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Abstract

Background: Smoking is the principal modifiable environmental risk factor for chronic obstructive pulmonary
disease (COPD) which affects 300 million people and is the 3rd leading cause of death worldwide. Most of the
genetic studies of smoking have relied on self-reported smoking status which is vulnerable to reporting and
recall bias. Using data from the Lung Health Study (LHS), we sought to identify genetic variants associated with
quantitative smoking and cessation in individuals with mild to moderate COPD.

Methods: The LHS is a longitudinal multicenter study of mild-to-moderate COPD subjects who were all smokers
at recruitment. We performed genome-wide association studies (GWASs) for salivary cotinine (n = 4024), exhaled
carbon monoxide (eCO) (n = 2854), cigarettes per day (CPD) (n = 2706) and smoking cessation at year 5 follow-up (n =
717 quitters and 2175 smokers). The GWAS analyses were adjusted for age, gender, and genetic principal components.

Results: For cotinine levels, SNPs near UGT2B10 gene achieved genome-wide significance (i.e. P < 5 × 10− 8) with
top SNP rs10023464, P = 1.27 × 10− 11. For eCO levels, one significant SNP was identified which mapped to the
CHRNA3 gene (rs12914385, P = 2.38 × 10− 8). A borderline region mapping to KCNMA1 gene was associated with
smoking cessation (rs207675, P = 5.95 × 10− 8). Of the identified loci, only the CHRNA3/5 locus showed significant
associations with lung function but only in heavy smokers. No regions met genome-wide significance for CPD.

Conclusion: The study demonstrates that using objective measures of smoking such as eCO and/or salivary
cotinine can more precisely capture the genetic contribution to multiple aspects of smoking behaviour. The
KCNMA1 gene association with smoking cessation may represent a potential therapeutic target and warrants
further studies.

Trial registration: The Lung Health Study ClinicalTrials.gov Identifier: NCT00000568. Date of registration:
October 28, 1999.
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Background
The smoking epidemic is one of the biggest public health
challenges in modern history [1]. Tobacco-attributable
deaths are expected to rise to more than 10 million globally
by 2030 [2–4]. Despite aggressive public health programs
aimed at eliminating smoking in the United States (US)
and elsewhere, one in 4 adults in the US still use tobacco
products and 1 in 5 are daily users. Smoking is the princi-
pal modifiable environmental risk factor for chronic

obstructive pulmonary disease (COPD), ischemic heart dis-
ease, and lung cancer [5]. COPD, for instance, affects 300
million people and is the 3rd leading cause of death world-
wide [6].
Genetic studies of smoking behaviour and smoking-

related illnesses such as COPD and lung cancer have
identified strong associations in the chromosome 15q25
region, which contains genes encoding the nicotinic re-
ceptor subunits CHRNA3-CHRNA5-CHRNB4 [7–9].
However, most of these studies have relied on self-
reported smoking status as either the phenotype of inter-
est or one of the covariates to “adjust” tobacco exposure.
Self-report is vulnerable to reporting and recall bias and
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has been shown to consistently underestimate total
tobacco exposure [10, 11], which may result in residual
confounding [12]. One way to mitigate this risk is to use
an objective biochemical assay to validate self-reports of
tobacco use. The most commonly used assays include
exhaled carbon monoxide (eCO) [13] or cotinine in
serum, urine or saliva [14]. Because eCO has a short
half-life (~ 4 h) it is best suited for short term tobacco
exposure while the longer half-life of cotinine (~ 16 h)
makes it a more robust measure to differentiate active
from non-active smokers with a longer duration of ab-
stinence. However, because cotinine is a by-product of
nicotine, enzymatic processes involved in nicotine me-
tabolism can affect cotinine levels in smokers. eCO
and/or cotinine assays are relatively inexpensive, non-
invasive and well-standardized measurements and
most importantly they more accurately quantify to-
bacco exposure in smokers compared with self-report
alone [13, 15].
To date, very few studies have ascertained the genetic

drivers of smoking (and cessation) using validated biochem-
ical assays [16], especially among those with established
smoking related diseases such as COPD. Using data from
the Lung Health Study, we identified the genetic variants
associated with cigarette smoking using validated objective
assays in individuals with mild to moderate COPD.

Methods
The lung health study (LHS)
The details of the LHS have been published previously
[17, 18]. Briefly, LHS was a multicenter clinical study
that evaluated the effects of ipratropium bromide, a
short acting antimuscarinic agent (i.e. ipratropium
bromide), and smoking cessation on lung function de-
cline in current smokers with mild to moderate COPD.
At the time of recruitment all subjects were active
smokers between the ages of 35 and 60 years (with a
mean age of 48 years) who had smoked at least 10 ciga-
rettes a day within the 30 days prior to initial screening
and who demonstrated mild to moderate COPD on spir-
ometry defined by forced expiratory volume in 1 second
(FEV1) between 55% and 90% of predicted, in the pres-
ence of a FEV1/forced vital capacity (FVC) ratio of < 0.
70 after bronchodilation. The mean FEV1 of the cohort
was 75% predicted and the mean FEV1/FVC was 63%
post-bronchodilator.
After enrolment, these patients were randomly

assigned to one of 3 groups: (1) usual care (UC), who
received no intervention, n = 1964; (2) an intense anti-
smoking (special) intervention and ipratropium bromide
(Atrovent®, Boehringer Ingelheim Pharmaceuticals) n =
1961 (SIA); or (3) an intense anti-smoking (special)
intervention and an inhaled placebo, n = 1962 (SIP). Ten
centers participated in the original study and together

they recruited 5887 patients (of whom 37% were
females). Those who were in the SIP or SIA groups re-
ceived a program that consisted of: 1) a strong recom-
mendation by attending physician for smoking cessation
in an one-on-one encounter; 2) a group program led by
a health educator that met 12 times over 10 weeks,
which taught behavioural modification techniques; and
3) nicotine replacement therapy with nicotine gum
(2 mg per piece, Nicorette Gum, Marion Merrell Dow
Inc), which was provided at no cost to patients. Those
who successfully quit smoking were enrolled in a main-
tenance program to prevent relapses.
For the first 5 years, the lung function of participants

was measured annually. At each face to face visit the
subjects’ smoking status was determined using a ques-
tionnaire, which was validated by salivary cotinine and
exhaled carbon monoxide levels as previously described
[18]. Participants were classified as smokers if their co-
tinine levels were greater than 20 ng/mL or if their ex-
haled carbon monoxide concentrations were higher than
10 ppm. At year 5 of the study, participants were divided
into three groups based on smoking history as previ-
ously described [19]. Sustained quitters (SQs) were
defined as those who gave a history of total abstinence
(no month in which the subject smoked even a single
cigarette per day) and had eCO readings below 10 ppm
at each annual follow-up visit over 5 years. Continuing
smokers (CSs) were those who reported smoking at all
scheduled follow-up visits. Intermittent quitters (IQs)
were current smokers at some but not all of their visits.
Given the ambiguity of the IQ group (n = 1210) in terms
of cigarette smoking, they were excluded from the smok-
ing cessation genome wide association study (GWAS).

Genotyping
At year 5 of LHS, venipuncture was carried out on 5413
LHS participants who were alive and eligible at this visit.
Blood samples were taken when participants were stable
and free of exacerbations for at least 4 weeks and were sep-
arated into buffy coat and serum [20]. DNA was extracted
from the buffy coat samples of 4251 European Americans
in LHS and SNP genotyping was performed. The details of
genotyping and quality control have been previously de-
scribed [21]. Briefly, samples were genotyped using the
Illumina Human660WQuad v.1_A BeadChip. Overall, 98.
4% of samples (n = 4181) passed initial quality control stan-
dards and genotypes were available for 559,766 SNPs. An
additional 133 samples were removed because they failed
subsequent quality control, which resulted in a final sample
of n = 4048 for the present analysis. Imputation was under-
taken with the Michigan Imputation Server [22] using the
Haplotype Reference Consortium (HRC) [23] panel. Vari-
ants were excluded if the imputation r2 was < 0.5 and if the
minor allele frequency was < 1%.
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Measurements of expired carbon monoxide (eCO) and
cotinine
The details of eCO and cotinine measures have been
previously described [24]. To conduct the cotinine assay,
LHS participants were asked to deposit at least 1 ml of
saliva in a plastic vial, which was then frozen and sent in
a batch to the American Health Foundation laboratory
in Valhalla, NY. One sample was taken from each par-
ticipant and a single cotinine assay measurement was
performed. The cotinine assessment was conducted
using the radioimmunoassay technique of Langone et al.
by personnel who were blinded to the smoking status of
the participants [24]. In LHS, the sensitivity and specifi-
city of using a salivary cotinine cutoff of 20 ng/ml com-
pared to self-report was 99% and 92%, respectively.
Studies have reported a technical coefficient of variation
(CV) value of 5% for salivary cotinine assay [25].
Carbon monoxide in expired air was measured using

either of two instruments: the MiniCO (Catalyst
Research) or the EC50 (Vitalograph). The eCO measure-
ment procedure involved two attempts. If the two values
were not within 4 ppm, the measurements were re-
peated. The result was the average of the two readings
rounded to the nearest integer [24].

Genome-wide association analyses (GWASs)
Given that eCO, cotinine and cigarettes per day (CPD)
distributions were skewed, the values were transformed
into normally distributed Z scores using the R function
‘rntransform’ [26] (Additional file 1: Figure S1). We per-
formed GWAS for three transformed phenotypes: eCO,
salivary cotinine and CPD using SNPTEST [27] assuming
an additive genetic model and adjusting for age, gender,
and the first 5 genetic principal components (PCs). Since
cotinine levels were measured in all subjects at baseline
visit, we performed the GWAS for cotinine baseline levels
to make available the largest sample size (n = 4024 and
missing data rate = 1.9%). The eCO and CPD values were
only measured in smokers at subsequent visits so we used
the values measured at year 1 follow up to make available
the largest sample size (n = 2706 and missing data rate = 8.
1% for eCO; n = 2854 and missing data rate = 3.12% for
CPD). Significant SNPs were defined as the sentinel SNPs
meeting genome-wide significance (P < 5 × 10− 8).

Evaluation of previously published variants which relate
to smoking cessation
We evaluated previously published hits from two studies
for smoking cessation. The first study is the Tobacco
and Genetic Consortium (TAG) meta-analysis GWAS of
smoking behaviour [28]. The TAG study included 41,278
former and current smokers and the top 15 associated
SNPs for self-reported smoking cessation were followed
up in 64,924 independent individuals from the European

Network of Genetic and Genomic Epidemiology (EN-
GAGE) and the Oxford-GlaxoSmithKline (Ox-GSK)
consortia. This meta-analysis identified only one signifi-
cant SNP as being associated with smoking cessation;
rs3025343 (P = 1.8 × 10− 8), which was located on
chromosome 9, near the dopamine beta-hydroxylase
(DBH) gene.
The second study by Siedlinski et al. reported GWAS

results for self reported phenotypes of smoking includ-
ing lifetime average and current CPD, age at smoking
initiation, and smoking cessation in 3441 patients with
COPD [29]. In total, the meta-analysis included 1164
current smokers and 1907 former smokers (all using self
report of yes/no answers); none of the SNPs had showed
a statistically significant association with smoking cessa-
tion. In the present study, we interrogated the 9 SNPs
associated with smoking cessation reported in Siedlinski
et al. study.

Association of smoking related SNPs with extremes of
lung function
To determine whether any of the smoking related SNPs
discovered in the present study also had an impact on
smoking-related physiological outcomes such as lung
function, we tested SNPs identified in this study for
association with lung function in never and, separately,
in heavy smokers. The UK Biobank Lung Exome Variant
Evaluation (UK BiLEVE) evaluated the genetic determi-
nants related to low (mean of 65.6% predicted, average
(mean of 90.6% predicted), or high (mean of 118% pre-
dicted) forced expiratory volume in 1 second (FEV1) in
heavy smokers (mean 35 pack-years) and separately in
never smokers. The study included 10,002 individuals
with low FEV1, 10,000 with average FEV1, and 5002 with
high FEV1 from each of the heavy smoker and never
smoker groups. Genome-wide genotyping was performed
using a custom Affymetrix Axiom array (UK BiLEVE
array; Santa Clara, CA, USA). After quality control non-
genotyped variants were imputed using a combined
1000G Phase 1 and UK10K Project [30] reference panel.

Gene drug interactions
To uncover the potential biological relevance of the
smoking cessation GWAS hits, we used two databases
to search for potential gene drug interactions: the DGIdb
[31] http://www.dgidb.org/ and the DRUGBANK data-
base [32] https://www.drugbank.ca/ .

Results
Descriptive demographics of LHS participants
The overall LHS design and the sample size for each of
the GWASs are shown in Fig. 1, and the demographics
and quantitative smoking values are shown in Table 1.
Among smokers at year 1 of LHS, there was a strong
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correlation between eCO, cotinine, and CPD values with
the correlation between eCO and CPD being the stron-
gest (r = 0.5, P = 1 × 10− 170, Additional file 1: Figure S2).
The levels of quantitative smoking biomarkers such as

cotinine were inversely related to cross sectional lung func-
tion measures at years 1–5 (Additional file 1: Figure S3).
This relationship was significant (P < 0.05) for years 1–4
and borderline significant in year 5 (P = 0.08). Furthermore,
cotinine levels at year 5 showed negative correlation with
FEV1 decline between years 1 and 5 (P = 3 × 10− 11,
Additional file 1: Figure S4).

Genome-wide association results for cotinine levels
In the four GWAS analyses, we included 7,807,992 vari-
ants with MAF > 1% and imputation quality> 0.5. The
GWAS of cotinine levels at baseline included 4024 indi-
viduals. Quantile–quantile (QQ) plots are presented in
Additional file 1: Figure S5, which showed a sharp devi-
ation from the expected distribution for low p-values in-
dicating strong signals. The genomic inflation factor (λ)
was 0.996, suggesting no systematic deviation in the as-
sociation statistics due to factors such as population
structure.
A total of 250 SNPs in the 4q13.2 region containing

the UGT2B10 gene achieved genome-wide significance
(P < 5 × 10− 8). A Manhattan plot is shown in Fig. 2 and
the region plots are shown in Fig. 3. The most
significantly associated SNP for cotinine levels was an
intergenic SNP on chromosome 4 (rs10023464) (P = 1.

27 × 10-11). Another interesting signal was observed on
the 15q25.1 region with an intronic SNP rs9788721 (P =
3.49 × 10-7) in the HYKK gene near CHRNA3/5 genes,
though this latter association did not reach genome-
wide significance. All SNPs meeting or approaching
genome-wide significance for smoking phenotypes are
presented in Table 2.
The association of the two cotinine-associated loci

(UGT2B10 and CHRNA3/5) with cotinine levels at sub-
sequent years showed that the strength of the associ-
ation decays during subsequent follow up visits i.e. the P
values increase yet they maintain the same direction of
effect (Additional file 1: Table S1). This decrease in sig-
nificance is directly proportional to the the decrease in
sample sizes available for the analysis at follow up visits
with a missing rate ranging from 8% in year 1 to 51%
missing subjects at year 5 (Additional file 1: Table S2).

Genome-wide association results for exhaled carbon
monoxide (eCO) levels
The GWAS of eCO levels at year 1 included 2706
smokers (Fig. 2 and Additional file 1: Figure S5). The
genomic inflation factor (λ) was 1.00. Only one region;
the 15q25.1 region met genome wide significance with
one SNP; intronic SNP (rs12914385) mapping to the
CHRNA3 gene (P = 2.38 × 10-8) (Fig. 3 region plots).
Two regions approached genome wide significance for
eCO. The first was the 3q22.3 region with intronic SNP
rs546764 (P = 7.76 × 10-8) mapping to the CEP70 gene.

Fig. 1 Overall LHS smoking GWAS study design. eCO: exhaled carbon monoxide. CPD: Cigarettes per day. Y1: year 1. eCO was measured in those
reporting current smoking

Table 1 Demographics of study subjects. Gender male in n (% of column totals), other variables in mean±SD. CPD: cigarettes per
day. eCO exhaled carbon monoxide. * Age at assessment

Baseline Year 1 Year 5

Smokers Smokers Quitters Continuous smokers Sustained quitters Intermittent quitters

N (%) 4102 2946 1156 2175 717 1210

Age* (years) 48.6 ± 6.7 49.4 ± 7 50.0 ± 6.7 53.3 ± 6.7 54.2 ± 6.6 53.7 ± 6.7

Gender (male) 2853 (63%) 1837 (62%) 746 (65%) 1366 (63%) 481 (67%) 736 (61%)

BMI (kg/m2) 25.5 ± 3.8 25.7 ± 3.9 27.3 ± 4.0 26.0 ± 4.2 28.4 ± 4.3 27.5 ± 4.2

FEV1% predicted 78.6 ± 9.0 78.0 ± 9.8 81.8 ± 9.5 72.8 ± 12.0 80.3 ± 10.9 77.2 ± 11.5

eCO (ppm) 32.4 ± 16.1 24.8 ± 13.2 4.8 ± 2.5 25.4 ± 13.8 4.0 ± 2.4 9.6 ± 11.1

Cotinine (ng/ml) 361.4 ± 199.3 302.7 ± 146.3 92.2 ± 158.7 343.1 ± 195.3 27.8 ± 132.4 117.5 ± 229.6

CPD cigarettes/day 21.9 ± 14.5 21.9 ± 14.5 0 ± 0 23.0 ± 12.9 0 ± 0 5.3 ± 10.2
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The second region was the 14q23.1 region with an
intergenic SNP rs140706189 (P = 6.31 × 10-8) near the
SIX1/4/6 and MNAT1 genes (Table 2).

Genome-wide association results for cigarettes per day
(CPD)
The GWAS for CPD included a total of 2854 smokers at
year 1 (Fig. 2 and Additional file 1: Figure S5). The gen-
omic inflation factor (λ) was 1.00. No regions met
genome-wide significance. Two regions, however,
approached this level of significance. These included the
13q21.32 region with intronic SNP rs9599114 mapping
to PCDH9 gene (P = 7.94 × 10-8), and the 9q34.13 region
with intergenic SNP rs1412076 (P = 2.24 × 10-8) near
NTNG2 (Table 2).

Genome-wide association results for smoking cessation
At year 5 of LHS, there were 717 sustained quitters and
2175 continuous smokers (quitters vs. smokers case con-
trol GWAS). No loci met genome-wide significance but
two loci very closely approached this level of significance
(Figs. 2 and 3). The strongest association was intronic
SNP rs207675, which mapped to the KCNMA1 gene on
10q22.3 (P = 5.95 × 10-8). The second loci included the
intronic SNP rs212420 (P = 1.50 × 10-8) near the
ATXN7L1 gene on 7q22.3.

Evaluation of previously associated SNPs for smoking
behaviours
Previous reports have identified genetic loci (CHRNB3/
A6 region on chromosome 8 and the CYP2A6 region on
chromosome 19) that were significantly associated with
CPD [33] . In the present study, both of these SNPs
showed no significant association with CPD (P > 0.05).
Additionally, we evaluated 15 SNPs that were nominally

related to smoking cessation in two previous publica-
tions [28] and a number of other SNPs that were nomin-
ally associated with smoking cessation among COPD
subjects [29].
Additional file 1: Table S3 shows the results of the

look-up. One SNP; rs4362358 near the CHRNA3/5
genes that was related to cessation in the TAG consor-
tium [28] was associated with eCO (P = 0.03) and cotin-
ine (P = 0.002) in our study. Another cessation SNP in
the TAG consortium; rs17178639 in SLC25A21 gene
was associated with eCO (P = 0.007) in the present
study. The two SNPs were associated with reduced ces-
sation in the TAG consortium and were also associated
with higher eCO and cotinine levels in our study. Of the
cessation SNPs in COPD patients from the study of
Siedlinski et al. [29], two near the IPMKP1 gene were
nominally associated with cessation in our study:
rs9506942, and rs9552733 with P = 0.005 and P = 0.004,
respectively and with the same direction of effect.
We tested SNPs identified in our study for associations

with smoking phenotypes in the TAG consortium (CPD,
cessation, age of onset and ever vs. never phenotypes).
Only CHRNA3/5 SNPs (for eCO and cotinine) were sig-
nificant in the TAG data for both CPD and for cessation
(Additional file 1: Table S4).

Associations with lung function
We tested the SNPs identified in this study for associations
with extremes of lung function: high vs. low FEV1 in heavy
smokers and separately for never smokers in a large study
from the UK Biobank [34]. Only the CHRNA3/5 region
variants showed associations with lung function and only
in the heavy smokers group (not in the never smokers).
The results for lung function are shown in Additional file 1:
Table S5.

Fig. 2 Manhattan plots of smoking GWASs in Lung Health Study. The plots show the P values (−log10 scale) on the Y axes and the SNP positions
across 22 autosomal chromosomes on the X axes. The horizontal red line represents the genome-wide cut-off of 5 × 10− 08
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Fig. 3 Region plots of the smoking associated loci. The Y axis represent the P values in the (−log10 scale) and the X axis is the genomic position.
Gene names and their corresponding coordinates are shown below. The sentinel SNP is shown as a purple diamond and the color coding of
SNPs reflects the degree of linkage disequilibrium (LD) with the sentinel SNP using 1000G reference
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Discussion
Smoking places a huge burden on individuals and health
care systems. Smoking behaviours, and consequently the
risk of smoking related illnesses are at least partially gen-
etically determined [35, 36]. The majority of previous
studies on the genetics of smoking behaviour have relied
on self-report, which is affected by recall bias and more
importantly under-reporting bias, which may lead to an
inaccurate assessment of smoking exposure. Indeed, sev-
eral groups have shown that in approximately 25 to 50%
of self-reported quitters, objective assays could not valid-
ate the reported smoking status [37] . It is thus crucial
to accurately phenotype smoking status to properly
understand the molecular mechanisms underlying nico-
tine addiction, metabolism, and smoking cessation.
In the current study of COPD subjects, we performed

GWAS for the phenotypes of self-reported cigarettes per
day (CPD) and two biochemical biomarkers of smoking:
eCO and salivary cotinine. Additionally, we evaluated
genetic determinants of biochemically validated smoking
cessation over 5 years. Using this approach, we identified
genome-wide significant loci associated with salivary
cotinine on 15q.25.1 (CHRNA3/5 genes) and 4q13.2
(UTG2B10) gene). For eCO, only the 15q.25.1 locus
reached genome-wide significance. The smoking cessa-
tion GWAS revealed a borderline signal in the
KCNMA1 gene on 10q22.3. Finally, of all the loci identi-
fied in the current study, only the CHRNA3/5 locus
showed a significant association with lung function in
heavy smokers (but not in never smokers) from the gen-
eral population.
Genetic determinants of smoking can be related to

smoking intensity (addiction), metabolism or both. The
metabolism of nicotine involves several enzymatic path-
ways. Approximately 10% of nicotine is excreted un-
changed in the urine. The majority of nicotine (~ 80%) is
converted to cotinine in two steps: initial metabolism,

which is mediated by the cytochrome P450, family 2, sub-
family A, poly-peptide 6 (CYP2A6) enzyme, followed by
conjugation by aldehyde oxidase [38]. After these two
steps cotinine is further metabolised by CYP2A6 to 3-
hydroxycotinine. Oxidation and glucuronidation processes
account for the remaining 10% of the metabolic process
[38]. We found significant association of salivary cotinine
with SNPs in UDP glucuronosyltransferase family 2 mem-
ber B10 (UGT2B10), which catalyses both nicotine and
cotinine glucuronidation in smokers.
Previous GWAS for cotinine in urine, plasma or

serum have all identified the UGT2B10 region [16, 39]
with stronger associations reported for urinary cotinine
levels. In the current study, we replicated the association
signal for SNPs in the UGT2B10 region for association
with salivary cotinine. Smokers are thought to self-titrate
their nicotine to meet their physiological need [40] (i.e.
high metabolizers are likely to smoke more). If this hy-
pothesis were true, then we would expect variations in
the rates of metabolism (and hence consumption) to be
associated with smoking related diseases/phenotypes.
However, we failed to find any significant associations be-
tween SNPs in the UGT2B10 gene region with impaired
lung function in smokers. We may not have sufficient
power to detect a subtle effects of this locus; alternatively
the two mechanisms (metabolism and consumption) may
not be directly linked as previously suggested [34]. The
association results of the cotinine and eCO-associated
SNPs with CPD in the same individuals are shown in
Additional file 1: Table S6. The results indeed show that
the UGT2B10 variant is not associated with CPD (P = 0.28),
arguing against the notion that variation in metabolism of
nicotine may affects smoking behaviour.
Perhaps the most widely studied and reported region for

smoking is CHRNA3/5 on 15q25. The associations of this
region in the current study are with biochemical bio-
markers of smoking (eCO and cotinine). In the present

Table 2 Genetic loci associated with smoking behaviour in the Lung Health Study

Phenotype SNP Chr Gene(s) Position (hg19) Alleles (REF/ALT) MAF Imputation r2 beta SE P value % Variance

Cotinine rs10023464 4 UGT2B10 69,659,738 C/T 9.8% 0.995 0.25 0.04 1.27e-11 1.1%

Cotinine rs9788721 15 CHRNA3/5 78,802,869 C/T 39.5% 0.989 −0.12 0.02 3.49e-7 0.6%

eCO rs546764 3 CEP70 138,294,336 T/G 2.8% 0.844 0.39 0.07 7.76e-8 0.9%

eCO rs140706189 14 SIX1/4/6, MNAT1 61,151,425 T/G 1.7% 0.827 −0.49 0.09 6.31e-8 0.9%

eCO rs12914385 15 CHRNA3/5 78,898,723 C/T 43% 1.000 0.12 0.02 2.38e-8 1.2%

CPD rs1412076 9 NTNG2/ SETX 135,032,890 A/G 37.6% 0.999 0.10 0.02 2.24e-7 0.8%

CPD rs9599114 13 PCDH9 66,987,131 T/C 41.7% 0.957 0.11 0.02 7.94e-8 0.8%

Cessation rs212420 7 ATXN7L1/ CDHR3 105,496,412 C/G 6.7% 0.992 −0.60 0.11 1.50e-7 n/a

Cessation rs207675 10 KCNMA1 79,154,537 T/C 33.6% 0..988 −0.35 0.06 5.95e-8 n/a

UGT2B10 UDP glucuronosyltransferase family 2 member B10, CHRNA3 cholinergic receptor nicotinic alpha 3 subunit, CHRNA5 cholinergic receptor nicotinic alpha 5
subunit, CEP70 centrosomal protein 70, SIX1 SIX homeobox 1, MNAT1 MNAT1, CDK activating kinase assembly factor, NTNG2 Nitrin G2, SETX senataxin, PCDH9
protocadherin 9, ATXN7L1 ataxin 7 like 1, CDHR3 cadherin related family member 3, KCNMA1 potassium calcium-activated channel subfamily M alpha 1, * Refers to
odds ratio and 95% confidence intervals (CI)

Obeidat et al. Respiratory Research  (2018) 19:59 Page 7 of 10



study, the CHRNA3/5 variants were associated with saliv-
ary cotinine as well as eCO levels. Importantly, these vari-
ants were also significantly related to CPD (P < 0.05),
suggesting this genetic region modulates cigarette con-
sumption (Additional file 1: Table S6). However, this locus
was not associated with smoking cessation in LHS partici-
pants, suggesting that other factors are involved in quit-
ting. Other previously reported loci in CYP2A6 and
CHRNB3/CHRNA6 genes could not be replicated in our
study. However, as previously noted [35, 36], the strength
of the relationship between these loci and smoking is rela-
tively modest and may require much larger sample sizes
to be detected.
We identified a suggestive signal (P = 5.95 × 10-8) for

smoking cessation in the potassium calcium-activated
channel subfamily M alpha 1 (KCNMA1) gene which is
important for the control of smooth muscle tone and
neuronal excitability [41, 42]. The association between
the KCNMA1 variant with cessation in our study could
not be replicated in the cessation GWAS from the TAG
consortium [28]. This could be due to the fact that our
study used a biochemically verified smoking status;
whereas the previous studied relied only on self-report.
Our data are in keeping with a previously published
study. A GWAS in Australian and Dutch populations
identified SNPs in the KCNMA1 gene, which were
significantly associated with nicotine dependence
(rs592676, p = 8.91 × 10-6). In our study, the same SNP
was strongly associated with cessation (P = 5.6 × 10-7).
Interestingly, a drug repositioning study that integrated
disease and drug expression profiles identified KCNMA1
as a potential molecular target for lobeline: a natural
alkaloid that has been used as a smoking cessation aid
[43] as well as for amphetamine and cocaine addictions
[44] KCNMA1 is a target for the FDA approved drug,
chlorzoxazone, which is a centrally acting muscle
relaxant. Chlorzoxazone acts as an activator of a
calcium-activated potassium channel [45] and is
commonly used as a probe drug to phenotype CYP2E1
activity and its metabolism is strongly accelerated by
cigarette smoking [46]. Another study proposed
chlorzoxazone as a potential treatment for alcohol
addiction [47]. At the gene expression level, NHBE cells
exposed to nicotine-containing e-cigarette vapour demon-
strate decreased expression of KCNMA1 [48], while in hu-
man lung tissue smokers have significantly higher
expression compared to never smokers (1.5 fold change,
P = 3.11 × 10− 08) [49]. Finally, a genome-wide study iden-
tified differential hydroxymethylation of potassium chan-
nel genes, including KCNMA1, in the nucleus accumbens
in methamphetamine addiction and abstinence [50].
Taken together, these data suggest the KCNMA1 associ-
ation with smoking cessation is biologically plausible with
the potential for drug repurposing.

This study has several limitations. The sample size
may have been too small to detect novel loci for smok-
ing biomarkers or cessation. On the other hand, the use
of precise biochemical phenotypes on the other hand
likely improved the specificity of the smoking cessation
signal. Furthermore, and in line with most published
GWASs, the proportion of variance explained by the
identified variants is small.

Conclusion
In conclusion, we identified genetic loci associated with
eCO and cotinine in COPD patients. Our study strongly
support the need to use objective measures of smoking
to capture the genetic contribution to smoking in these
studies. The KCNMA1 region association with smoking
cessation represents a potential target for drug discovery
and repurposing which warrants further studies.

Additional file

Additional file 1: Supplementary Figures and Tables. (DOCX 1183 kb)
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