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Abstract

Background: Fetal alcohol spectrum disorder (FASD) is a developmental disorder that manifests through a range of
cognitive, adaptive, physiological, and neurobiological deficits resulting from prenatal alcohol exposure. Although
the North American prevalence is currently estimated at 2-5%, FASD has proven difficult to identify in the absence
of the overt physical features characteristic of fetal alcohol syndrome. As interventions may have the greatest
impact at an early age, accurate biomarkers are needed to identify children at risk for FASD. Building on our
previous work identifying distinct DNA methylation patterns in children and adolescents with FASD, we have
attempted to validate these associations in a different clinical cohort and to use our DNA methylation signature to
develop a possible epigenetic predictor of FASD.

Methods: Genome-wide DNA methylation patterns were analyzed using the Illumina HumanMethylation450 array
in the buccal epithelial cells of a cohort of 48 individuals aged 3.5-18 (24 FASD cases, 24 controls). The DNA
methylation predictor of FASD was built using a stochastic gradient boosting model on our previously published
dataset FASD cases and controls (GSE80261). The predictor was tested on the current dataset and an independent
dataset of 48 autism spectrum disorder cases and 48 controls (GSE50759).

Results: We validated findings from our previous study that identified a DNA methylation signature of FASD,
replicating the altered DNA methylation levels of 161/648 CpGs in this independent cohort, which may represent a
robust signature of FASD in the epigenome. We also generated a predictive model of FASD using machine learning
in a subset of our previously published cohort of 179 samples (83 FASD cases, 96 controls), which was tested in this
novel cohort of 48 samples and resulted in a moderately accurate predictor of FASD status. Upon testing the
algorithm in an independent cohort of individuals with autism spectrum disorder, we did not detect any bias
towards autism, sex, age, or ethnicity.

Conclusion: These findings further support the association of FASD with distinct DNA methylation patterns, while
providing a possible entry point towards the development of epigenetic biomarkers of FASD.
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Background

Fetal alcohol spectrum disorder (FASD) is a leading pre-
ventable cause of developmental disability, with a North
American prevalence currently estimated at 2-5% [1-3].
FASD presents through a wide spectrum of phenotypes,
ranging from growth deficits and physical abnormalities
to cognitive and behavioral deficits, as well as motor and
sensory impairments, immune dysfunction, and in-
creased vulnerability to mental health problems in adult-
hood [4—6]. On the most severe end of the spectrum lies
fetal alcohol syndrome (FAS), which is characterized by
growth retardation, a distinct set of facial dysmorphisms,
and central nervous system abnormalities [7, 8]. By con-
trast, Alcohol-Related Neurodevelopmental Disorder
(ARND) describes the less visible and largest group
within the spectrum, where individuals with confirmed
alcohol exposure during pregnancy show primarily
behavioral, adaptive, and/or cognitive abnormalities
without obvious facial dysmorphisms [9]. Of note, indi-
viduals across the spectrum show cognitive and behav-
ioral deficits, which can be as serious in those without
any physical features as in those with full FAS [10].

Although children with FAS are often diagnosed in
infancy or in early life, FASD in general has proven diffi-
cult to identify, particularly in the absence of the overt
facial features characteristic of FAS. As such, many indi-
viduals with FASD are not identified until they reach
school age, where they begin to struggle with increased
social pressure and cognitive challenges [11]. However,
early cognitive and behavioral interventions may poten-
tially attenuate some of the deficits associated with
FASD and improve the long-term outcomes of these
individuals [12]. As early diagnosis is a strong predictor
of positive outcome, early screening tools are necessary
to help identify at-risk children at a young age and
potentially buffer some of the deficits associated
with prenatal alcohol exposure (PAE) [13, 14].

While self-report methods are most commonly used
for assessing PAE and a child’s risk for FASD, these are
not always accurate and can underestimate alcohol con-
sumption during pregnancy [15-17]. Over the past de-
cades, various biomarkers of alcohol exposure have been
developed to complement self-report measures, focusing
primarily on the direct or indirect products of ethanol
metabolism, which can be measured in biological speci-
mens from both the mother and infant [18]. Although
these biomarkers are very sensitive to alcohol exposure,
they present a number of limitations when attempting to
determine whether prenatal alcohol exposure has oc-
curred or to gain insight into the biological underpin-
nings of alcohol-induced deficits and the developmental
profiles associated with FASD. For example, many of
these biomarkers have short windows of detection (e.g.,
urine, blood, plasma) or are limited by specimen
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availability (e.g., placenta, meconium), making them use-
ful for identification of alcohol exposure around the time
of parturition, but not in infants and children over the
course of development [19]. As such, objective and per-
sistent measures are needed to aid in the screening and
diagnosis of children at risk for FASD.

Epigenetic marks are now emerging as potential
biomarkers or signatures of early-life exposures. Broadly
defined, epigenetics refers to modifications of DNA and
its regulatory components, including chromatin and
non-coding RNA, that potentially modulate gene tran-
scription without changing underlying DNA sequences
[20-22]. In addition to their role in the regulation of cel-
lular processes, these may also bridge environmental fac-
tors and genetic regulation to capture a lasting signature
of early life exposures. In particular, DNA methylation is
emerging as a candidate biomarker for environmental
exposures and disease. Typically found on the cytosine
residues of cytosine-guanine dinucleotides (CpG), this
epigenetic mark is both stable over time and dynamic in
response to environmental factors [23]. Several pre- and
postnatal environmental influences have been associated
with altered DNA methylation patterns, hinting at pos-
sible malleability by early-life environments and suggest-
ing a potential utility as biomarkers [24, 25]. For example,
prenatal exposure to cigarette smoke is associated with
lasting alterations to DNA methylation patterns, which
are now being used as biomarkers of cigarette smoke
exposure in infants [26].

While in its infancy in relation to FASD, epigenetic
biomarkers show promise for early screening of at-risk
individuals, as the DNA methylome retains a lasting sig-
nature of prenatal alcohol exposure in both the central
nervous system and peripheral tissues (reviewed in [27]).
Numerous studies performed in animal and cell culture
models have identified both short-term and persistent
alterations to DNA methylation patterns following PAE.
Although some of these models reflect supra-
physiological levels of alcohol exposure or display mod-
est effect sizes in response to PAE, the findings from
these pre-clinical models suggest the possibility that PAE
may directly influence epigenetic patterns and that these
may play a role in PAE-induced deficits [27-33]. By
contrast, fewer studies have investigated DNA methyla-
tion patterns in individuals with FASD. More targeted
methods identified differences in DNA methylation
levels in the promoter region of Drd4 in a large
Australian cohort of children exposed to alcohol during
breastfeeding [34]. Others have employed discovery-
driven approaches, assessing genome-wide DNA methy-
lation patterns in case-control studies of FASD. The first
of these came from a small cohort of children, where
slight differences in DNA methylation patterns within
the protocadherin (PCDH) gene clusters reported with a
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rather modest significance threshold [35]. Recently, we
analyzed DNA methylation profiles in a large cohort of
children with FASD recruited by NeuroDevNet (NDN),
a Canadian Networks of Centres of Excellence, where
we identified a signature of 658 differentially methylated
CpGs [36]. Although few results have been validated
across different cohorts, these findings set the stage for
broader applications of DNA methylation in the context
of FASD, creating a framework upon which to build fu-
ture epigenomic studies of FASD.

To validate the findings from our previous DNA
methylation study, we assessed the genome-wide DNA
methylation profiles of buccal epithelial cells (BEC) from
an independent cohort of 24 individuals with FASD,
aged 3.5-18, and 24 typically developing controls, aged
5-17. Given that our initial study provided a framework
for genome-wide assessment of DNA methylation pat-
terns in individuals with FASD, we used the findings
from the NDN study as a foundation for the identifica-
tion of replicable epigenetic differences associated with
FASD. Notably, nearly 25% of statistically significant
associations from the NDN cohort were validated in this
new cohort at a false-discovery rate (FDR) < 0.05 [37]. In
addition to the validation analyses, we also assessed
whether DNA methylation profiles could be used to
identify individuals with FASD, generating a classifica-
tion algorithm that uses DNA methylation levels to
accurately predict FASD status. Taken together, these
results suggested that there were replicable differences
in DNA methylation patterns between individuals with
FASD and controls, which could potentially contribute
to the development of a screening tool for at-risk
children.

Methods

The Kids Brain Health Network cohort of children with
FASD

The present cohort was collected as a replication study
by Kids Brain Health Network (KBHN), formerly
NeuroDevNet, and is hereby referred to as the KBHN
cohort [38]. Ethics for this study were reviewed and
approved by the “Children’s and Women’s Research
Ethics Board — Clinical” (H10-01149). All experimental
procedures were reviewed and approved by the Univer-
sity of Manitoba and the University of British Columbia.
Written informed consent was obtained from a parent
or legal guardian, and assent was obtained from each
child before study participation. The clinics used previ-
ously described guidelines for the diagnosis of FASD
[39]. Children with FASD and typically developing
controls were recruited from the Manitoba FASD
diagnostic clinic in Winnipeg, Manitoba, Canada. Briefly,
buccal epithelial cell (BEC) samples were collected for
DNA methylation analysis from 25 FASD and 26 age-
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and sex-matched control children aged between 3.5 and
18, prior to pre-processing (Table 1). BECs were col-
lected using the Isohelix buccal swabs and Dri-Capsule
(Cell Projects Ltd., Kent, UK). To collect buccal cells,
the swab was inserted into the participants’ mouth and
rubbed firmly against the inside of the left cheek for
1 min. The swab was then placed into a sterile tube with
a Dri-Capsule and the tube sealed. An identical proced-
ure was followed for the right cheek. Participants did
not have any dental work performed 48 h prior to
collection, and no food was consumed less than 60 min
prior to collection to avoid contamination.

DNA methylation 450K assay

DNA was extracted from BECs using the Isohelix DNA
isolation kit (Cell Projects, Kent, UK). Seven hundred
fifty nanograms of genomic DNA was subjected to bisul-
fite conversion using the Zymo EZ DNA Methylation
Kit (Zymo Research, Irvine, California), which converts
DNA methylation information into sequence base differ-
ences by deaminating unmethylated cytosines to uracil
while leaving methylated cytosines unchanged. One hun-
dred sixty nanograms of converted DNA was applied to
the HumanMethylation450 BeadChip array from Illu-
mina (450K array), which enables the simultaneous

Table 1 Characteristics of the NeuroDevNet Il FASD cohort

FASD cases Controls
N 24 24
ARND 18
Partial FAS 6
FAS 1
FASD 1
Age (years)
Range 35-18 5-17
Mean 9.1 11.6
Sex
Female 9 13
Male 15 11
Self-declared ethnicity
Caucasian 4 (2)? 22
First Nations 17 (20)® 1
Asian 1(0)° 1
Not reported 2 0
Caregiver status
Biological parents 7 24
Biological grandparents 3 0
Adopted/legal guardian 8 0
Foster care 6 0

Including mixed lineage First Nations
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quantitative measurement of 485,512 CpQG sites across
the human genome, following the manufacturer’s
instructions. Chips were scanned on an Illumina HiScan,
with the 51 samples run in two batches and each
containing a similar number of FASD and control sam-
ples, randomly distributed across the chips. Two pairs of
technical replicates were also included and showed a
Pearson correlation coefficient r>0.994 in both cases,
highlighting the technology’s reproducibility on our in-
house platform. Inter-sample correlations ranged from
0.926-0.99.

DNA methylation data quality control and normalization
The raw DNA methylation data were subjected to a
rigorous set of quality controls, first of the samples, and
then of the probes. Of the 51 initial samples, 3 were re-
moved from the final dataset based on poor quality data,
which was identified through skewed internal controls
and/or > =5% of probes with a detection p value > 0.05
(2 controls and 1 FASD). Next, probes were removed
from the dataset according to the following criteria: (1)
probes on X and Y chromosomes (n =11,648), (2) SNP
probes (n = 65), (3) probes with bead count < 3 in 10% of
samples (n = 726), (4) probes with 10% of samples with a
detection p value > 0.01 (n = 11,864), and (5) probes with
a polymorphic CpG and non-specific probes (N =19,337
SNP-CpG and 10,484 non-specific probes) [40]. A final
filtering step was performed to set the methylation
values to NA for any remaining probe-sample pair where
bead count <3 or detection p value >0.01. Data
normalization was performed using the SWAN method
on the final dataset, composed of 48 samples (24 FASD
and 24 controls) and 431,544 probes [41]. Finally, batch
effects (chip number and chip position) were removed
using the ComBat function from the SVA package in R
[42]. Statistical analyses were performed using on
ComBat-corrected M values, which represent the log2
ratio of methylated/unmethylated, where negative values
indicate less than 50% methylation and positive values
indicate more than 50% methylation [43]. Percent
methylation differences (beta-values) were used in
graphical representations of the data and indicate the
percentage of methylation calculated by methylated/
(methylated + unmethylated), ranging from 0 (fully
unmethylated) to 1 (fully methylated).

Differential methylation analysis and validation of
NeuroDevNet (NDN) findings

Cell type deconvolution was performed to assess the
proportions of CD14, CD34, and buccal epithelial cells
in each sample using DNA methylation levels at CpGs
highly correlated with these cell types [44]. Surrogate
variable analysis (SVA) was also performed on ComBat-
corrected, normalized data using the SVA package in R
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to identify surrogate variables (SVs) representative of un-
wanted heterogeneity [42]. Using DNA methylation data
from all 48 samples, SVA identified 6 SVs not associated
with clinical status (FASD vs control). As these were
partially associated with known covariates, such as cell
type proportions and age, the SVs were included in the
linear regression analysis to account for their effects.
More specifically, linear modeling was performed on the
648 differentially methylated probes identified in the ini-
tial NDN study and found in the present dataset using
the limma package in R and a model that included clin-
ical status and all identified SVs as covariates [36, 45].
Significant differentially methylated probes between
groups were identified at a false-discovery rate (FDR) <
0.05 following multiple test correction by the Benjamini-
Hochberg method and were required to show the same
direction of change as the NDN cohort’s findings [46].
Further evaluation of potential biological significance
was performed using an arbitrary threshold of >5%
mean percent DNA methylation difference between
FASD and controls.

DNA methylation pyrosequencing assay

The bisulfite pyrosequencing assay was designed with
PyroMark Assay Design 2.0 (Qiagen; Additional file 1:
Table S1). The region of interest was amplified by PCR
using the HotstarTaqg DNA polymerase kit (Qiagen) as
follows: 15 min at 95 °C, 45 cycles of 95 °C for 30s, 58 °
C for 30s, and 72 °C for 30s, and a 5-min 72 °C final
extension step. For pyrosequencing, single-stranded
DNA was prepared from the PCR product with the
Pyromark™ Vacuum Prep Workstation (Qiagen) and the
sequencing was performed using sequencing primers on
a Pyromark™ Q96 MD pyrosequencer (Qiagen). The
quantitative levels of methylation for each CpG
dinucleotide were calculated with Pyro Q-CpG software

(Qiagen).

The NDN cohort of children with FASD

DNA methylation data from the previous cohort of chil-
dren with FASD were obtained from GEO (GSE80261)
and normalized as described in our original publication
[36]. This cohort was collected by NeuroDevNet, a
Canadian Network of Centres for Excellence, and is
hereby referred to as the NDN cohort [36]. Briefly, we
selected the individuals with a confirmed diagnosis of
FASD from this dataset, as well as age- and sex-matched
typically developing controls, resulting in dataset com-
posed of 83 children with FASD (55 ARND, 18 partial
FAS, 10 FAS) and 96 typically developing controls. The
mean age (in years) for individuals with FASD was 11.88
and 11.28 for controls, both ranging from 5 to 18 years
old. The proportions of males and female differed
slightly between groups, with 42 females and 41 males in
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the FASD cases and 57 females and 39 males in the con-
trol group. A skew in self-declared ethnicity was present
between the groups, as the majority of controls identi-
fied as Caucasian, while the majority of children in the
FASD group identified as First Nations. This skew was
addressed in the initial epigenome-wide association
study through the use of a more ethnically homogeneous
subset of the cohort. DNA methylation data were
obtained from BEC using the Illumina 450K array and
were normalized using the beta-mixture quantile
normalization method.

Cohort of individuals with autism spectrum disorder
Processed DNA methylation data from a publically avail-
able dataset of individuals with autism spectrum dis-
order (ASD) were obtained from GEO (GSE50759).
Briefly, this dataset was composed of 48 individuals with
ASD and 48 typically developing controls. As per the
authors’ description of the GEO data, these were prepro-
cessed using the R packages minfi and sva to obtain
normalized M values [47]. The samples consisted of 58
males and 38 females, consistent with the skew towards
males in ASD. The mean age (8.84) and range (1-
28 years old) differed from the NDN and KBHN studies,
and the genetic ancestry of most individuals was Caucasian
(European), though a proportion of the cohort was of
Nigerian ancestry. DNA methylation data of these samples
were obtained from BEC using the Illumina 450K array.

DNA methylation as a predictor of FASD status

A predictive model of FASD status was created using
DNA methylation data and the caret package in R
[48]. First, a predictive model was created using sto-
chastic gradient boosting on the NDN cohort (83
FASD cases, 96 controls) using the beta-values of the
differentially methylated probes identified in the NDN
study (648 probes) [36]. The parameters of the mod-
eling were optimized for area under the receiver oper-
ating characteristic (ROC) curve by grid tuning for
repeated cross-validation (number of trees 50-1500;
1, 5, or 9 interaction depth; 0.1 shrinkage). The opti-
mal model for predicting clinical FASD status using
648 probes was 550 trees, 1 of interaction depth, and
20 minimum observations per node. The KBHN co-
hort (24 FASD, 24 controls) was then used to verify
the predictive sensitivity and specificity of the model.
In parallel, 450K data from a cohort of children with
ASD were tested to verify the predictive specificity of
the model for FASD. The predictor was tested using
normalized data that was uncorrected for batch ef-
fects to better mimic the potential use of the predict-
ive model by independent groups.
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Results

The KBHN cohort of children with FASD

As noted, we analyzed genome-wide DNA methyla-
tion patterns from 24 children with FASD and 24
typically developing controls, matched for sex and
age, ranging from 3.5 to 18 years of age (Table 1).
We found that self-declared ethnicity, primary
caregiver, and mean age were significantly different
between the FASD and control participants (Student’s
t test; p <0.05). We corrected for the potential effects
of age on DNA methylation through the statistical
methods outlined below. However, given the confound
in self-declared ethnicity and caregiver status, we
could not correct for these effects and relied on the
previous correction of ethnic bias in the initial NDN
study (see below) [36]. Furthermore, we could not ac-
count for the different life experiences of individuals
with FASD, including potential exposure to adverse
early life events at considerably higher levels than
those in the general population. It is possible that
these distinct experiences in themselves may poten-
tially be associated with DNA methylation patterns.

Children with FASD and typically developing controls
showed differential DNA methylation patterns

Following quality control and normalization, 431,544
sites of the 485,512 sites remained in the final dataset of
48 samples, which were corrected for batch effects using
ComBat. While BECs are mostly a homogeneous popu-
lation of cells, they contain small proportions of CD34-
and CD14-positive white blood cells, which can poten-
tially skew DNA methylation analyses. As such, cell type
deconvolution was performed to identify any blood con-
tamination in the samples, identifying a trend towards
significance in the proportions of different cells types
between groups (CD34+, p=0.115; CD14+, p=0.224;
BEC, p =0.068). To account for this factor in addition to
other potential confounding variables within the dataset,
we performed SVA to identify patterns of variation,
identifying 6 surrogate variables when protecting the ef-
fects of group (FASD vs control). These were correlated
with known sources of variation within the data, includ-
ing cell type proportions and age (Additional file 2: Fig-
ure S1).

To identify DNA methylation patterns specific to the
FASD group, we coupled differential DNA methylation
analysis using a two-group design with the surrogate
variables to correct for undesirable variation in the data.
Given that we already accounted for ethnicity-related
probes as much as possible in the NDN study, it was
concluded that the effects of ethnic background would
be lessened by using the final 658 differentially methyl-
ated CpGs [36]. As such, we performed linear modeling
on the probes that were differentially methylated in the
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first study and remained in the dataset after pre-
processing (648 CpGs of 658 from NDN). Of these, 161
CpGs displayed statistically significant differential
methylation in the same direction as the initial cohort in
the KBHN FASD group compared to the controls at an
FDR<0.05 (Fig. la; Additional file 1: Table S2). To
assess the probability of validating this many probes,
random group subsampling was performed 10,000 times.
As none showed more differentially methylated probes
than the original replication cohort (maximum =31
differentially methylated probes), the probability of valid-
ating 161/648 probes was <1le-4 (Additional file 2:
Figure S2). Of the 161 validated probes, 82 were up-
methylated, while 79 were down-methylated in FASD
compared to control samples. Several genes contained
multiple differentially methylated CpGs across both co-
horts, including Hla-dpbl (5), Fam59b (4), Capnl0 (3),
Des (3), Sic6a3 (3), Slc38a2 (3), Fam24a (2), H19 (2),
and Tgfblil (2) (Table 2). Moreover, 53 CpGs showed >
5% difference in methylation, an arbitrary cutoff often
used to gauge potential biological significance [49].
Three genes contained 2 or more differentially methyl-
ated (DM) probes that showed both an FDR < 0.05 and
>5% difference in percent methylation, including
Fam59b (4 probes), Hla-dpbl (2 probes), and Slc6a3 (2
probes). In particular, the Fam59b CpGs were located

Page 6 of 14

Table 2 Genes containing multiple differentially methylated
CpGs in FASD

Gene No. of CpGs Direction of change
Hla-dpb1 5 Up

Fam59b 4 Down

Des 3 Down

Slc6a3 3 Up

Slc38a2 3 Down

Capnl0 3 Up

Fam24a 2 Up

H19 2 Down

Tgfblil 2 Down

within a CpG island and showed substantial differences in
DNA methylation levels between FASD and control
groups, with an average 13% methylation difference across
the array probes in the CpG island (Fig. 2). Three add-
itional sites located in intergenic regions showed >10%
percent DNA methylation difference between groups.
Overall, the percent methylation differences between
groups of the 648 analyzed probes were highly correlated
between the NDN and KBHN cohorts, as determined by
linear modeling (r = 0.638, p < 2.2e-16; Fig. 1b). We also
compared the ranking of probes by p value from linear
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modeling between the NDN and KBHN cohorts; no
significant similarities were identified (p = 0.91). Of note, 21
of the significant probes with >5% methylation difference
between groups from the NDN study were validated in the
present analysis (39 of 41 were present in the fil-
tered KBHN dataset). This proportion (54%) was much
higher than all validated probes (25%), suggesting that these
potentially represented more robust associations with FASD.

Bisulfite pyrosequencing verified the differential DNA
methylation of CACNA1A

To verify that the differential DNA methylation results
did not depend on the method used to measure them,
we assessed DNA methylation levels of the cg24800175
probe in CACNA1A. We selected this probe as it was
also verified in the initial NDN study, where it similarly
showed a >5% difference in DNA methylation between
individuals with FASD and controls. Pyrosequencing re-
sults confirmed the DNA methylation levels observed on
the 450K array, showing similar DNA methylation levels
and differences between groups for CpGs located in
CACNAIA (Fig. 1c). The Pearson correlation between
these two methods was 0.826 and the Bland—Altman
plot showed little difference when comparing the 450K
array to pyrosequencing, suggesting good concordance
between DNA methylation data from the two methods
(Additional file 2: Figure S3). Linear regression analysis
of pyrosequencing data between FASD cases and con-
trols confirmed differential DNA methylation in this site,
even without correcting for covariates (p = 0.04).

DNA methylation patterns classified individuals with
FASD versus controls

To assess whether DNA methylation data could be used
to predict FASD status, we created a predictive algo-
rithm of FASD using machine learning approaches. First,

we selected the normalized DNA methylation
data (beta-values) of 179 samples from the NDN cohort
(83 FASD; 96 control) in the 648 initial probes that were
also found in the KBHN data. Our strategy was to build
the predictor using an initial training cohort (NDN),
followed by subsequent evaluation in the test cohort
(KBHN). See Fig. 3 for an overview of steps used to
build the FASD predictor.

Using a gradient boosting model in the caret package
to optimize both sensitivity and specificity (area under
the receiver operating characteristic (ROC) curve), we

Training cohort (NDN)
83 FASD: 96 Control

!

DNA methylation signature of FASD
(648 probes from the initial NDN study)

1 Machine learning

FASD predictor

Testing

Test set Specificity test

KBHN FASD cohort ASD cohort
24 FASD: 24 Control 48 ASD: 48 Control

Fig. 3 Flowchart of bioinformatic analyses for the DNA methylation
predictor of FASD. Briefly, samples from the NDN cohort were used
as the training set, and machine learning was performed on the
DNA methylation signature of FASD identified in the initial NDN
study. The resulting FASD predictor was tested on the KBHN test set,
as well as an independent cohort composed of individuals with
autism spectrum disorder and typically developing controls to test
the specificity of the predictor for FASD
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created a predictive model to assess the probability of
FASD based on DNA methylation patterns [48]. This
method provided weighted values for the different fea-
tures (CpGs) of the model to determine their import-
ance in classifying the samples. Of the 648 initial
features, 183 had non-zero influence on the predictive
model and could be used to predict FASD status
(Additional file 1: Table S3). As the number of non-zero
features was similar to the total number of samples,
concerns of model over-fitting were reduced.

Through this approach, the predicted sensitivity and
specificity for the training cohort were 0.879 and 0.944, re-
spectively, for an area under the curve of 0.977 (95% con-
fidence intervals, 0.972-0.982; Fig. 4a). The performance
of the predictor on the training data indicated that DNA
methylation could be used to distinguish FASD cases and
controls, although these results will need to be carefully
assessed in independent test sets or clinical settings.

To get a better understanding of the utility of this tool,
we next assessed the predictive model using the normal-
ized, batch-corrected DNA methylation data of the KBHN
cohort as a test set. Of note, these data were not corrected
for any covariates or surrogate variables other than batch
correction. As expected for analysis of an independent test
set, the model performed at a lower level in this cohort,
displaying 0.917 sensitivity, 0.75 specificity, and 0.920 area
under the ROC curve (Table 3; Fig. 4a). The balanced
accuracy of the model in this cohort was 0.833 (95% CI
0.698-0.925), and the ROC curve was not significantly
different from the one obtained in the training cohort (p
=0.192). Overall, 2 controls were misclassified as FASD
and 6 children with FASD were misclassified as controls,
giving a negative predictive value (NPV) of 78.6% and a
positive predictive value (PPV) of 90%. Given the discrep-
ancies in ethnic backgrounds between FASD and control
groups, the misclassified samples were assessed for differ-
ences in self-reported ethnicity, caregiver status, age, and
buccal cell-type proportions in the classification. We did
not identify any skew of these data in the misclassified
controls, which were both Caucasian males aged 15 and
16, respectively. Although every misclassified individual
with FASD had a previous diagnosis of ARND, a category
that was present in high proportion within this cohort, no
other patterns emerged between the correctly and incor-
rectly classified individuals with FASD (3 females/3 males;
3 First Nations/1 Métis/2 Caucasian; aged 6—18). Taken
together, these findings suggested that differences in these
demographic variables between the groups did not drive
their classification.

The DNA methylation predictors were not biased by ASD
in an independent cohort

BEC samples from an independent published autism
spectrum disorder (ASD) cohort were used to assess the
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specificity of the model in the FASD cohorts. To this
end, we used a publically available dataset of 450K array
data from the BECs of 48 individuals with ASD and 48
typically developing controls from the gene expression
omnibus (GSE50759) [47]. Using processed GEO data
from this cohort, the predictor correctly identified the
vast majority of individuals in the cohort as non-FASD.
The model only misclassified 1 individual as FASD, for a
specificity of 0.990 (95% CI 0.943-0.9997), higher than
the predicted specificity in the training set. This sample,
a 3-year-old female with ASD (51% African ancestry,
41% European ancestry) did not have any particular
distinguishing features compared to the correctly classi-
fied samples, suggesting that the predictive model was
not biased for ASD, sex, age, or African ancestry in this
independent cohort.

Discussion

Epigenetic marks are emerging as potential biomarkers
and mediators of environmental exposures, and a grow-
ing body of literature suggests that epigenetic factors
may be involved in the etiology of FASD. In particular,
our recent study using a large cohort of children with
FASD to date identified a signature of 658 differentially
methylated CpGs in the BEC of individuals with FASD
compared to typically developing controls [36]. Here, we
present a validation of genome-wide DNA methylation
data in a small cohort of individuals with FASD, where
we successfully replicated 161 of the 658 differentially
methylated CpGs identified in the initial NDN cohort.
Furthermore, we demonstrated that DNA methylation
data could be utilized to generate a predictive algorithm
to classify individuals as FASD or control with high
accuracy. These results indicated that DNA methylation
in BECs could potentially be used towards developing a
screening tool for children at risk for FASD.

Our present findings represent the initial validation of
genome-wide DNA methylation differences in individ-
uals with FASD. Of the 161 validated CpGs at an FDR <
0.05, 53 had >5% difference in DNA methylation levels
between groups. This 5% threshold is often used for
assessing potential biological relevance in epigenetic
studies of psychiatric and neurodevelopmental disorders,
and therefore, we confined our interpretation of possible
functional implications to CpGs with this effect size [47,
49-51]. Importantly, the biological significance of a 5%
difference in DNA methylation is poorly understood,
and its functional relevance may be limited in relation to
gene expression or cellular physiology. Nevertheless, 21
CpGs showed a >5% difference between FASD cases
and controls at an FDR <0.05 in both the KBHN and
NDN cohorts, suggesting that these may represent the
strongest associations with FASD. Although the DNA
methylation differences between FASD and controls
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Fig. 4 Visualization of the training and test set performance for the DNA methylation predictor of FASD. a The DNA methylation predictor

created using the 648 probes identified in NDN showed high accuracy in the training cohort (dark gray; area under the curve =0.977) and slightly
poorer accuracy in the KBHN test set (blue; area under the curve =0.920). These curves were not significantly different (p =0.192). b The confusion
matrix displays number of samples classified correctly or incorrectly. Of note, six individuals with FASD in the test set were classified as controls,

while only two control samples were misclassified as FASD

were highly correlated between the NDN and KBHN
cohorts (p < 2.2e-16), the majority of CpGs showing the
same direction of change did not achieve statistical
significance (301/648), potentially due to the replication
cohort’s small size or the absence of individuals with
only PAE in this cohort. In addition, we verified the re-
sults from the 450K array by bisulfite pyrosequencing,
confirming the differential DNA methylation results for
a CpG located in CACNA1A and supporting that our
findings were not an artifact of array technology. As

discussed in a recent comprehensive review, we note
that the functional relevance of these differences is
highly dependent on multiple factors, including subcel-
lular differences, transcription factor binding regulation,
density and cooperativity of DNA methylation, or other
cis-regulatory elements [52].

Several genes previously associated with PAE or FASD
contained multiple differentially methylated CpGs with
>5% difference in DNA methylation between groups,
including Fam59b, Hla-dpbl, and Slc6a3. The Hla-dpbl
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Table 3 Summarized results from the classification algorithm
Training set (NDN)

AUC 0977
Accuracy 0914
Sensitivity 0.879
Specificity 0.944
Test set (KBHN)

AUC 0.920
Accuracy 0.833
Sensitivity 0.75
Specificity 0917
False positives 2
False negatives 6
PPV 0.900
NPV 0.786

Negative control (ASD)

Accuracy 0.990
Sensitivity NA
Specificity 0.990

False positives 1

locus, a member of the major histocompatibility com-
plex proteins, contained several differentially methylated
CpGs, which overlapped with a differentially methylated
region identified in the NDN study. Given its important
function in immune regulation and potential role in
rheumatoid arthritis, these differences could potentially
reflect some of the immune deficits associated with
FASD [53]. Furthermore, the Fam59b gene contained
several CpGs with substantial (>10%) differences in
DNA methylation levels between individuals with FASD
and controls, potentially representing a particularly sen-
sitive locus with regard to FASD. Of note, only one vali-
dated CpG was located in one of the protocadherin gene
clusters (Pcdhbl18), which were considerably enriched in
previous genome-wide studies of DNA methylation in
individuals with FASD [35, 36]. Given that these differ-
ent studies only showed one overlapping probe, this
could indicate higher variability within these gene clus-
ters that may be associated with other variables not
present in the current dataset, such as differences in age,
body mass index, ethnicity, and socio-economic status.
Of particular interest, we replicated the differential
DNA methylation patterns of the two genes involved in
dopamine signaling from the NDN cohort, the dopamine
transporter Slc6a3 and the dopamine receptor D4
(Drd4). Given the important role of the dopaminergic
system in brain development and its interactions with
neuroendocrine and immune systems, these differences
could potentially reflect broader alterations to signaling
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pathways in the organism. Of note, the BEC of children
exposed to alcohol during prenatal life and breastfeeding
also display altered DNA methylation patterns in the
promoter region of Drd4 [34]. Furthermore, several dis-
orders previously associated with allelic variation and
DNA methylation in this gene show either overlaps or
co-morbidities with FASD, including attention deficit
hyperactivity disorder, bipolar disorder, anxiety disorder,
schizophrenia, and substance abuse [54—64]. Although it
is tempting to interpret these findings in the context of
PAE-induced deficits, DNA methylation differences in
BEC likely do not fully reflect alterations in the central
nervous system. Nevertheless, it has been suggested that
BECs may act as a suitable surrogate tissue in human
studies of DNA methylation, as they are also derived
from the ectoderm [65]. While we did not measure these
genes in additional tissues, evidence from animal models
suggests that PAE can cause lasting alterations to the
epigenome of central nervous system tissues, and as
such, these results could potentially represent broader
associations with epigenomic patterns in the brain [27].
Although these findings represent the initial validation
of genome-wide DNA methylation data in children with
FASD, a few particularities of the KBHN cohort limit the
interpretability and generalizability of these results. Simi-
lar to the original cohort, the KBHN replication cohort
was confounded by ethnicity, as the vast majority of
FASD cases were from First Nations communities, while
controls were mainly Caucasian. Given that genetic
background influences DNA methylation patterns, dif-
ferences between groups may have been, at least partly,
due to ethnicity. Unfortunately, the KBHN cohort was
too small to separate the groups into more ethnically
homogeneous subsets, a method we had previously used
to account for ethnicity-related differences in DNA
methylation [37]. As such, we performed linear modeling
on the sites that had been previously identified in the
NDN study, which were partially filtered for ethnicity-
related differences during the analysis of the first cohort.
However, some of the top differentially methylated genes
could potentially be influenced by ethnicity differences
between groups in spite of our best efforts. For instance,
three known polymorphisms are located within the
Fam59b locus (dbSNP minor allele frequencies:
rs774397935, 1.04%; rs4665833, 5.1%; rs181971256,
21.4%). Although, as of now, none of these are known
methylation quantitative trait loci (mQTL), the Fam59
gene body contains several mQTLs in the developing
human brain, and genetic variation outside the region
could potentially influence DNA methylation levels [66].
In addition, nearby genetic variation can also influence
DNA methylation patterns in the promoter of Drd4,
which may be reflected in this cohort through the skew
in ethnicity between groups [59]. Although the
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frequencies of these alleles in First Nation populations
have not been assessed, genetic differences between
groups could potentially influence DNA methylation
levels within this differentially methylated region.

In addition to self-declared ethnicity, significant differ-
ences in the primary caregiver were present between
groups, as all controls lived with their biological families,
while the majority of children with FASD were generally
in foster care or adoptive families. While the effects of
this disparity on the epigenome are unclear, they could
influence DNA methylation patterns through a number
of factors, including nutrition, early-life adversity, and
socio-economic status [67]. Individuals with FASD also
tend to have life experiences different from those of typ-
ically developing children, which include early life adver-
sity (e.g., maltreatment or neglect), separation from the
biological family/placement in foster care (as occurred in
our cohorts), poverty, and familial stress [13, 68].
Importantly, both pre- and postnatal experiences are
known to play a role in early programming and thus
may also influence DNA methylation patterns. As such,
it may be difficult to separate the impacts of PAE and
environmental adversity, and studies evaluating FASD
may in many instances assess a combination of different
factors and exposures, which is often the reality in this
population. Nevertheless, our findings demonstrated
clear and replicable associations between FASD and
DNA methylation patterns across two independent co-
horts. We believe that our use of SVA to partially
account for unknown factors that could influence DNA
methylation reduced some of the potential confounds
associated with the cohort design. Future studies with
larger groups that are balanced for ethnicity, age, and
additional variables, including a focus on environmental
stress/adversity, will be necessary to tease out these dif-
ferences and further validate our findings.

Finally, we show here that DNA methylation patterns
can be utilized as predictive variables for FASD in clin-
ical populations. These findings complement and extend
previous studies that investigated different molecular
and physiological markers to help screen children for
potential prenatal alcohol exposure, including alcohol
metabolites in mothers and children, circulating miRNA
in mothers, and cardiac orienting response in children
[69-72]. In particular, eye tracking measures have been
used in a small cohort of children to distinguish children
with FASD, ADHD, or typically developing controls with
relatively good accuracy [73]. In contrast to these stud-
ies, we selected only individuals with confirmed FASD
from the initial NDN training cohort to create a DNA
methylation-based predictor that was specific to individ-
uals with an FASD diagnosis. The classification model
was tuned to screen children at a higher risk for FASD
with high sensitivity and specificity in an attempt to
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balance the false-positive and false-negative rates. Im-
portantly, our results suggest that DNA methylation pre-
dictors can achieve high accuracy in the classification of
individuals with FASD versus controls across multiple
cohorts. Moreover, the predictive algorithm appeared to
be largely independent of typical confounding factors,
such as age, sex, ethnicity, and cell type composition of
the samples. The predictor was also unbiased towards
individuals with ASD and although there was no report
of FASD in this independent cohort, it is possible that
our reported false-positive could be due to an undiag-
nosed FASD case [74]. Collectively, these results support
the use of DNA methylation as a potential screening tool
for FASD.

Conclusions

Given the broad spectrum of cognitive, behavioral, and
biological deficits associated with PAE, FASD places an
important strain on both societal resources and the
affected individuals and families. As such, accurate
screening methods are necessary to identify children at
risk for FASD at an early age, when interventions are
most effective. Our findings provide an initial stepping-
stone towards epigenetic biomarkers of FASD and could
potentially be adapted for the development of related
screening tools for neurodevelopmental disorders. Valid-
ation of these tools across different cohorts, with in-
creased sample sizes, varying ages, ethnicities, and better
documented environmental exposures will be essential
to parse out the strongest associations and to develop
reliable epigenetic screening tools for FASD.
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