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Abstract—A recently proposed fading model which can be used
to describe both line-of-sight and non-line-of-sight components of
a fading channel is analyzed. The outage probability and error
rate performance of equal-gain combining over arbitrary corre-
lated Beaulieu-Xie fading channels is considered. Asymptotically-
tight closed-form lower and upper bounds are derived and these
analytical results are verified via Monte Carlo simulations.

I. INTRODUCTION

Wireless systems with both line-of-sight (LOS) signal and
multi-path (non-LOS) signals have been largely characterized
by the Ricean fading model. However, the Ricean fading lacks
the flexibility to model different fading severity because of
its unity diversity order [1]. To overcome the challenges of
inadaptability of the Ricean fading to fading variations, the
Nakagami-m fading model was proposed which has a flexible
fading parameter, m. However, it has been concluded that
the Nakagami-m fading model, which can be derived from
the central Chi-distribution, is only suitable for systems with
multi-path (non-LOS) signals [2]-[4].

A recently proposed fading model, which we refer to as the
Beaulieu-Xie fading model in this work, was derived from the
non-central Chi-distribution. This fading model acquires the
advantages of the Ricean and Nakagami-m fading models,
through its ability to model both LOS signals and multi-
path (non-LOS) signals and flexibility to model various fading
severity which is enabled by its flexible fading parameter, m.
The Beaulieu-Xie fading model is a normalized form of the
non-central Chi-distribution as the Nakagami-m fading model
is a normalised form of the central Chi-distribution. This new
fading model has been shown to have a relationship with the
generalized Ricean distribution and the κ − μ distribution
[1], which makes the performance analysis of this fading
model to be of utmost importance. To the best of the authors’
knowledge, there has been no performance analysis reported
beyond the works in [5] and [6].

Diversity technique is of enormous importance in radio
communications in the presence of co-channel interference
and multipath fading. Diversity combining schemes play a
vital role in limiting these undesirable effects on transmitted
signals. There is generally an assumption of independence
when considering spatial diversity; however, this is most often
not the case. For example, in large multiple-input-multiple-
output implementations, this assumption of independence is
only valid when there is sufficient spacing among receiving
branches [7]. We will therefore consider correlated Beaulieu-
Xie fading channels in this paper for equal-gain combining
(EGC). EGC is considered because it has simpler implementa-
tion than maximal ratio combining (MRC), but EGC performs

closely to optimal MRC [8]-[10].

This work makes the following major contributions. Asymp-
totically tight closed-form error rate and outage probability
bounds at high signal-to-noise (SNR) are developed and
analysed for EGC over arbitrarily correlated Beaulieu-Xie
channels. The performance of EGC diversity reception over
arbitrarily correlated and independent Beaulieu-Xie fading
channels is analysed.

II. SYSTEM MODEL

Linear diversity reception with N branches operating over
the Beaulieu-Xie fading model is considered here. The re-
ceived signal is obtained as

y = zx+ n (1)

where x is the transmitted signal, n is a random vector
denoting additive Gaussian white noise (AWGN), and z is
the fading channel vector, i.e., the real fading amplitude.

In addition, z = [z1, . . . , zN ]
T

= [
√
γ̄1Z1, . . . ,

√
γ̄NZN ]

T
,

where [·]T represents the transpose, γ̄n is the average received
SNR of the nth branch, and Zn is the fading amplitude of the
nth branch. The output SNR for EGC diversity reception is
given as

γEGC =
1

N

(
N∑

n=1

zn

)2

. (2)

The Beaulieu-Xie fading amplitude associated with the nth
branch is

Zn =

√√√√ 2m∑
i=1

X2
n,i; ∀n = 1, . . . N (3)

where Xn,i,∀i = 1, . . . 2m are Gaussian RVs with mean μ,
variance

(
1

2m

)
and m is a half-integer, representing the fading

parameter that controls the shape of the probability density
function (pdf) of the fading model. The nth component of z
can be obtained by generating N×2m matrix of Gaussian RVs,
B, whose entries are bn,i whose mth column is denoted as
bm, such that B = (b1, . . . ,b2m). We obtain the vector, b =[
bT
1 , . . . ,b

T
2m

]T
= [b1,1, b2,1, . . . , bn,2m]

T
. We can, therefore,

express the fading amplitude over the nth branch as

zn =

√√√√ 2m∑
i=1

b2n,i; ∀n = 1, . . . N. (4)
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The pdf of b is expressed as

fb(b) =
1√

(2π)
2mN |Rb|

× exp

(
−1

2
(b− μb)

T
R−1

b (b− μb)

)
(5)

where μb is the 2mN × 1 mean vector and Rb is the
2mN × 2mN covariance matrix of b. The determinant of the
covariance matrix Rb is expressed in terms of the correlation
matrix Cb by [10]

|Rb| =

(
N∏

n=1
γ̄2m
n

)
|Cb|

(2m)
2mN

.

This new fading model has a diversity order mN , similar to
the Nakagami-m fading model. For the same value of m, but
the former has improved performance due to its inclusion of
the LOS component [1].

III. RELATIONSHIP BETWEEN THE POWER CORRELATION

AND GAUSSIAN CORRELATION COEFFICIENT

We employ the Cholesky decomposition to define the
correlation between RVs Xn,i and Xj,k with mean μ and
variance 1

2m [8]. It can be shown that Xn,i = ρ(n,i)(j,k)Xj,k+√
1− ρ2(n,i)(j,k)W with mean zero and variance 1

2m , and it is

independent of Xj,k. The relationship between the correlation
coefficient of the Gaussian RVs and the power correlation
coefficient is

ρz2
n1

z2
n2

=
K − (2m)

2
T 2

(2 + 2m)U − (2m)
2
T 2

(6)

where K =
2m∑
i=1

2m∑
k=1

(
3U2ρ2(n,i)(j,k) + T 2

(
1− ρ2(n,i)(j,k)

))
,

T = 1
2m + μ2, and U = 1

2m .

IV. BOUNDS ON THE PDF

The pdf of b shall be bounded in the region bTb ≤ r2,
which is a 2mN -dimensional sphere with radius r. This is
achieved by considering the exponential component of (5).

Applying the Rayleigh quotient as Ry

(
R−1

b ,b
)
=

bTR−1
b b

bTb
,

where Rb is a positive definite matrix. The range of Ry is

obtained as λmin ≤ bTR−1
b b

bTb
≤ λmax, such that λi ≥ 0, λmin

and λmax are the smallest and largest eigenvalues of R−1
b ,

respectively. Thus, when λmin = 0 we have

0 ≤ bTR−1
b b ≤ λmaxb

Tb. (7)

Further expansion of the exponential component leads to

(b− μb)
T
R−1

b (b− μb)

= bTR−1
b b+ μb

TR−1
b μb + 2

∣∣μb
TR−1

b b
∣∣ , (8)

where we assume that R−1T

b = R−1
b .

Using the 2-norm of the matrix as ‖b‖ =
√
bTb =

√
r,

such that (8) becomes

− 2
∥∥μb

TR−1
b

∥∥√r ≤ (b− μb)
T
R−1

b (b− μb)

≤ λmaxr + 2
∥∥μb

TR−1
b

∥∥√r. (9)

The upper and lower bounds of the pdf are then obtained as

fb (0) exp

(
−1

2

(
λmaxr + 2

∥∥μb
TR−1

b

∥∥√r
)) ≤ fb (b)

≤ fb (0) exp
(∥∥μb

TR−1
b

∥∥√r
)
. (10)

V. PERFORMANCE BOUNDS OF EGC

A. Outage Probability Bounds on EGC

We express the outage probability for EGC with respect to
a signal threshold, γth, as

PEGC
o (γth) = Pr {γEGC ≤ γth} . (11)

Substituting (3) into (2b) and then substituting the result into
(11) give

PEGC
o (γth) = Pr

⎧⎨
⎩ 1

N

(∑N

n=1

√∑2m

i=1
b2n,i

)2

≤ γth

⎫⎬
⎭

=

∫
γEGC≤γth

fb (b)db. (12)

1) Asymptotic Outage Probability Approximation of EGC:
The asymptotic outage probability approximation is obtained
by substituting fb (b) ≈ fb (0) in (12) to give

PEGC
o,∞ (γth) = fb (0)

∫
γEGC≤γth

db (13)

where γEGC = 1
N

(∑N
n=1

√
2m∑
i=1

b2n,i

)2

. The integral in (13)

is obtained as [8]∫
γEGC≤γth

db =

(
2mπm

Γ (m+ 1)

)N
ΓN (2m)

(2mN)
(Nγth)

mN
. (14)

Equation (14) is substituted into (13) to give the asymptotic
outage probability approximation as

PEGC
o,∞ (γth) = fb (0)

(
2mπm

Γ (m+ 1)

)N
ΓN (2m)

(2mN)
(Nγth)

mN
.

(15)

2) Lower Bound Outage Probability of EGC: The lower
bound of the outage probability bound is obtained by replacing
fb (0) in (13) with the lower bound of fb (b) in (10) to give

PEGC
o,LB (γth) = OLB ×

∫
γEGC≤γth

db (16)

where OLB = fb (0) exp
(− 1

2 (λmaxNγth + 2
∥∥μb

TR−1
b

∥∥√
Nγth

))
. Substituting the result of the integral in (14) into

(16) gives the lower bound of the outage probability as

PEGC
o,LB (γth) = OLB ×

(
2mπm

Γ (m+ 1)

)N
ΓN (2m)

(2mN)
(Nγth)

mN
.

(17)

3) Upper Bound on Outage Probability of EGC: The upper
bound outage of the probability bound is obtained by replacing
fb (0) in (13) by the upper bound of fb (b) in (10), and one



obtains

PEGC
o,UB (γth) = OUB ×

∫
γEGC≤γth

db (18)

where OUB = fb (0) exp
(∥∥μb

TR−1
b

∥∥√Nγth
)
. Substituting

the result of the integral in (14) into (18) gives the upper bound
of the outage probability as

PEGC
o,UB (γth) = OUE ×

(
2mπm

Γ (m+ 1)

)N
ΓN (2m)

(2mN)
(Nγth)

mN
.

(19)

VI. PERFORMANCE BOUNDS OF ERROR RATE

A. Error Rate Bounds on EGC

The error rate for EGC is expressed as

PEGC
e = E

⎡
⎢⎢⎣pQ

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠
⎤
⎥⎥⎦

= p

∞∫
−∞

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠fb (b) db.

(20)

where E [·] denotes the expectation operation, and the Gaus-

sian Q-function is Q (x) = 1√
2π

∞∫
x

exp
(

−t2

2

)
dt. For the

special case of coherent binary phase shift keying (BPSK),
we have p = 1 and q = 2.

1) Asymptotic Error Rate Approximation of EGC: The
asymptotic error rate approximation is obtained by substituting
fb (b) ≈ fb (0) in (20) to give

PEGC
e,∞ = pfb (0)

∞∫
−∞

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db

(21)

where we obtain the integral in (21) according to [10 eq. (61)].
This is simplified to give

PEGC
e,∞ = pfb (0)×G(Rth) (22)

where

G(Rth) =

(
2mπm

Γ (m+ 1)

)N (
ΓN (2m)

Γ (2mN)

)

×
(
NmN2mN−2

√
πmNqmN

Γ

(
mN +

1

2

))
. (23)

2) Lower Error Rate Bound of EGC: The lower bound of
the error rate is obtained by changing the integral bound in
(21) as

PEGC
e = p

∫
REGC≤R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠fb (b) db

(24)

where REGC =

√√√√ q
N

(
N∑

n=1

√
2m∑
i=1

b2n,i

)2

. Substituting fb (b)

with the lower bound of fb (b) in (10) into (24), and we
simplify to have

PEGC
e,LB = pfb (0)× ELB × Y (Rth) (25)

where

ELB = fb (0) exp

(
−1

2

(
λmaxNRth

2

+2
∥∥μb

TR−1
b

∥∥√NRth

))
(26)

and

Y (Rth) =

(
2mπm

Γ (m+ 1)

)N (
ΓN (2m)

Γ (2mN)

)[(
2mN−2NmN

√
πmNqmN

× γ

(
mN +

1

2
,
q

2
Rth

2

)
+Q (

√
qRth)

Rth
2mNNmN

2mN

)]
,

(27)

where γ (·, ·) is the incomplete gamma function as, γ (α, x) =
x∫
0

e−ttα−1dt [10].

3) Upper Error Rate Bound of EGC: The upper error rate
bound is obtained by splitting the integral region in (21)
according to

PEGC
e,UB

= p

∫
REGC≤R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ fb (b)db

+ p

∫
REGC>R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠fb (b) db.

(28)

We substitute fb (b) with the upper bound of fb (b) in (10)
for the first part, and fb (b) with fb (μb), which is the largest
value of fb (b) for the second part. This gives

PEGC
e,UB

= p× EUE ×
∫

REGC≤R2
th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db

+ pfb (μb)

∫
REGC>R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db

︸ ︷︷ ︸
I(μb)

(29)

where EUB = fb (0) exp
(∥∥μb

TR−1
b

∥∥√NRth

)
. The first

integral in (29) is simplified according to (27), and the second
integral is simplified as (30) on top of the next page. We show
some mathematical manipulations in (31) and (32) to further



I (μb) =

∞∫
−∞

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db−

∫
REGC≤R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db. (30)

∫
REGC≤R2

th

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db ≥

∫
REGC≤R2

th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠ db, (31)

=

∞∫
−∞

Q

⎛
⎜⎜⎝
√√√√√ q

N

⎛
⎝ N∑

n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db−

∫
REGC≤R2

th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db (32)

simplify (30) on top of the next page. Ultimately, we express
(30) as

Z(Rth) = G(Rth)− πmN

Γ (mN + 1)

[
R2mN

th Q (
√
qRth)

+
2mN−1

√
πqmN

γ

(
mN +

1

2
,
q

2
R2

th

)]
. (33)

Substituting (27) and (33) into (29) gives the error rate upper
bound.

VII. DISCUSSION ON THE TIGHTNESS OF BOUNDS

A. Tightness of the Outage Probability Bound
We show the tightness of the bounds on the outage proba-

bility analytically by considering the lower and upper bounds
in (17) and (19), respectively. The difference between the
expression of the asymptotic approximation, lower and upper
bounds is seen in the exponential component. An increase in
the average SNR per branch by a factor P , yields an increase
in the covariance matrix Rb by a factor P , which eventually
leads to a decrease in R−1

b by the same factor. The eigenvalues

of R−1
b will also be affected by the same factor P . We,

therefore, obtain the limit of the ratio of the lower bound to
the upper bound as P tends to infinity as

lim
P→∞

=
Po,LB

Po,UB
=

exp
(
− 1

2

(
λmaxγth

P + 2
∥∥∥μT

bR−1
b

P

∥∥∥√γth

))
exp

(∥∥∥μT
bR−1

b

P

∥∥∥√γth

) .

The above limit shows that the bounds of the outage proba-
bility will converge to the asymptotic approximation as SNR
approaches infinity.

B. Tightness of the Error Rate Bound
By definition, the incomplete gamma function is expressed

as

Γ (s) = lim
x→∞ γ (s, x) (34)

and the Chernoff bound of the Q-function

Q (x) ≤ e−
x2

2 , x > 0. (35)

We apply these definitions to Y (Rth) and Z(Rth) in (27)
and (33), respectively, to show the tightness of the error rate

bounds, according to

lim
Rth→∞

Y = G(Rth) (36)

lim
Rth→∞

Z = G− πmN− 1
2

Γ (mN + 1)

[
2mN−1

qmN
Γ

(
mN +

1

2

)]
.

(37)

We consider the exponential component, where we observe
that an increase in the average SNR per branch by a factor
K results in an increase in the covariance matrix Rb, leading
to a decrease in R−1

b , which eventually leads to a decrease in
λmax by the same factor K. Thus, the limit is found to be

lim
K→∞

=
Pe,LB

Pe,UB
=

exp
(
− 1

2

(
λmaxK

K + 2
∥∥∥μT

bR−1
b

K

∥∥∥√K
))

exp
(∥∥∥μT

bR−1
b

K

∥∥∥√K
)

(38)

where Rth is expressed in terms of K, i.e., Rth =
√
K.

VIII. NUMERICAL RESULTS

Figure 1 shows a comparison of outage probabili-
ty curves of EGC for a 2-branch diversity system over
correlated and independent Beaulieu-Xie fading channel-
s with coherent BPSK modulation and a fading param-
eter of m = 1.5. Correlation structure of the form
Cb = [C1,02×2,02×2;02×2,C2,02×2; 02×2,02×2,C3],
where C1 = C2 = C3 =

[
1,
√
0.35;

√
0.35, 1

]
and C1 =

C2 = C3 = [1, 0; 0, 1], is considered for correlation and inde-
pendence, respectively. The independent channels outperform
the correlated channels. The effect of correlation is seen on
the rate of convergence of the bounds in both scenarios.

Figure 2 shows a comparison of BER curves EGC
for a 2-branch diversity system over correlated and inde-
pendent Beaulieu-Xie fading channels with coherent BP-
SK modulation and a fading parameter of m = 1.5.
Correlation matrix of the form Cb = [C1,02×2,02×2;
02×2,C2,02×2;02×2,02×2,C3] is considered, where C1 =
C2 = C3 =

[
1,
√
0.3;

√
0.3, 1

]
and C1 = C2 = C3 =

[1, 0; 0, 1] are considered for correlation and independence,
respectively. The effect of correlation is shown on the rate
of convergence of the bounds.
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Fig. 1. Outage probability curves for the asymptotic approximation,
lower bound, and upper bound for MRC over correlated and independent
Beaulieu-Xie fading channels. The number of branches is N = 2, the
fading parameter is m = 1.5, and the correlation structure is Cb =
[C1,02×2,02×2;02×2,C2,02×2;02×2,02×2,C3], where C1 = C2 =

C3 =
[
1,

√
0.35;

√
0.35, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for

correlation and independence, respectively.
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Fig. 2. BER curves for the asymptotic approximation, lower bound,
and upper bound for EGC, over correlated and independent Beaulieu-
Xie fading channels. The number of branches is N = 2, the fad-
ing parameter is m = 1.5, and the correlation structure is Cb =
[C1,02×2,02×2;02×2,C2,02×2;02×2,02×2,C3], where C1 = C2 =

C3 =
[
1,

√
0.3;

√
0.3, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for

correlation and independence, respectively.

Figure 3 shows a comparison of BER curves EGC for
a 2- and 3- branch diversity systems over correlated and
independent Beaulieu-Xie fading channels with coherent
BPSK modulation and a fading parameter of m = 1.5. The
correlation structure for the 2-branch system is of the form
Cb = [C1,02×2,02×2; 02×2,C2,02×2;02×2,02×2,C3],
where C1 = C2 = C3 =

[
1,
√
0.3;

√
0.3, 1

]
and for the 3-branch system is of the form
Cb = [C1,03×3,03×3;03×3,C2,03×3;03×3,03×3,C3],
where C1 = C2 = C3 =[
1,
√
0.3,

√
0.15;

√
0.3, 1,

√
0.3;

√
0.15,

√
0.3, 1

]
. The effect

of diversity is shown here; the performance for the 3-branch
system is improved over the 2-branch system.

IX. CONCLUSION

We derived asymptotically tight lower and upper bounds
for outage probability and error rate for the new Beaulieu-
Xie fading. The presence of more than one LOS component
is seen (analytically) on the performance of the model by
the means of the exponent component of the Gaussian pdf.
We have shown the effect of correlation and independence
on the performance of the system and also the effect of the
number of branches of the diversity system. We can conclude
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Fig. 3. Comparison of BER curves for the asymptotic approximation,
lower bound, and upper bound for EGC for 2- and 3-branch diversi-
ty systems over correlated Beaulieu-Xie fading channels. The fading pa-
rameter is m = 1.5. The correlation structure for the 2-branch system
is Cb = [C1,02×2,02×2; 02×2,C2,02×2;02×2,02×2,C3], where

C1 = C2 = C3 =
[
1,

√
0.3;

√
0.3, 1

]
, and for the 3-branch system is

Cb = [C1,03×3,03×3;03×3,C2,03×3;03×3,03×3,C3], where C1 =

C2 = C3 =
[
1,

√
0.3,

√
0.15;

√
0.3, 1,

√
0.3;

√
0.15,

√
0.3, 1

]
.

that this new fading model can be effective in characterizing
wireless communication links with both LOS and non-LOS
components.
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