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Abstract 

Human transformation of the terrestrial biosphere via resource utilization is a critical 

impetus for monitoring and characterizing anthropogenic change to vegetation condition. 

The primary objective of this research was to detect anthropogenic forest disturbance for a 

recent Landsat time series. A novel combination of an autonomous change detection 

procedure and spectral classification scheme was applied and tested in a landscape that has 

undergone significant resource development over the last 30 years. Anthropogenic 

disturbance was detected with greater than 93% accuracy. Most disturbances were correctly 

classified to within ±1 year. The signal of anthropogenic disturbance was significant in the 

landscape, accounting for more than 91% of all disturbances and 86% of total disturbed 

area during the 23-year study period. The study demonstrated a robust approach for 

examining historical disturbance trends related to human-modification of the environment.  



3 

 

1. Introduction 

Humans now appropriate a greater fraction of the terrestrial surface of Earth than ever 

before (Imhoff et al. 2004), in particular of forested ecosystems, which contain the highest 

density of biomass of all ecosystems and provide a wide variety of ecosystem goods and 

services to humanity (Millenium Ecosystem Assessment 2003). Mapping anthropogenic 

changes to forest cover is essential to monitoring landscape condition. Forested landscapes 

in North America have undergone significant changes in forest cover due to the extraction 

of energy and mineral resources (Pickell et al. 2014) as well as extraction of timber 

resources and long-term conversion to other land uses. Such activities have altered 

ecosystem structure and function (Simmons et al. 2008) and significantly reduced 

biodiversity (Butt et al. 2013). 

The extent of human modification of forest cover in North America remains 

relatively unknown. Pasher et al. (2010) estimate the footprint of anthropogenic disturbance 

in the Canadian boreal zone to be approximately 24 million hectares, most of which was 

attributed to forest harvesting. Their mapping efforts were undertaken using manual 

interpretation, which is both costly and time-consuming, especially for large areas such as 

the Boreal. Efficiently monitoring human modification of the environment requires robust 

automated methods and remote sensing is well-positioned to meet these mapping needs 

(Powers et al. 2014). 

The Landsat satellite program has continually overflown the planet every 16 days 

for the last 42 years. The open release of the Landsat image archive to the public in 2008 

(Woodcock et al. 2008) has spawned numerous advancements in image processing and 

automated change detection methods (Wulder et al. 2008a). As a result, every available 

Landsat image is potentially able to be integrated into forest cover change assessment at 

local to global scales (Hansen et al. 2013).  

Spectral trend analysis approaches can be used to track changes in surface 

reflectance from time series of Landsat imagery. This approach takes advantage of three 

properties of energy exchange and forest dynamics when detecting changes through time: 

(1) disturbed vegetation is spectrally dissimilar from healthy vegetation, particularly in the 

mid- and near-infrared bands; (2) disturbed vegetation takes several years to recover; and 

(3) persistence of a trend through time can be used to attribute a class of disturbed, forest, 

or non-forest. Spectral trend analysis has been implemented in several automated 

algorithms such as LandTrendr (Kennedy et al. 2010) and the highly autonomous 

vegetation change tracker (VCT; Huang et al. 2010). The VCT was recently used to 

estimate recent forest disturbance trends in the United States and shows promise for 

detecting multiple types of disturbance (Masek et al. 2013). 

In this letter, we present an examination of a spectral trend analysis approach in a 

western Canadian boreal forest that has undergone significant resource development and 

human modification. The western Canadian boreal forest is an ideal location to apply 

automated detection of anthropogenic disturbance due to the high severity and extent of 

resource development in the region. We applied the VCT algorithm to detect anthropogenic 
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disturbances with the objectives of (1) discriminating anthropogenic from wildfire 

disturbances over a 28-year period and (2) quantifying the contribution of anthropogenic 

disturbance to landscape dynamics where oil and gas development has increased 

significantly over the last two decades. 

 

2. Study area and data 

The study area was a single Landsat WRS-2 path-row (p45 r23) located in the Rocky 

Mountain foothills of Alberta, Canada. The terrain is gently undulating with elevation 

ranging from 500 m to 1500 m.a.s.l. Approximately two-thirds of the study area is forested 

(Wulder et al. 2008b), which is primarily evergreen forest comprised of Picea, and Pinus 

species. The forests in the area have been actively managed and harvested since 1955. 

Approximately half of the study area is reserved for protected areas while the remaining 

forest lands are actively managed. Large deposits of coal and natural gas underlay most of 

the forest cover in the region and recent advancements in recovery technologies have 

allowed for unprecedented rates of extraction since ca. 2000. 

Landsat surface reflectance (SR) data were acquired annually during the growing 

season (152 < day of year < 273) between 1984 and 2011. Scenes were preferentially 

selected to minimize cloud cover with acquisition dates later in the growing season. 

Landsat TM acquisitions were preferred over ETM+, and ETM+ SLC-off acquisitions were 

not included in the time series analysis. Forest inventory data were acquired for a forest 

management zone, which included anthropogenic forest changes such as roads, pipelines, 

well sites, and forest harvesting since 1955. The inventory data were derived from standard 

interpretation of aerial photographs that are collected on an on-going basis for forest 

management objectives (Alberta ESRD 2005). In addition, we used the Alberta Historical 

Wildfire Database (Alberta ESRD 2014) to identify the perimeters of fires that occurred in 

the study area during the study period. The wildfire polygons were collected from 

interpretation of post-fire aerial photographs. 

All data were filtered to a common minimum mapping unit (mmu) to make the data 

compatible and minimize noise while still being able to detect small disturbances in the 

final disturbance map product. The forest inventory data were mapped to Alberta 

Vegetation Inventory standards (Alberta ESRD 2005) at a mmu of 1 ha for anthropogenic 

features; the fires were mapped at 0.01 ha mmu, but only fires larger than 1 ha were used; 

and changes from the Landsat time series were mapped to a 12-pixel (~1 ha) mmu. The 

Landsat scenes were used to detect changes in the time series while the forest inventory 

data and fire perimeters were used to train the classification and assess the quality of the 

change detection procedure. 
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3. Methods 

3.1 Overview of methods 

A combination of two methods were undertaken to quantify the contribution of 

anthropogenic land cover change in the study area. First, forest disturbance was detected 

from a Landsat time series. The outcome of this procedure was an estimated year of 

disturbance for pixels classified as disturbance. Second, disturbed pixels were filtered by a 

mmu, converted to objects, and classified as either anthropogenic or wildfire using a suite 

of descriptive attributes. Both processes are described in more detail below. 

3.2 Change detection procedure 

The VCT (Huang et al. 2010) was applied for mapping forest disturbances using the 

disturbance index (DI; Healey et al. 2005). The DI utilizes a linear combination of the 

Tasseled Cap Transformation (TCT) that normalizes each pixel value to a dense forest class 

(Masek et al. 2008). Significant and consistent deviations from the dense forest class are 

then classified as disturbance and the year of disturbance is recorded. Pixels that remain 

spectrally similar to the dense forest class throughout the time series are classified as 

persisting forest and pixels that are spectrally dissimilar are persisting non-forest. 

A dense forest training mask was created annually for each Landsat scene by 

visually inspecting dense vegetation cover during the year 2000 from the version 5 MODIS 

vegetation continuous field (VCF) product collected in 2000 (DiMiceli et al. 2011), 

normalized differenced vegetation index (NDVI) values, and a true color composite. The 

NDVI and VCF values for dense forest identified in the true color image in 2000 were then 

used as thresholds for creating the dense forest mask for each image in the time series.  

Once a forest mask was created, the DI was calculated at annual time steps for each 

Landsat image. In order for a pixel to be flagged as disturbed, the DI trend had to exceed an 

upper and lower threshold for a designated number of observations. A sensitivity analysis 

was performed from initial threshold values based on previous research with the VCT in 

western U.S. forests (Masek et al. 2013). Final threshold values were selected to reduce 

single pixels detected as disturbance and overall noise while preserving the spatial and 

temporal integrity of the mapped disturbance events. Pixels could be disturbed more than 

once during the time series, but only the most recent year of disturbance was recorded. 

Pixels that contained cloudy observations for more than half of the time series or more than 

five consecutive years were not classified. Cloudy values were interpolated linearly when 

good observations were available for previous and subsequent years. Finally, a water mask 

based on near-infrared reflectance was applied to the time series analysis to classify 

persistent water bodies. 

3.3 Disturbance type classification 

In the second step, we differentiated between resource extraction and wildfire disturbances. 

A subset of the forest inventory data and wildfire maps were randomly divided into two 

equal-number samples to be used to train and evaluate the classification. Approximately 
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50% of the objects were used to train the classification and 50% were used to evaluate the 

classification. The wildfire sample (19,022 ha) was randomly drawn from the entire 

Landsat path-row, while the resource extraction sample (94,588 ha) was randomly drawn 

only from the forest management zone. 

Disturbances were classified using a set of object-based descriptive attributes 

derived using FETEX 2.0 software (Ruiz et al., 2011) describing the geometrical, spectral 

and textural properties of the disturbances. The geometry and shape was described using 

area, perimeter, compactness (Bogaert et al., 2000), shape index (McGarigal & Marks, 

1995), and fractal dimension (Krummel et al., 1987). Spectral attributes were computed 

from the spectral bands and from common indices: DI; normalized burn ratio (NBR; Key 

and Benson, 2006); NDVI (Tucker, 1979); and greenness, wetness and brightness from the 

TCT (Crist, 1985). The mean and standard deviation of the indices and the differences of 

spectral means between the pre- and post-disturbance years were computed. The texture 

descriptors extracted were: edge density (Sutton and Hall, 1972); gray level (Haralick et al., 

1973); skewness and kurtosis; and experimental semivariogram indices (Balaguer-Beser et 

al., 2013). These attributes were computed from the near-infrared band (band 4) during the 

disturbance year. 

Classification was performed using linear discriminant analysis (LDA). LDA is a 

multivariate statistical technique where the dependent variable is categorical, whilst the 

independent variables are continuous and are used to determine the class to which the 

objects belong (Huberty 1994; Everitt and Dunn 2001). This technique maximizes the 

variability between groups based on the continuous variables, while minimizing variability 

within groups. 

3.4 Disturbance classification accuracy assessment 

The spatial accuracy of the disturbance classification was assessed using an error matrix 

(Congalton 1991). In addition to the overall accuracy, user’s and producer’s accuracies 

were calculated per class, which respectively measure the commission and omission errors. 

First, the reference data (mapped anthropogenic features and wildfires) were used to assess 

the area-based accuracy of the disturbed and non-disturbed classes generated from the time 

series analysis. Next, the temporal accuracy was assessed by inspecting a scatterplot of the 

reference data year and the VCT classified year. A final assessment was undertaken to 

scrutinize the accuracy of the disturbance type classification (i.e., anthropogenic vs. 

wildfire) using the reference wildfire database and forest inventory spatial dataset. The 

sample of objects that was used for training was excluded from the full set of objects that 

were used in the evaluation. 

 

4. Results and discussion 

The temporal quality of the disturbance classification was high, with the majority of errors 

within the range -1 to +1 year relative to the actual disturbance date (Figure 1). Most errors 
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in the temporal domain resulted from the VCT classifying disturbances 1 year after the 

known disturbance date. These temporal errors may have been related to errors in the 

inventory data. Harvesting occurs on an on-going basis in the study area and it may take 

multiple years before a harvest feature is considered complete. The harvest completion date 

was used to assess the temporal accuracy and thus some disturbances could have occurred 

before this date. Additionally, cloud, haze or shadow could cause the disturbance to be 

attributed the following cloud-free year in the time series. 

 

 

Figure 1. Scatterplot of disturbance year attribution by the VCT. Values above the y=x line indicate 

that the VCT disturbance year is later than the inventory disturbance year. 

 

An error matrix of the disturbance classification is presented in Table 1 and 

disturbance type classification is presented in Table 2. Overall accuracy for the area-based 

disturbance classification was about 93% and overall accuracy for the object-based 

disturbance type classification was approximately 94%. Errors of omission and commission 

were highest for the wildfire class (55% and 63% accuracy, respectively) which was also 

the class with the fewest samples (Table 2).  



8 

 

Table 1. Error matrix of disturbance classification. 

 Reference data (ha) 

VCT map (ha) Disturbed Non-disturbed User’s accuracy 

(%) 

Disturbed 86,289 27,565 75.8 

Non-disturbed 15,357 474,267 96.8 

Producer’s accuracy 

(%) 

84.9 94.5 92.9 (overall) 

 

Overall, the disturbance classification accuracy was within the range of previous 

classification accuracies reported for the VCT (Thomas et al. 2011). User’s accuracy for the 

disturbed class was about 76%. The net committed errors (rate of false positives) and 

omitted errors (rate of false negatives) of the disturbed class were approximately 15% and 

24%, respectively. These statistics suggest that the VCT was more likely to underestimate 

than overestimate the area of disturbance. The net committed and omitted errors for the 

wildfire class were 44% and 37%, respectively. The relatively low producer’s accuracy of 

the wildfire class suggests that there are still some challenges associated with 

discriminating disturbance types which may be related to the structural characteristics of 

wildfire and typical anthropogenic disturbance. For example, shadowing and soil exposure 

vary between the classes, and also within wildfires, and the patchy nature of wildfires 

potentially affected the ability of the VCT to identify the heterogeneous canopy mortality 

of wildfires. The most important descriptive attributes for classifying disturbance type were 

mean NBR, change in NBR, band 5, band 2, DI, and greenness. 

Disturbance rates varied temporally and spatially across the region. The rate of 

disturbance increased between 1986 and 2000, and declined since. Disturbance was mostly 

clustered in the north within the primary forest management zone (Figure 2). Taken across 

the entire time series, the average annual rate of disturbance was approximately 6,555 ha 

year-1 (σ = 6,148 ha). The large standard deviation was primarily a result of two outlying 

years (2003 and 2004) with much higher levels of disturbance (Figure 3). With those years 

removed, the average annual rate of disturbance declined to approximately 4,780 ha year-1 

(σ = 1,865 ha), which is likely more representative of the landscape and region in general. 

The sharp increase in disturbance during 2003 was primarily attributed to the Syncline 

Ridge wildfire that burned nearly 28,000 ha in Jasper National Park. The sharp increase in 

resource extraction disturbance the following year (2004) was likely a result of 

misclassification of post-fire mortality of the Syncline Ridge wildfire and other wildfires as 

resource extraction disturbance and poor disturbance year attribution by the VCT due to 

extensive cloud cover. 
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Figure 2. Forest harvesting, roads and well sites in the north of Landsat tile p45 r23 within an intensive 

forest management zone. 

 

Table 2. Error matrix of disturbance type classification. 

 Reference data (n objects) 

VCT map (n objects) Wildfire Resource 

extraction 

User’s accuracy 

(%) 

Wildfire 228 135 62.8 

Resource extraction 183 4592 96.2 

Producer’s accuracy 

(%) 

55.5  97.1 93.8 (overall) 

 

Resource extraction disturbance rates were relatively stable across the time series 

and accounted for the majority of disturbance in any given year (Figure 3). The average 

annual rate of resource extraction disturbance was approximately 5,640 ha year-1 (σ = 4,362 
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ha) across the entire time series and 4,630 ha year-1 (σ = 1,844 ha) with 2003 and 2004 

excluded. Approximately 91% of all disturbances was resource extraction and 

approximately 86% of total disturbed area was resource extraction. 

 

 

Figure 3. Forest disturbance trends for the study area: resource extraction disturbance (grey), and 

wildfire (black). 

 

The region underwent significant development of oil and gas resources beginning in 

the early 2000’s. The year 2004 showed the greatest levels of anthropogenic disturbance 

and a large portion of the landscape was impacted by road and well site construction 

(Figure 2). However, the majority of resource extraction disturbance during that year was 

driven primarily by forest harvesting and subsequent annual resource extraction disturbance 

rates did not increase.  While the method demonstrated good success with detecting and 

classifying disturbances larger than 1 ha, there are many finer-scale disturbances in the 

study area that do not contribute greatly to disturbance area, but have large impacts on the 

Boreal forest. For example, the density of seismic lines in the region is among the highest 

in the province of Alberta, but these features are below the spatial resolution of the Landsat 

imagery that we used (Powers et al. 2015). A classification of other disturbance types like 

roads and seismic lines would require finer spatial resolution imagery, but there is an 
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inherent trade-off between detecting smaller features (spatial resolution) and sampling large 

areas for disturbance (extent).The results show that resource extraction disturbed more 

forested area than wildfire for the study area. Wildfire is believed to be the primary driver 

of landscape structure and forest change in the boreal zone as a whole (Weber and 

Flannigan 1997), however the study area, in the south-west of the boreal, was settled in the 

1950’s and fire suppression has been effective at reducing area burned in the region during 

the study period (Cumming 2005). The objective of contemporary forest management in 

the study area has been to replace the wildfire disturbance regime with forest harvesting 

while keeping the combined rates of disturbance similar to pre-settlement levels (Bergeron 

et al. 2002). Other non-anthropogenic disturbances such as wind throw and insect attack 

were not included in the classification due to the lack of available spatial reference data for 

these disturbances in the study area. However, given the levels of disturbance observed for 

the study area, these disturbance types were not likely to significantly alter the contribution 

of anthropogenic land cover change. In addition, the VCT algorithm is not designed to 

detect slow degradation or subtle disturbance events that only affect a small fraction of the 

forest canopy. 

 

5. Conclusion 

The demonstrated methodology was able to identify both wildfires and resource extraction 

disturbances in a southwestern Boreal forest in Canada and assign a year of disturbance 

with low and quantifiable error. The classification of the VCT disturbance map allowed for 

the analysis of disturbance rates by source, which determined that resource development 

was the primary driver of vegetation cover change in the study area. We foresee the VCT 

being utilized to map historical forest disturbances and track the trends of human 

appropriation of forested ecosystems. Such information may help predict rates of change in 

forested landscapes that may undergo significant resource development in the future. 

Knowledge of historical anthropogenic disturbance trends could significantly improve 

landscape planning and forest management, particularly where biodiversity and habitat are 

rapidly declining due to anthropogenic land cover changes. Specifically, the disturbance 

year attribution by the VCT may improve or validate stand origin estimation in standard 

forest inventory attribution. Additionally, the combination of the change detection 

procedure and the disturbance type classification could be used to automate feature 

extraction of roads or well sites. This study demonstrated a robust approach for examining 

historical disturbance trends related to human-modification of the environment. 
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