wellbeing 
of women and can serve to drive discovery for women’s health. 

The typical duration of a full-term pregnancy is approximately 38-40 weeks highlighting that the 
sustained high in hormone levels are not short in duration and is the time of maximal exposure to many 
of these hormones during a woman’s lifetime. Thus, it is of little surprise that due to the presence of 
hormones, such as estrogens and progesterone, at sustained high levels for weeks, as well as changes to 
the renal, cardiac, immune, metabolic, and pulmonary systems, that there may be some lifelong 
repercussions for the mother. While, research in this area is scarce, data indicate that levels of estradiol 
are lower across the menstrual cycle after resumption of cycling, which typically occurs 180 days after 
parturition [5], This has lead researchers to indicate that cumulative estrogen exposure is lower if 
women are parous (e.g., see [6]). However, this may prove difficult to ascertain, as excessive estrogens 
during pregnancy may offset the lower levels of estrogens seen after pregnancy. Nonetheless, previous 
parity is an important consideration for the influence of hormone exposure on brain and body health. 
Many of these changes can have long lasting impacts on the brain, body, and disease risk as we report 
below. We urge the community to acknowledge, record, and report parity as a demographic variable 
when utilizing women in their studies. 

While we are focussing on hormones, many other systems are also besieged during pregnancy and likely 
contribute to influencing long-term female physiology long after giving birth. For example, pulmonary 
function, cardiac output, salt/mineral balance, insulin sensitivity, and immune function are all strained 
during pregnancy [7]. Indeed, pregnancy is often cited as a woman’s first cardiac stress test given the 
demands on the cardiac system that needs to increase output and efficiency by 50% [8]. Even more 
telling, in case of complications during pregnancy or low birth weight in babies, there is a greater risk of 
heart disease or metabolic syndrome in women later in life [9,10]. Both multiparity and earlier age of 
first pregnancy is associated with obesity in postmenopausal women [11]. Excessive weight gain during 
pregnancy is also associated with obesity in later life but the mechanisms are unclear. It is possible that 
pregnancy and motherhood interact and/or exacerbate pre-existing conditions in women later in life. 



5 
 

Indeed, pregnancy complications, such as pre-eclampsia, are associated with early mortality [12]. 
However, intriguingly, mortality rates for childless women that had undergone in vitro fertilization were 
higher than women that had biological children, although pregnancy and obstetric complications were 
not addressed in this study [13]. Another study found that while parous women were more likely to die 
from coronary heart disease, be overweight, present with diabetes or hypertension, mortality was 
decreased with increasing parity, though again, complications during pregnancy or parturition were not 
studied [14]. Nonetheless, the number of physiological demands during pregnancy, many mediated by 
placental hormones, and the dramatic maternal adaptation necessary during pregnancy are associated 
with long-term impacts on maternal health, that likely depend on a number of parameters such as 
maternal age, parity, and pregnancy complications. 

After giving birth, women show increased and decreased susceptibility to a variety of diseases. In the 
short term, postpartum depression is seen in approximately 15% of women, while 80% of women will 
experience the postpartum blues [15]. It should be noted that approximately 40% of the 15% of women 
that experience postpartum depression will be experiencing depression for the first time in their lives 
[15]. Intriguingly, postpartum blues are considered a normal consequence of giving birth and is thought 
to be mediated, at least in part, by the rapid change in levels of steroid and peptide hormones with the 
expulsion of the placenta [16]. In addition, obsessive-compulsive disorder is more likely to present after 
giving birth, and postpartum psychosis occurs in approximately one percent of parous women [17,18]. 
Much of the focus has been devoted to the increased susceptibility to these mental health disorders 
during and after pregnancy, and less work has centred on any long-term consequences of reproductive 
experience.  Nevertheless, oncology research has examined long-term effects on a variety of cancers, 
with previous parity related to either increased or reduced susceptibility to a variety of cancers, that can 
last a couple of decades (ovarian) or a lifetime (breast, endometrial) [19,20]. Reproductive history is 
associated with shorter leukocyte telomere length indicating an accelerated cellular aging [21]. Indeed, 
telomere attrition has been associated with a variety of chronic diseases, such as cancer, inflammation, 
type 2 diabetes, and Alzheimer’s disease (see below) [22]. Clearly, reproductive experience influences 
the prevalence of a number of disorders and is an important consideration in women’s health.   

After pregnancy, new mothers must elicit a host of new maternal behaviours in order to ensure the care 
and survival of her offspring. In rodents, the initiation of maternal behaviours is due to the hormones 
during pregnancy and the fluctuations at parturition [23–25], and there is some evidence that the 
estradiol to progesterone ratio and oxytocin are important in establishing maternal attachment in 
humans [26–28]. This induction of maternal behaviours suggests that an extraordinary amount of 
plasticity, related to learning, needs to occur in the early postpartum. Indeed, there are reports of 
increased grey matter in the amygdala, hypothalamus, and prefrontal cortex [29] and an increase in 
whole brain volume [30], after the decrease during pregnancy, 3-6 months postpartum. Furthermore, 
prefrontal cortical thickness in both hemispheres is increased with increasing postpartum months. In 
addition, prefrontal cortical thickness was positively associated with self-reported parental self-efficacy 
in first time mothers between 1-7 months postpartum [31]. Intriguingly, evidence also exists to the 
contrary, in that reduced grey matter and neuroplasticity are seen in a number of regions in the brain, 
including the hippocampus (a region associated with memory), in both humans and rodents [30,32–34]. 
These reductions in grey matter are positively related to maternal attachment [32]. Many of the changes 
in grey matter reduction are evident at least two years after first birth [32] but it is not clear if 
subsequent pregnancies may have a greater, lesser, or longer lasting impact on the brain. Intriguingly, 
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work in rats suggests that primiparity versus biparity is associated with differing outcomes on 
neurogenesis levels in the hippocampus [34]. Primiparous but not biparous rats exhibit reduced survival 
of new neurons in the dentate gyrus of the hippocampus across the postpartum [34]. This reduction in 
survival of new neurons in primiparous rats is due to pregnancy and not exposure to pups. Nulliparous 
rats exposed to pups for 21 days (foster moms) show an increase in the survival of new neurons, while 
pregnancy alone (removal of the pups within 24 h of birth) reduced the survival of new neurons across 
the postpartum to similar levels of primiparous rats [34]. In other regions of the hippocampus (CA3 and 
CA1), dendritic complexity is reduced in primiparous but not biparous rats at weaning, suggesting that 
the dentate gyrus is not the only area within the hippocampus that shows a disparity in outcome 
between primiparous and biparous rats [35]. Other studies have shown that new cells are also reduced 
in the dorsal raphe nucleus during the postpartum [36] but increased in other areas (nucleus accumbens 
and bed nucleus of the stria terminalis [37] or the olfactory bulb [38] in rodents. Thus, collectively a 
number of studies indicate that neuroplasticity is reduced in the hippocampus and the dorsal raphe [32], 
but increased in the nucleus accumbens, bed nucleus of the stria terminalis, and prefrontal cortex, with 
some changes evident as long as two years after giving birth [31,32,34,36]. Intriguingly, both reductions 
and increases in many of these areas are positively associated with parenting. 

Although there are numerous changes seen in neuroplasticity in the short term in both rodents and 
humans, fewer studies have examined whether there are changes to neuroplasticity in the long-term 
with previous reproductive experience. Middle-aged multiparous rats have higher levels of hippocampal 
neurogenesis [39], increased BDNF levels [40], synaptophysin [41], and reduced amyloid precursor 
protein [42] than nulliparous rats. Furthermore, the hippocampus responds differently to estrogens with 
previous reproductive experience in rodents [43]. While estrogens do not significantly influence 
neurogenesis in middle-aged nulliparous rats, surprisingly, estrogens increase neurogenesis in middle-
aged multiparous rats, showing a similar response as young adult nulliparous female rats [43,44]. One 
possible explanation for these findings is that, perhaps with the lower estradiol levels across the estrous 
cycle after reproductive experience [45] the hippocampus maintains its ability to show plasticity in 
response to estrogens in middle age. Primiparous middle-aged rats show increased neurogenesis in the 
hippocampus compared to nulliparous rats [46], while both parous groups show reduced neurogenesis 
in response to Premarin, conjugated equine estrogens. However, Premarin facilitated early learning and 
reversal learning in nulliparous rats, but impaired performance in primiparous middle aged rats [46]. 
These findings have profound implications for hormone treatment in postmenopausal women as the 
effects may be very different in parous versus non-parous women in later life, an effect that has not 
been investigated to our knowledge. 

As there are changes in neuroplasticity, what does the evidence indicate about changes in cognition 
seen during pregnancy and in the short- and long-term postpartum? Anecdotally women report baby 
brain particularly later in the pregnancy, but laboratory measures of memory do not indicate any 
measurable memory deficits in women [47]. However, cognitive deficits associated with verbal memory 
are seen in the third trimester of pregnancy [48] with the deficits increasing with parity [49].  
Furthermore, deficits in working memory and spatial memory are seen in women that are pregnant with 
girls but not boys [50]. An impairment in hippocampus-dependent learning during late pregnancy and 
the early postpartum is also seen in rodents [33,51]. Intriguingly, these motherhood-associated deficits 
in cognition reverse in the late postpartum, as parous rats exhibit better cognition after weaning 
compared to non-parous rats [52,53]. While there are only a few studies, executive function may be 
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facilitated with previous parity and age of first pregnancy, with better performance at 4-6 months 
postpartum in women that were older during their first pregnancy [54]. More concerning, parity may 
negatively affect cognition in later life, dementia risk, and pathology associated with Alzheimer’s disease 
in later life [55–59].  However, the results in humans with respect to parity influences on cognitive 
function and dementia risk have been mixed. This may be due to a number of factors such as the age of 
first parity [60], breastfeeding duration [61], sex of children [50], and genotype [62,63]. Nevertheless, 
these studies cumulatively suggest that the amount of parity, as well as sex of child, age of first birth, 
play a role in short- and long-term influences on cognition and neuroplasticity.  

One important implication of the altered physiology in parous women is that drug treatments may work 
differently, possibly due to the differences in hormone levels and changes in pharmacokinetics during 
gestation and beyond [64].  Although there is surprisingly very little work in this area, there are some 
studies indicating changes in cytochrome P450 enzymes occur during pregnancy [65–68] and possibly in 
the postpartum [69], which affect metabolism of drugs including antidepressants. One mechanism of 
action behind the efficacy of selective serotonin reuptake inhibitors (SSRIs) in females has been the 
ability of SSRIs to work more effectively with liable, and/or increased levels of estradiol [70]. Thus, it 
may not be surprising given that estradiol levels are decreased during the postpartum that selective 
serotonin reuptake inhibitors (SSRIs) may not be as efficacious during the postpartum. Certainly, studies 
in our laboratory have accumulated to suggest that efficacy of SSRIs such as fluoxetine and paroxetine 
are blunted during the late postpartum [71–73]. We have found that in a rodent model of postpartum 
depression, fluoxetine does not restore reduced levels of neurogenesis or increased levels of passive 
coping in the forced swim test at the end of the postpartum period (postpartum day 24, after 22 days of 
continual exposure to SSRI). Curiously however, we do see that fluoxetine can reverse maternal care 
deficits assessed in the early postpartum [71–73], suggesting that SSRIs may be effective in the early 
postpartum, but not in the late postpartum. Furthermore, Lonstein and colleagues [36,74,75] have 
noted changes in serotonin signalling during pregnancy and the postpartum, and these alterations likely 
influence the efficacy of SSRIs. More recently, we have found that exercise can be used in the 
postpartum as a viable option to increase neurogenesis and reduce immobility in the forced swim test 
with or without the addition of an SSRI [72]. It is not clear what may be interfering with the ability of 
SSRIs to increase neurogenesis across the postpartum but it may be related to the hormonal milieu and 
changes to serotonin signalling during the postpartum period. Collectively these studies suggest that the 
postpartum period is a period of decreased efficaciousness to SSRIs. Whether or not pharmacokinetics 
differ with reproductive experience in the long-term remains to be determined but should be an 
important consideration when investigating the effectiveness of therapies in women. 

Lastly, many of the long-term physiological changes may be moderated or mediated by fetal 
microchimerism. During pregnancy, there is bidirectional flow of fluids from mother to fetus via the 
circulation to the placenta [76]. In the process, there is some transfer of fetal tissue to the circulatory 
system of the mother and these cells remain in the woman’s system for life [77]. While there are few 
studies in this fascinating area, higher levels of XY cells were negatively correlated with neuropathology 
related to Alzheimer’s disease [78] and a decrease in mortality [79] in women. The possibility of fetal 
microchimerism influencing female health is intriguing but puzzling and may be related to the immune 
system. The immune system undergoes complex changes during pregnancy with immune tolerance and 
sensitivity in an orchestrated system that has not been fully elucidated [80]. It is possible that the HY 
antigen on male cells can re-program or stimulate the maternal immune system with long-term 
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repercussions. Although it seems incredible that this tiny number of cells can have a dramatic impact, 
some research points to long-lasting effects on maternal cognition based on fetal sex [50]. 

In conclusion, pregnancy and the birth of baby are accompanied by a host of physiological and 
psychological changes that occur in mother (and to a lesser extent the father). That there are lifelong 
alterations in the physiology of the mother should not be surprising with the advent of pregnancy. 
However, the idea that previous reproductive experience should be used as a moderator/variable to 
consider in women’s health has not received much attention. While, there is much focus on how 
biological sex alters disease trajectory and outcome, we argue that it also important to study the 
physiological challenges unique to women towards a better understanding of the influence of factors on 
women’s health. In the area of animal research, a number of studies on aging have used retired 
breeders but given that multiparous rodents show differences in the effects of estrogens, levels of 
BDNF, and cognition as they age, this could be an important consideration when examining aging in 
female animal models. When considering reproductive experience, amount, age of first pregnancy, 
biological sex of children, and pregnancy complications are likely to play modifying roles. Clearly, while 
parity is a modifiable factor, it is not likely that women will chose or not chose to have children based on 
long-term health consequences but nonetheless it is important to acknowledge and understand that 
parity has life-long implications in the treatment of women and may need to be considered in treatment 
strategies as women age.  
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Figure 1. Physiological changes seen during pregnancy, and in the short and long term after birth. 
Pregnancy is associated with dramatic physiological and hormone changes, many driven by the placenta. 
During pregnancy and postpartum, there is a reduction in grey matter in numerous areas such the 
superior temporal sulcus, medial and inferior frontal cortex, the fusiform areas and the hippocampus, 
changes that are seen even 2 years later but also increases in cortical thickness in the prefrontal cortex 
and grey matter increases in the amygdala. Cognitive difficulties are noted in late pregnancy and the 
early postpartum. In the short term, within the first few months after giving birth, parous women have 
an increased susceptibility to a variety of mental health disorders including postpartum depression, 
obsessive-compulsive disorder, and postpartum psychosis. Even many years after giving birth in middle-
aged and older women, while studies are few, studies have found increased risk of developing obesity, 
and metabolic disorders in women that had complications during pregnancy such as preclampsia and 
there is a suggestion that Alzheimer's disease may be related to parity. Figure created by Medical 
Illustrator, Vicky Earle, BSc AAM MET. 
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