
Journal of Cloud Computing:
Advances, Systems and Applications

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems
and Applications (2017) 6:20
DOI 10.1186/s13677-017-0089-9

RESEARCH Open Access

IO and data management for
infrastructure as a service FPGA accelerators
Theepan Moorthy* and Sathish Gopalakrishnan

Abstract

We describe the design of a non-operating-system based embedded system to automate the management,
reordering, and movement of data produced by FPGA accelerators within data centre environments. In upcoming
cloud computing environments, where FPGA acceleration may be leveraged via Infrastructure as a Service (IaaS), end
users will no longer have full access to the underlying hardware resources. We envision a partially reconfigurable
FPGA region that end-users can access for their custom acceleration needs, and a static “template” region offered by
the data centre to manage all Input/Output (IO) data requirements to the FPGA. Thus our low-level software
controlled system allows for standard DDR access to off-chip memory, as well as DMA movement of data to and from
SATA based SSDs, and access to Ethernet stream links. Two use cases of FPGA accelerators are presented as
experimental examples to demonstrate the area and performance costs of integrating our data-management system
alongside such accelerators. Comparisons are also made to fully custom data management solutions implemented
solely in RTL Verilog to determine the tradeoffs in using our system in regards to development time, area, and
performance. We find that for a class of accelerators in which the physical data rate of an IO channel is the limiting
bottleneck to accelerator throughput, our solution offers drastically reduced logic development time spent on data
management without any associated performance losses in doing so. However, for a class of applications where the
IO channel is not the bottle-neck, our solution trades off increased area usage to save on design times and to maintain
acceptable system throughput in the face of degraded IO throughput.

Keywords: Infrastructure as a service, FPGA acceleration in data centres, Heterogeneous computing

Introduction
Parallel and heterogeneous computing with the use of
discrete device accelerators like GPUs, FPGAs, and even
ASICs, are some of the recent system level attempts that
have addressed an increasing demand for computational
throughput [1, 2]. However, heterogeneous computing is
challenging at both the systems level implementation and
resource management aspects of deployment. Therefore,
data centres are starting to fill a market need for comput-
ing horsepower—without end users having to tackle such
challenges directly. This sort of market has been termed
Infrastructure as a Service (IaaS) within the more general
category of cloud computing services.
Within the IaaS domain, there have been recent

attempts in literature to facilitate the integration of device

*Correspondence: tmoorthy@ece.ubc.ca
The Department of Electrical and Computer Engineering, The University of
British Columbia, Vancouver, BC, Canada

accelerators into cloud computing services [3–6]. These
works primarily focus on scaling the use of accelerators in
IaaS in three different ways; firstly, by treating the accel-
erator as a virtualized hardware resource, secondly in the
case of FPGAs, by making use of their dynamic recon-
figurable capabilities directly without virtualization, or
thirdly, by offloading greater portions of traditionally host
CPU based code onto accelerator based soft or hard pro-
cessor cores. The work in this article is complementary
to these efforts to integrate accelerators into cloud com-
puting services, but we focus on a singular aspect of this
broader challenge. We deal with the systems level imple-
mentation of integrating accelerators. We draw attention
to the fact that present day accelerators may rely on direct
access to IO data channels to offer effective acceleration.
High Level Synthesis (HLS) has gained some traction

in offering acceptable levels of performance relative to

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-017-0089-9&domain=pdf
http://orcid.org/0000-0002-5969-3791
mailto: tmoorthy@ece.ubc.ca
http://creativecommons.org/licenses/by/4.0/

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 2 of 23

manual RTL design for FPGA based hardware accelera-
tors. More specifically, HLS is presently capable of trans-
forming task specifications in a high-level programming
language (such as C or Java) into near optimal hardware
implementations for the compute portions of hardware
acceleration [7]. However, successful acceleration of the
compute portions alone does not translate into the desired
application level acceleration as well. The increases in
computational throughput must be supported by a corre-
sponding increase in Input/Output (IO) data throughput
to achieve system level acceleration. Unfortunately, HLS
at present offers very little support or design abstrac-
tion for implementing custom IO data transfers and their
corresponding organization in the memory subsystem,
leaving system designers to still fall back on manual Reg-
ister Transfer Level (RTL) design for these tasks. In fact,
managing ingress and egress data across multi-level on-
chip and off-chip memory hierarchies is an open HLS
problem [7].
To mitigate some of these existing limitations of HLS in

virtualizing FPGA usage in the cloud, recent work has pro-
vided further innovation [8, 9]. Ma et al. in their work [8],
have combined existing development on Domain Specific
Languages and the use of FPGA overlays to offer a run-
time interpreter solution to managing FPGA resources.
However, because they have taken an overlay approach,
as they have cited, they also must offer standard accel-
erator interface templates for any IO to the FPGA. Such
IO interfaces would indeed provide a great amount of
flexibility for FPGA accelerator usage, but would suffer
on optimality for any specific accelerator’s data access
pattern. Chen et al. [9] in their related work on FPGA
based cloud computing, go further to recognize that
there may be miscellaneous peripherals such as Ethernet
controllers and various memory controllers required by
specific accelerators. As such they make reference to a
context controller switch to handle varying IO sources,
but do not elaborate on whether any optimization is being
made on this IO interface on a per accelerator application
case basis.
In IaaS, this issue of customized IO and memory

throughput for accelerators is further exacerbated by the
fact that an end-user of a cloud computing environment
does not have access to modify the bare underlying hard-
ware’s IO in any way. This is due to security limitations
in the case of FPGAs [3], and in the case of GPUs and
ASICs once their IO controller data-paths are designed
and deployed they are fixed. Thus even if an end-user is
willing to commit the manual RTL development hours
required to customize the IO interfaces for their acceler-
ated application, their lack of control and visibility over
the underlying physical IO channels would prohibit them
from doing so. Moreover, it is sometimes desirable to vir-
tualize accelerators and enable time-sharing, and allowing

for significant user customization may not be possible in
this scenario.
With such limitations in mind, if IaaS is to be a viable

option for those seeking FPGA based acceleration, a flexi-
ble method to access IO data channels must be offered by
the infrastructure itself. Furthermore, a level of abstrac-
tion must also be offered by any such method in order for
the underlying infrastructure to be upgraded or changed
and not require changes in the end user’s applications as a
result.
We seek to complement HLS based acceleration by

abstracting the design efforts required to integrate IO
and memory data channels. We do so by investigating
the use of the existing embedded ecosystem on mod-
ern FPGAs to handle IO data channels in software.
Although this approach may not offer the same perfor-
mance when compared to automated custom configura-
tion methods [10], and far less effective relative to manual
RTL design, it still offers design times that are compa-
rable to an HLS approach. More importantly, it allows
for data transfers to be handled in software. Certain
classes of FPGA devices today have an embedded ecosys-
tem as hardened components readily available; making
use of these embedded resources via software control
abstracts away the exact details of the embedded proces-
sor and physical IO channels. This gives IaaS providers
the freedom to carry out infrastructure upgrades with-
out disrupting their customer workloads. And for the
end user customers, this provides the option to harness
any future hardware upgrades or changes in underly-
ing IO technology at a software level should they wish
to do so.
Towards demonstrating the value of an embedded IO

processor in FPGA-based accelerators, we use two case
studies to demonstrate the value of IO management in
data-intensive applications as well as the possible perfor-
mance implications of embedded IO processors. Although
we have focused on FPGAs as the substrate for implement-
ing accelerators, we believe that the central idea of utilizing
an embedded IO processor will be an attractive approach
for other accelerator implementations as well.

FPGAs as managed hardware in IaaS data centres
Whether FPGAs are integrated into data centres via pro-
posed virtualized methods [3] or by more direct Open-CL
based methods [11, 12] the FPGA fabric itself will need to
consist of two separate regions. A static region of logic will
exist in order for the FPGA to bootstrap itself and config-
ure the minimum communication protocols necessary for
it to interact with the host system. The second (dynamic)
region will be an area of the fabric that is partially recon-
figurable at runtime to allow for custom logic to be placed
onto the device. This custom logic will then accelerate
a specific compute-intensive task call of the application’s

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 3 of 23

algorithm, or run the application as a whole entirely on the
FPGA.
The dynamic region of the FPGA will be accessible to

the end user to configure via the FPGA vendor’s partial
reconfiguration tool flow. The static region’s base “tem-
plate”, however, will not be accessible to the end user and
must be provided for and maintained by the data centre
host. The boundary (Fig. 1) between these two static and
dynamic regions of the FPGA fabric is what this article
concerns itself with.
We refer to the static region as a template above because

this region is what defines the structure of external IO
data channels that the FPGA end user sees and has access
to. The static region accomplishes this by instantiating the
necessary DRAM memory controllers, PCI express end-
point blocks, and any other specific IO controllers that it
wishes to provide. It is worthy to note here that although
the FPGA device itself may be physically wired to multiple
IO channels on the Printed Circuit Board (PCB) that was
manufactured for its data centre usage (Fig. 2), the static
region itself does not necessarily need to instantiate a con-
troller for all of the available IO channels.What this allows
for is different price points within IaaS for a data centre
to rent its FPGA resources at, while keeping their actual
physical FPGA infrastructure uniform with a fixed cost.
For example, a data centre may have all of its FPGA PCBs
designed with four Ethernet ports available, but intention-
ally restrict an end user from only accessing one or two
based on what level of access they have paid for. In Fig. 2
this is illustrated by depicting multiple IO protocols and
channels that may be physically wired to FPGA boards,
however, the actual IO resources that an end user has
access to can easily be limited by a static region bitstream

in the SDAccel flow. The static region bitstream will not
have an IO controller for all of the available IO protocols
such as Ethernet, SATA, JESD, or SERDES, unless the end-
user has subscribed to a design flow that includes these
options (at a cost).
Apart from the business side advantages that mandat-

ing a static region on the FPGA provides, a static region
also allows physical IO channel upgrades in technology
while offering minimal disruption to existing applications
and customers. Consider that the data centre upgrades
the solid state storage devices that its FPGA customers
have access to from SATA 2 to SATA 3 SSDs. In this
scenario, only the SATA controllers within the static tem-
plate would need to be redesigned and deployed, while
keeping the partially reconfigurable dynamic portion of
FPGA logic unaffected. However, this begs the ques-
tion as to whether this is feasible or even possible in
the actual implementation of these static and dynamic
regions. Given that there is to be very tightly linked
and high throughput communication between these two
regions, if a component within the static region changes
even slightly will this not necessitate a redesign in the
modules of the dynamic region that it interacts with. The
answers to these questions rest completely on what the
boundary logic between these two regions consists of.
The boundary region at the implementation level

merely represents the set of architectural choices that are
made to design and determine the type of interfaces that
the static and dynamic regions will use to accomplish data
transfers between them. This work contributes an embed-
ded method to manage data channels that strays away
from what conventional RTL design practices would dic-
tate. We also put forth the novelty of using our embedded

Fig. 1 FPGA Fabric’s Static, Boundary, and Dynamic Regions on a PCIe based Data Centre accelerator PCB card

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 4 of 23

Fig. 2 Varying Physical IO Channels Directly Accessible by an FPGA within a Data Centre Host Environment, for an FPGA vendor’s (Xilinx) software
development flow

method in data centres where FPGAs may contribute as
managed hardware resources within IaaS environments.
This domain is an emerging and rapidly evolving field
where end users are given increasingly less control over
the bare-metal hardware that they seek to use. They must
also accept certain levels of abstraction in their usage
if they are to reap the economically cheaper rewards of
scaling their FPGA acceleration based needs.
We explain our solution to IO data channel manage-

ment in this environment by way of two use case exam-
ples that follow in “Bioinformatics application study” and
“Video application study” sections. Towards demonstrat-
ing the value of our solution, in the first case we show
that there are no performance penalties in adopting IaaS
acceleration for the majority of data intensive or IO bound
applications. In the second case, where IO performance
loss does present itself as a problem, we successfully
show that the acceleration itself can be scaled to compen-
sate/offset IO performance loss at the application level if
need be.

Bioinformatics application study
Application characteristics
Applications that require access to, or that produce, large
volumes of data are presently loosely defined as “Big Data”
applications. Big Data type applications, where FPGAs are
utilized for acceleration, can be found in various applica-
tion domains, ranging from Financial Computing, Bioin-
formatics, and conventional Data Center usages [13–15].
The particular application chosen for the experiments of

this section falls under the Bioinformatics domain. How-
ever, the IO, memory, and data volume characteristics
of this application allow for the results to be prevalent
across most FPGA accelerated Big Data applications in

general. Traditional, in house, computing-cluster based
infrastructures for such applications may not be economi-
cal as their data needs continue to scale, and can be costly
to maintain. The take away that we would like to stress in
this section is that, in IO constrained cases of these appli-
cations, performance does not have to be sacrificed when
moving to IaaS.
The underlying common denominator, from a hardware

perspective, of such applications, is that they all require
the use of a non-volatile storage device to handle the large
data sets. The use of non-volatile devices, such as Solid
State Drives (SSDs) or other flash memory based hardware,
often necessitates a memory hierarchy within the system
design process. A typical hierarchy will include off-chip
flash memory for large data sets, followed by off-chip DRAM
for medium sized data sets, and finally on-chip SRAM.
For the off-chip memory components, the physical IO

data channel by which these components are accessed also
adds a lot of variation to the system level design. For exam-
ple, in the Financial Computing domain of applications,
large volumes of off-chip data might be streaming in from
multiple Ethernet channels, whereas in Data Centers the
incoming data might be arriving over PCI-express links
connected to SSD storage. This variation in the physical
IO channels creates the need for multiple IO controllers
that rely on different IO protocols for communication,
which in turn results in varying interface requirements for
each controller.
The FPGA application accelerators in this class will

require the IO controllers to supply a high throughput of
data that at least matches the targeted scale of acceler-
ation throughput. This required acceleration throughput
can often be much greater than the physical bandwidth
of the underlying IO device, the throughput rate of the

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 5 of 23

controller that is accessing the underlying device, or any
combination of the two. This dynamic results in the high
throughput potential of the accelerator being limited by
low IO throughput at the systems level. For the system
architects that have the financial resources to do so, over-
coming this problem might be a possibility by investing
in higher throughput IO channels (i.e. converting from
2nd generation SATA to 3rd generation, or increasing
the number of lanes in a PCI-express link). However,
cases, where even state of the art physical IO channels
cannot match accelerator throughput requirements, are
not rare [16].
The use case application chosen for this section demon-

strates the operation of two different IO protocols, Ether-
net and SATA, and more importantly illustrates the effort
that is required to integrate their respective controllers
into the FPGA-accelerated data path. In doing so, we
find that indeed the limitations in controller throughput
do become the bottleneck to system level performance.
Within the latter part of this section, we move to demon-
strating how such IO bottlenecks in the system can be
exploited to create interfaces to these controllers that are
software driven and less complex to design.

The DIALIGN algorithm
Bioinformatics algorithms generally lend themselves well
to hardware acceleration due to their inherent amount
of parallelization. DIALIGN [17] takes an input query
sequence against another input reference sequence, and
aligns/matches segments of the query sequence to the
regions of the reference sequence that offer the highest
(optimal) degree of similarity. The output of DIALIGN is
a mapping of the query sequence coordinates to various
reference sequence coordinates (i.e. regions).
The input data to DIALIGN is a series of 1-byte char-

acters that represent either DNA or protein strands of
query and reference sequences for comparison (cross
comparisons between DNA strands and protein strands
are never made). DNA representation requires only 4 dis-
tinct characters thus a 2-bit data representation would
suffice, however, protein variations require greater than
16 characters to represent. Thus an 8-bit data representa-
tion is favoured to accommodate these two types of input
sequences.
Acceleration in hardware is achieved by a systolic array

architecture implemented by Boukerche et al. [18]. Their
systolic array architecture (Fig. 3) stores each character
of the query sequence within each PE, then streams the
reference sequence across the chain of PEs to compute a
matrix scoring scheme. Ideally, this architecture performs
best when all of the characters of the query sequence
can entirely fit into the total number of synthesizable
PEs. Given that query-sequence sizes of interest today are
in the mega characters range, this ideal scenario is not

feasible even with relatively large FPGA devices. Thus sev-
eral passes of the reference-sequencemust bemade across
multiple partitions of the query-sequence.

DIALIGN implemented with fully RTL based IO interfaces
There are two IO channels that the DIALIGN applica-
tion running on our FPGA platform relies on. The first
is the Ethernet channel for external communication, and
the second is the SATA channel for internal deep storage
access.
Between the two IO channels, the Ethernet channel

has the simpler interface to the accelerator. Here we are
using the word interface, not in the sense of a standard
protocol by which the ports of two or more commu-
nicating hardware modules must be connected, but in
the more general sense of any necessary changes in fre-
quency, data-width, or timing that must be performed
in order to achieve a viable data-path between any two
hardware components. The two primary components of
interest in this article are the accelerator (or more specifi-
cally, the systolic array for this particular application) and
an IO controller. The interface is then, the mechanism
by which the IO controller transfers data to the native
input or output ports of the accelerator. This mechanism,
by definition, should at a minimum support two basic
features—data width conversions and cross clock domain
stability.
Our system was implemented on the Digilent XUP-V5

development board [19], which features a 1-Gbps physi-
cal Ethernet line, two SATA header/connectors, and the
Xilinx XC5VLX110T Virtex 5 FPGA. Our system con-
sumed 88% of the device logic with the accelerator and
the (hardware) IO interfacing resources combined. With
the accelerator synthesized to utilize 50 PEs, the system is
capable of operation at 67.689 MHz. The SSD connected
to our board is the Intel SSD_SA2_MH0_80G_1GN
model, with a capacity of 80 GBs. It offers SATA 2
(3 Gbps) line rates, and states 70 and 250 MB/s sequential
write and read bandwidths respectively under technical
specifications by the manufacturer. A 1-gigabyte-
reference and 200-character-query synthetic sequence
were generated on the Host side for experimentation
(Fig. 4).
The reference sequence is at most 1 byte per charac-

ter, and at our synthesized accelerator operational speed
of 67.689 MHz, this requires only 68 MB/s of Ethernet
controller throughput to sustain the accelerator’s maxi-
mum throughput level. Therefore, this required Ethernet
throughput rate of 68 MB/s does not become a bottleneck
to the system, and thus the Ethernet interface specifica-
tions will not be discussed further.
In comparison to the Ethernet controller the SATA con-

troller, however, does pose significant system bottleneck
issues.

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 6 of 23

Fig. 3 Array Architecture for Single-Partition processing [18]

Intermediate data storage support between partitions
Given that partition switches across the PEs are neces-
sary to support increasing lengths of query-sequences,
the demand that this process places on intermediate
storage requirements when gigabyte reference sequences
are streamed is now described. Three partition switches
across a systolic-array architecture of 50 PEs daisy chained
together, effectively creates the logical equivalent of 200
PEs being used in a similar daisy chain fashion [20]. Thus,
all of the data being produced by the last (50th PE) at each
clock cycle of a single partition’s operation must be col-
lected and stored. This stored data will then be looped
back and fed as contiguous input to the 1st PE when the
next partition is ramped up, thereby creating the required
illusion that 200 PEs are actually linked together (Fig. 5).
During the systolic-array based operation of the PEs,

there are seven pieces of intermediate data that flow from
one pipeline-stage to the next. The abstract Load/Store
FIFO Blocks (Fig. 5) are implemented as 7 banks of
32-bit wide FIFOs (Fig. 6), with each bank capturing 1
of the 7 values of output from the terminal-PE. This
flow of intermediate data generated by the DIALIGN
accelerator is outputted or inputted at a significantly

high throughput rate of 1896 MB/s. There are seven
native accelerator ports in each direction that push
and receive this intermediate data to and from exter-
nal storage, with each port being 4-bytes wide. The
accelerator operates at 67.689 MHz and at 28 bytes
every clock cycle (assuming no stalls by the Ethernet
controller) this produces the one-way throughput of
1896 MB/s.
The fourteen accelerator ports mentioned above are

what feed the Store FIFO Block and receive data from
the Load FIFO Block in Fig. 6. At the very bottom of
Fig. 6, data heading downstream is received by the SATA
controller ports. The native port-width of our particu-
lar SATA controller [21] is 16-bits. The controller clock
runs at a frequency of 150 MHz such that its 2-byte
input port then offers a bandwidth of 300 MB/s, which
is the maximum bandwidth of SATA 2 devices. Observed
SATA throughput, however, is a combination of the con-
troller’s implementation and the particular drive that it
is connected to. With the Intel SSD used in our system,
we experimentally observed maximum sequential write
and read throughput rates of 66.324 and 272.964 MB/s
respectively.

Fig. 4 Ethernet and SATA IO channels to the XUP 5 Development Board

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 7 of 23

Fig. 5 FPGA based Storage Interfaces for Query-Sequence Partitioning

The accelerator to IO controller interface, for this chan-
nel, consists of all the data path and control units depicted
in Fig. 6. It serves all three of the functions within our
definition of an interface: data-width conversion, clock
domain crossing, and flow control. Figure 6 is an inten-
tionally simplified block diagram of this interface that
hides the details of implementation. In this section, such
details will be elaborated so that they may be fairly com-
pared to alternative software interfaces in future sections.
Within the Store FIFO Block of Fig. 6, below the 7

FIFO segments, a multiplexer is depicted to convert the
224-bit (7x32-bit) data path from the accelerator to only
16-bits. This is an oversimplification, and in reality, a

Fig. 6 Data flow to and from the Load/Store FIFOs to SSDs
(Not all connections to the CLU are depicted)

mux-control-FSM in conjunction with seven other 2-to-1
muxes are used to accomplish this task. The FSM also
helps to perform another mandatory task of framing
the data for SATA protocol writes. The SATA controller
writes to disk in single sector segments of 512-bytes per
sector. The 28-bytes of data produced by the accelerator at
each cycle cannot be evenly packed into 512-byte frames.
Every 18 cycles of accelerator operation, will only produce
504-bytes of data that must be packed into a 512-byte
frame. The FSM packages the payload data with 4-bytes
of Start of Frame and End of Frame encoding, such that a
single frame can be successfully detected, and stripped of
its payload data, during the return backward path of data
flow.
Stuffing the remaining 8 bytes of a 512-byte sector with

the first 8 bytes from another cycle of accelerator oper-
ation would create the additional overhead of realigning
FIFO-bank lines when the sectors are eventually read
back. Moreover, if a FIFO-bank line crosses two sectors,
and the controller has not returned the 2nd sector yet,
this would cause some individual FIFOs within the bank
to become empty while others are not, and thus further
exacerbate the synchronization issues that would have to
be resolved.
Lastly, the mentioned mux-control-FSM is designed to

operate at the faster SATA controller clock frequency of
150 MHz, such that 16-bits of output can be produced at
the maximum bandwidth of 300 MB/s. Note that the 224-
bits to 16-bits ratio, means that an accelerator running at
even 1/14th of the SATA frequency is capable of providing
enough data to sustain a throughput of 300 MB/s by this
FSM.

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 8 of 23

To briefly recap the primary hardware components that
went into this interface, there were two FSMs, one at
the front end to perform data-width conversion and data
framing, and a back end FSM to issue SATA commands
and handle error recovery. Alongside these primary FSMs,
non-trivial arrangements of FIFOs and muxes were uti-
lized to assist with data packing and flow control. The
most important aspect of these hardware considerations is
that all of these components were designed with the archi-
tectural requirement of running at the native SATA con-
troller frequency of 150 MHz, such that data bandwidth
was never compromised due to interfacing. However, the
much slower SATA write throughput limitation imposed
by the actual physical SSD negates the over-provisioning
of the interface logic. This then allows for other simpler
(and slower) IO interfacing options to be considered while
still achieving a comparable system level runtime.
The question that we are soon to resolve is that given

that the SATA controller’s actual end write throughput is
much lower than its input-port bandwidth capacity, can
we relax the aforementioned frequency requirements of
the interface for a simpler architectural solution.

DIALIGN implemented with software IO interfaces
Adapting to software controlled IO interfaces, by defini-
tion requires at least one embedded processor to execute
the software control. As such, the IO controllers in the sys-
tem must also support communication over whatever bus
standard that is supported by the chosen processor.
The development board that was used in the hard-

ware interface experiments is held as a constant, and used
within this section as well. As such, the Xilinx MicroBlaze
[22] softcore processor is the embedded processor around
which our software solutionwill be explored. TheMicroB-
laze ISA supports the following three bus protocols for
external communication. They are

a) Local Memory Bus
(LMB, low latency direct access to on-chip memory
block-ram modules),
b) Processor Local Bus
(PLB, a shared bus intended for processor peripherals
and memory-mapped IO),
c) Xilinx Cache-Link
(XCL, similar to the PLB, however, it supports burst
transactions and is exclusive to the processor’s
instruction and data caches).

The two IO controllers used for the DIALIGN applica-
tion, with fully RTL interfaces, in “DIALIGN implemented
with fully RTL based IO interfaces” section were the SIRC
based Ethernet controller [23] and the corresponding
Groundhog SATA controller [21]. Because the Ethernet
controller makes use of only block-rams at its top level

for data intake and delivery, it can be adapted to con-
nect with the MicroBlaze LMB interface. However, the
Groundhog SATA controller, which although allows for
a lot of design flexibility to interface directly with its
SATA command layer via custom hardware, is not capa-
ble of being connected directly to a PLB interface without
significant design additions. As such, the SATA2 con-
troller [24], another open source SATA controller that is
more amenable to embedded solutions is adopted in this
section. Both controllers are comparable in their SATA
4 KiB write tests, with the SATA2 controller perform-
ing slightly worse using comparable SSDs. Therefore, the
alternative software solution being explored in this section
is not unfairly biased in its favour via a better SATA
controller.
The SATA2 controller makes available the following two

bus protocols for communication with the core—PLB and
Native Port Interface (NPI). The PLB has been previously
introduced, however, the NPI is another protocol exclu-
sive to Xilinx’s DRAM controller that is being introduced
here. For embedded systems’ use, Xilinx makes available
their Multi-Port Memory Controller (MPMC). Further-
more, the MPMC supports various interfaces on its ports,
with two of them being PLB and NPI interfaces in this
case. An NPI port, as its name implies, is meant to pro-
vide the closest matching signals and data-width to that of
the physical DRAMbeing controlled. For example, the off-
chip DRAM modules on the XUP5 development board
have a 64-bit wide combined data path, and thus the NPI,
in this case, would also accommodate a 64-bit port. This
is in contrast to the PLB port, which would be set to a 32-
bit port as dictated by the MicroBlaze ISA. Therefore, an
MPMC instantiated with both PLB and NPI ports allows
the MicroBlaze processor access to DRAM, and also
allows a DirectMemory Access (DMA)module or periph-
eral access to native memory widths respectively (Fig. 7).
With the addition of a complementary NPI based DMA,

the SATA2 core has direct access to DRAM with little
MicroBlaze intervention; thereby not having the through-
put to the SSD restricted by PLB limitations as well.

HW/SW partitioned architecture
Given the feasibility of interconnecting the Ethernet and
SATA controllers utilized by the DIALIGN algorithm to
standard bus protocols, the existing EDA tools offered
by FPGA vendors for embedded systems design can be
leveraged to manage data flow in software, while allowing
for the computationally intensive accelerator portions to
remain in hardware.
Newer interfaces such as AXI [25] exist to intercon-

nect the programmable logic data-path to an embedded
processor; however, due to the limitations on IP for the
Virtex 5 development board, our architecture utilizes
Fast Simplex Link (FSL) [26] based communication. Our

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 9 of 23

Fig. 7 Embedded MicroBlaze access to the SATA2 Core and DRAM [24]

architecture combines a varying amount of FSL channels,
along with the Ethernet and SATA controllers, to form
a flexible and easily controllable data-path for hardware
acceleration (Fig. 8).
The number of FSL links used to connect the config-

urable accelerator to the embedded system depends on
the needs of the application being accelerated. Each link,
as mandated by the FSL interface, has configurable FIFOs
built in. Although a minimal dual cycle latency for data is
possible via the FSL links, the total bandwidth between the
accelerator and the processor will be limited by the lower
clock speed of the MicroBlaze processor. Nonetheless, the
potential for ease of automated configuration is high due
to the fact that the FSL lanes can be scaled according to
the number of input and output ports that are required by

the accelerator, and by the fact that the data-width of each
port can be set accordingly as well.
The low aggregate bandwidth between the accelerator

and the processor that comes with the use of FSL lanes
does not introduce a new throughput bottleneck into the
system for all applications. If the application already has
an IO channel throughput bottleneck that is lower than
the FSL channel rate, the ease of automation gained by
using the FSL lanes will have no adverse effect on the
overall system throughput.

Soft-processor datamanagement
As depicted in Fig. 8 all input to the alignment accelerator
is received over the Ethernet channel. During accelera-
tor operation, one DNA character (a single byte) of the

Fig. 8 Hardware/Software Partitioned Infrastructure

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 10 of 23

reference sequence is required per cycle. The accelera-
tor runs at a maximum frequency of 67.689 MHz and
thus requires 68MB/s of input bandwidth to sustain oper-
ation at full throughput. Through experimentation, we
have verified that the SIRC Ethernet controller can pro-
vide a stream bandwidth rate between 58.88 MB/s and
60.35MB/s. However, this does not cause the SIRC stream
to become the bottleneck of the system. The greater bot-
tleneck is discussed below.
The SATA 2 (3 Gbps line rate) protocol allows for a

maximum theoretical bandwidth of 300 MB/s. Real SSDs,
however, offer much lower rates, especially on write band-
width. The SSD used in our experiments revealed max-
imum sequential write rates of 66 MB/s. The DIALIGN
accelerator produces seven 32-bit words per cycle of inter-
mediate data at a clock rate of 67.689 MHz, or rather 1895
MB/s of write data.
The design goal of this section is to capture the 1895

MB/s of data produced by the accelerator logic, bring it
into the soft-processor based embedded system domain,
and feed it to the SSD controller. As long as this process
can be successfully implemented without dropping below
the physical SSD data write rate of 66 MB/s, the use of an
embedded system for data management does not degrade
system performance relative to custom RTL based data
management. Given that a conventional MicroBlaze soft-
core processor can be run at a frequency of 125 MHz and
that it operates on 32-bit word operands, this provides for
an upper bandwidth limit of 500 MB/s to work within.
Realistic bus transfer rates along with actual DRAM
write/read rates in implementation will be considered to
determine the degradation to this 500 MB/s upper limit.
The first stage of data transfer is achieved via seven

FSL links that give the MicroBlaze core access to each
of the seven accelerator output operands using distinct
FSL channel ID numbers in software. The Xilinx FSL link
interface includes built in FIFOs on each channel. All
seven FIFOs on the links are all set to the same depth. The
accelerator concurrently writes to all FIFOs on each clock
cycle of its operating frequency, however, the processor
will read from the FIFOs in round robin fashion. Accelera-
tor operation can be paused in response to any almost-full
control signals from the FSL FIFOs.
The XUP5 development board used in our design

uses DDR2 DRAM and is controlled by the Multi-Port
Memory Controller (MPMC) IP [27]. Although the PLB
[28] interface supports burst-mode data transfers to the
MPMC,MicroBlaze does not support burst-transfers over
the PLB. As a workaround, a data-cache can be incor-
porated into the MicroBlaze design, and then the Xilinx
Cache Link (XCL) [22] can be utilized for burst-mode
data transfers to DRAM. This is the optimization we
have employed to achieve native 64-bit wide data writes
into DRAM via write bursts issued by the MicroBlaze

data cache. We also ensured that the “Use Cache Links
for all Memory Accesses” parameter was set so that
data is pushed onto the XCL even if the data-cache was
disabled.
Software functions to read/write to the FSL channels

are provided within Xilinx’s SDK environment and 32-bit
words of data can be accessed within single cycle speeds.
Thus the processor running at 125 MHz can consume
data from the FSL links at a bandwidth of 500 MB/s.
From there, the data rate at which the data-cache-bursts
write to the MPMC will be the first bandwidth funnel.
The upper bound on throughput from the MicroBlaze to
the MPMC is affected by several factors. From the source
(MicroBlaze) side, data may not always be injected at the
upper limit of 500MB/s due to the fact that someMicroB-
laze overhead cycles will be used to gather the data from
multiple FSL channels. On the sink (MPMC) side, write
throughput will depend on any other concurrent reads
or writes occurring to the same physical DRAM (via the
SATA controller) and how effectively the arbitration pol-
icy of the MPMC is executed. These complexities prohibit
derivations of any practical analytical methods to infer
reasonable throughput levels between theMicroBlaze and
the MPMC.
After the data has been streamed by the MicroBlaze

from the FSL channels into DRAM, the SATA2 core can
begin to consume it from there. The modified SATA2
core [24] that we employ uses the Native Port Interface
(NPI) [27] of the MPMC for its own internal DMA based
transfers. The DMA setup and start commands are still
issued in software by theMicroBlaze communicating with
the core over the PLB. The SATA2 core’s internal NPI
based DMA engine can obtain data from the MPMC at a
throughput of 240 MB/s. This rate has been experimentally
verified, and also drops down to no less than 200 MB/s
when theMicroBlaze is simultaneously issuing data writes
to the MPMC via its XCL port. In this scenario, the MPMC
internally performs round-robin arbitration between the
XLC writes and the NPI reads. Nonetheless, even a 200
MB/s rate of data delivery to the SATA2 controller far
exceeds the 66 MB/s write rate of the actual SSD. Thus
these empirical results, which could not have been
obtained in a practical analytical manner, establish that the
system throughput is not degraded by this software solution.
In creating this embedded system based data-path, all of

the custom logic depicted in Fig. 6 for the hardware inter-
face in “DIALIGN implemented with fully RTL based IO
interfaces” section is no longer necessary. FIFOs to collect
the data from an accelerator at variably wide data-widths
(up to sixteen 32-bit wide words) are automatically avail-
able within the FSL IP, transfer of that data into DRAM
is then controlled in software, and finally the repacking
of data words for the appropriate sector write frames into
SSDs can also be handled in software.

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 11 of 23

Furthermore, should the underlying physical SATA-
core be changed to support future SATA-3 generation
devices or merely wider data-widths of the transceivers
used even within SATA-2 devices, these changes can be
supported by software. For example, Virtex 5 transceivers
(GTP tiles) utilize 16-bit SERDES (Serializer-Deserializer)
circuits for their SATA physical-layer links, however, Vir-
tex 6 transceivers (GTX tiles) were upgraded to 32-bit
SERDES transceivers. These changes propagate all the way
up to the command layer of the SATA HBA controller
and require the buffers or FIFOs that supply data to the
controller to also be converted to matching 32-bit words.
If our data-path was solely an RTL design (“DIALIGN
implemented with fully RTL based IO interfaces” section),
then the muxes, FIFOs, and more importantly the FSMs
would all have to be accordingly modified to pack wider
words. In the presently described embedded solution,
not only can the 32-bit upgrade be supported entirely in
software, but we can also maintain full backward compat-
ibility with any legacy 16-bit SATA controllers, through
32-bit input-word conversions into half-word data writes
to DRAM in software.

Resource utilization across interface solutions
In this section, the hardware utilization associated with
the solely hardware, and the HW/SW partitioned inter-
face solutions will be compared and discussed.
Table 1 lists the amounts and percentages of resources

consumed on the Virtex 5, XUP5 development board [19],
for both interface options. It can be observed that there
is roughly a 20% overhead increase in LUT and DFF logic
that is consumed when moving to a HW/SW partitioned
solution. The majority of this extra logic can be attributed
to not only the MicroBlaze softcore itself but also to the
MPMC, its supporting busses, the FSL channels, and the
extra DMA unit within the SATA2 controller itself. As
expected for this application, the actual run time per-
formance of the DIALIGN accelerator is equal between
the custom HW and HW/SW interfaces, and thus is not
reported in the table for comparison.
What is gained by this increase in hardware is the signif-

icant reduction in design time and debugging efforts. The
custom hardware interfaces are very resource efficient,

however, they can require 6 months of design to architect,
implement, and verify. Furthermore, they cannot easily be
reused when an IO controller update is required.

Video application study
Motion estimation implemented with fully RTL based IO
interfaces
As a motivator for the case study described in this section
the reader is urged to consider the system level challenges
of a commercial application such as Netflix [29]. Although
an application such as Netflix in its infancy may start out
with a fully customizable computing cluster environment,
as its customer base and data requirements expand, a full
warehouse data-centre infrastructure is often inevitable
[30]. In this scenario, customized acceleration for the
encoding required for all standards of input video sources,
and the output video stream resolutions produced, will
be challenging. Therefore, cloud-based solutions are often
sought to handle the scale and possible automation of the
encoding workloads [31]. It is precisely this sort of envi-
ronment that our solution aims to target. In this environ-
ment, the flexibility to scale the accelerators that handle
the compute bound portions of the application’s code can
be leveraged to manage IO constraints if, and only if, the
IO interface architecture is appropriately designed and
matched.
Acceleration of Motion Estimation (ME), for the H.264

video encoding standard [32], on FPGAs uses only amem-
ory controller for off-chip DRAMaccess as its single chan-
nel for IO data. We examine ME in this section because,
from an IO perspective, it is fundamentally different from
the previously covered DIALIGN application in that nei-
ther its physical IO channel device (DDR2 DRAM) nor
its IO controller (the Multi-Port-Memory-Controller) are
bottlenecks to accelerator performance. Nonetheless, ME
is still a relatively IO dependent application. However,
what will be demonstrated in this section is that the
requirements of this application, and how these require-
ments are exploited, combine to prevent IO throughput
from becoming an issue. We show that this form of appli-
cation requirement exploitation can be achieved through
the careful customization of its interface to the memory
controller.

Table 1 DIALIGN alignment accelerator with custom HW interfaces vs. HW/SW IO interfaces

Areaa

LUTs DFFs LUTs % DFFs % Accelerator MicroBlaze

#(K) % #(K) % Increase Increase frequency (MHz) frequency (MHz)

HW Interface 51.0 73.8 36.9 53.4 67.7 N/A

HW/SW Interface with
Microblaze

64.5 93.3 52.0 75.2 19.5 21.8 67.7 125

aXilinx’s Virtex 5 devices use 4 DFFs & 4 6-input LUTs per Slice

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 12 of 23

External DRAM throughput requirements
A memory hierarchy (Fig. 9) is used to move portions
of a large data set stored at the non-volatile level (i.e. a
video file), into a medium data set stored in DRAM (video
frames), and then finally into small data sets of on-chip
buffering (sub-frame blocks) to support acceleration. It
will soon be detailed that a throughput of only 6̃20 MB/s
from off-chip DRAM to on-chip block rams suffices for
this application. Thus even using a modest DDR2 mem-
ory controller will not become a bottleneck based on the
required 620 MB/s of read throughput (to supply data
to the accelerator) and the required 125 MB/s of write
throughput (to load video data coming in from the SSD at
a speed of at most 60 fps).
A single pixel is often encoded as a single byte. Thus

a single 1920 × 1088 High Definition (HD) frame occu-
pies 2.09 MB of memory. Since on-chip FPGA memory
is commonly limited to be between 2 to 6 MB, video
frames must be encoded in partial segments sequentially.
The 1920×1088 frame can be encoded as eight equal seg-
ments of 960×272 Sub-Frame (SF) portions at a time. The
960×272 SF allows for a more manageable 261.1 KB of
pixels to be encoded within on-chip memory at a time.
The VBMSE algorithm [32, 33] requires the video frame

that is to be encoded (the present frame) to be compared
to at least four other (reference) frames, before conclu-
sive calculations on its corresponding motion vectors are
reached. Therefore in addition to the 1/8th portion of the
present frame (PSF), four other such portions of refer-
ence frames (RSFs) must be held within on-chip memory
as well (Fig. 10), which brings the total memory space
thus far to 1.3 MB. Here, we introduce the design con-
cept of double buffering—the first buffer is initially loaded
with data to be processed, processing then commences,
simultaneously the second buffer is loaded with the next
set of sub-frame data, thereby overlapping memory access

latency with processing time. This then brings the total
required on-chip memory allocation to 2.6 MB for double
buffering, which even modest FPGA devices can support.
FPGA devices with larger amounts of on-chip memory

can opt to double buffer larger sub-frame portions, but
we wish to note that doing so only reduces the required
memory-controller throughput rate. This is due to the
fact that for VBSME an increase in data to be processed
is not linearly proportional to processing times. There-
fore, double-buffering larger sub-frame segments allows
for the acceleration to be more compute-bound than IO
bound, and thus lowers the required external memory
throughput.
The basic building blocks for which motion vectors

are produced as outputs in motion estimation are 16×16
blocks of pixels, commonly referred to as a macro-block.
Within the 960 × 272 sub-frame portion size that we are
using in this work there will be 1020 macro-blocks that
need to be encoded. For reasons that will be clarified in
the next sections to come, the number of required clock
cycles to encode a single macro-block against a single ref-
erence frame is 99 cycles, when the accelerator is scaled
to its highest level of acceleration. We intentionally use
the highest level of scaling here in these calculations to
demonstrate the upper bound on the required external
memory throughput. Next, recall that VBSME requires
the present frame to be compared against four other ref-
erence frames when calculating the motion vectors for
its macro-blocks. Therefore, the 99 cycles become 396
cycles in total per macro-block. We can now state the
entire processing time of a sub-frame portion in cycles to
be equal to 403 920 (1020 macro-blocks x 396 cycles per
macro-block).
As detailed earlier in this section, the total data required

to process a sub-frame against its four reference frames
is 1.3 MB (1.3056 MB exactly, Fig. 10). The maximum

Fig. 9 VBSME Accelerator Memory Hierarchy at 16-PPUs Data Rate

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 13 of 23

Fig. 10Memory Controller to Accelerator Buffering

frequency of the implemented VBSME accelerator on our
chosen FPGA device is 200 MHz. Thus the final required
external memory throughput with the use of double
buffering can now be derived as 646.5 MB/s (1.3056 MB /
403 920 cycles * 200 MHz).

VBSME accelerator operation
For the purposes of this article, it suffices to view the
VBSME accelerator as a scalable black-box accelerator.
The scalability of our black-box accelerator is measured
in terms of the number of Pixel Processing Units (PPUs)
that it is instantiated (synthesized) with. In our system
implementation, the offered set of scaling levels is 1, 2,
4, 8, or 16 PPUs. Looking into this black-box slightly for
the purpose of understanding its IO requirements, each
PPU can be viewed as a single 16×16 two-dimensional
array of Processing Elements (PEs) (Fig. 11). A single
PPU requires two separate memory busses, each being
16-bytes wide. The necessity of this dual-bus architecture
stems from the need to avoid any pipeline bubbles within

the hardware architecture for VBSME [34]. These dual-
buses are each independently connected to two physically
separate Memory Partitions A and B that contain two ver-
tically segregated logical partitions of the search-window
memory space (Fig. 12).
Although each PPU requires, in total, an input path of

64-bytes across its two buses, fortunately, this relation-
ship is not held when scaling the VBSME architecture to
use multiple PPUs in parallel. The relationship between
the number of bytes required when scaling upwards to n
number of PPUs is 15 + n bytes on each bus [35]. Thus an
instance of a VBSME accelerator scaled to 16-PPUs would
only require 31-bytes on each bus. This derives from the
fact that each additional PPU always shares 15-pixels in
common with its preceding PPU (Fig. 13).

Search-window buffer scaling
Due to the fact that the input bus-width requirements of
the VBSME accelerator vary when it scales, as discussed
previously, the search-window buffers must also be scaled

Fig. 11 PPU Black Box View, with 2 Input Buses [39]

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 14 of 23

Fig. 12 Logical to Physical Segregation of Memory Partitions A and B [39]

(synthesized) in varying patterns of data organization to
accommodate the scaling.
The VBSME accelerator processes a search window by

accessing its rows (top to bottom) one cycle at a time.
Accesses to the last 15 rows of the search window, coming
from Memory Partition B (Fig. 12), are always overlapped
with the 33 rows being accessed fromMemory Partition A
[34]. Thus 33 cycles are all that is required to finish a ver-
tical sweep of the search-window. However, not all of the
64 columns of the pixels within a 64×48 search-window
are read per each row access.
The number of columns (15 + n) that are read per

row depends on the number of PPUs that the accelera-
tor is scaled to. Once a vertical sweep of these columns
is performed, a horizontal shift to the right is performed
to start the next vertical sweep. The granularity of this
horizontal-shift to the right is exactly equal to the number
of PPUs being employed. Therefore, the number of verti-
cal sweeps that are required to sweep a search window of
width w, in a top-down left-to-right manner is given by
�(w − (15 + n))/n�.
Thus in our implementation, the VBSME accelerator

when scaled to 16-PPUs will require a total of 3 verti-
cal sweeps to process the search window (�(64 − (15 +
16))/16�). These 3 vertical sweeps of 33 cycles each, result
in a total of 99 cycles needed to completely process the

search window. As another example, if the VBSME accel-
erator is scaled down to use only a single PPU the number
of required vertical sweeps is 48 (�(64 − (15 + 1))/1�),
resulting in a total of 1584 cycles required to complete the
search.
Figures 14 and 15 represent the logical columns (Lx_A)

of the horizontal shifts that are required when the VBSME
accelerator is scaled to 16-PPUs and 8-PPUs respectively.
In both cases, the widths of each Lx_A partition is equal
to the number of PPUs being used. The number of vertical
sweeps, and thus the total processing time, is also labeled
in the figures for each case according to the previously
explained formula.
In order to support the access of these logical par-

titions, which are in turn based on the granularity
of the PPUs being scaled, different mappings of these
logical partitions into a varying number of physical
block-ram banks must be implemented. The number
of block-ram banks required for this logical to physi-
cal translation of search window data is determined by
�(15 + n)/n� [35].
The logical to physical implementation of search win-

dow buffering for the 16-PPUs and 8-PPUs cases of scal-
ing are represented in Figs. 16 and 17 respectively. As
shown in the figures, the required hardware includes both
block-rams and multiplexers to implement the required

Fig. 13 Input Bus Pixels Shared Amongst PPUs [35]

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 15 of 23

Fig. 14 Three Vertical Sweeps (99 cycles) for a 16-PPUs Case

data path flexibility during the various clock cycles of
search window processing. An important component
not depicted in the figures is the Control Logic Unit
(CLU). These CLUs are implemented as Finite State
Machines (FSMs) for each level of accelerator scaling, and
perform the duties of generating the appropriate block-
ram addresses and mux selection control signals.
A custom RTL implementation consisting of the above-

mentioned block-rams, muxes, and FSMs must exist
within the “Double Buffering of Search Windows” func-
tional block of Fig. 10, within each of the search windows
shown. This requires a significant amount of RTL devel-
opment and debugging that must be performed for each
level of VBSME accelerator scaling that is to be imple-
mented.
In the following section, an embedded soft-core

approach to memory organization that will obviate the
need to redesign these hardware components for each
level of scaling is presented.

Motion Estimation implemented with Software IO
interfaces
Before any video compression algorithm can be run it is, of
course, necessary for the raw video frames to be available
within DRAM. From the details of the previous section,
it is clear as to how the FPGA device itself within our
proposed embedded system can directly access raw video
data from a secondary storage device such as SATA SSDs.
Once video data is held within DRAM, the 256 MB or
more of DRAM capacity is enough to sustain the buffering
of frames in a manner that does not render the SATA-core
to DRAM bandwidth to be the bottleneck [35].
To support the VBSME algorithm introduced in

“External DRAM throughput requirements” section in

terms of physical design within the embedded system,
only two main parameters need to be resolved. The first
one being how many FSL channels need to be instanti-
ated per each level of accelerator scaling, and secondly
what the data-width of each channel needs to be. If this is
done correctly, the manner in which the memory subsys-
tem is implemented will be transparent to the accelerator
logic. Apart from answering these two parameter ques-
tions, the data pattern by which pixels should be loaded
into the FSL FIFOs is another important algorithmic
challenge.
The number of FSL channels to be instantiated can be

resolved via the following formula for VBSME scaling.
x = 2 × �(15 + n)/4�
Here x refers to the number of FSL channels that need

to be instantiated, and n refers to the number of PPUs
that are implemented according to the level of accelerator
scaling. 15 + n, are the number of pixels that need to be
forwarded to the accelerator unit respective of its n units
of scaling (“Search-window buffer scaling” section). Since
each pixel is 8-bits in representation, a single 32-bit FSL
channel can forward 4 pixels of information. The multiple
of 2 derives from the accelerator requirement of having
dual memory partitions (“VBSME accelerator operation”
section).
If the number of pixels required per clock cycle by

the accelerator (the numerator in the above equation) is
exactly divisible by 4, then each FSL channel will be set
to the maximum width of 4-bytes (32-bit words). How-
ever, if the quotient leaves a remainder when dividing by
four then a modulus function can be applied to deter-
mine the data width of the last FSL channel. Since the
FSL widths are configurable, this customization can be
achieved.

Fig. 15 Six Vertical Sweeps (198 cycles) for an 8-PPUs Case

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 16 of 23

Fig. 16 Logical to Physical Memory Mapping for 16-PPUs

In “Search-window buffer scaling” section block-rams
and muxes were introduced as the components that con-
stituted the underlying memory substructure. In this
section, we will detail the use of the built in FIFOs in
the FSL channels as a transparent substitute for the cus-
tom RTL-designed components. In a pure block-rams
based buffering system, memory addressing can be used
to repetitively access data. However, if the block-rams
are instantiated as FIFOs, once a specific memory-data
read occurs, it can not be accessed again without it being
re-pushed into the FIFO queue again. Thus, although a
memory interface based on FIFOs is simpler to integrate
and control, the continual loading of data into these FIFOs
will follow a more complex pattern. This is the trade-off
that is to be made, and this is also where we will leverage
the flexibility of soft-core based transfers from DRAM to
support the complex patterns of FIFO loading.
Once the number of FSL channels has been set accord-

ing to the previous formula, columns of pixel data from
the search window of interest must be initially trans-
ferred into these channels in a left to right manner. After
this initial filling of the FIFOs within the FSL channels,
the sweeps across the search window by the accelera-
tor (“Search-window buffer scaling” section) are accom-
plished by horizontal pixel-column shifts in the search

Fig. 17 Logical to Physical Memory Mapping for 8-PPUs

window that equate to the number of PPUs the accelerator
is scaled to. In Figs. 14 and 15, this shift-width can be logi-
cally viewed as the partition width (e.g. block L0_A, L1_A,
etc.). In the case of the accelerator scaled to 16 PPUs their
partition widths will be 16-pixels, in the case of 8 PPUs, it
will be 8-pixels and so forth.
When using the FSLs for pixel-column shifts, since their

channel width is set to the maximum of being 4-pixels
wide (to optimize data transfers), shifts that occur in
multiples of 4 can be handled by relatively straight for-
ward 32-bit memory word reads from DRAM. Such is
the case for the accelerator scaling levels of 16, 8, and
4 PPUS. However, as the accelerator scaling falls to 2-
PPUs or even a single PPU, the required FSL granularity of
shifting becomes 1/2 FSL width and 1/4 FSL width respec-
tively. Since the Microblaze ISA is byte addressable, word
accesses from DRAM can be packed/re-ordered such that
a finer granularity of shifting pixels is supported. At the
micro-architectural level, Microblaze may make use of
barrel shifting within its ALU to get the desired byte
from a 32-bit data bus read. Therefore the Microblaze

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 17 of 23

core was synthesized with its additional barrel-shift logic
parameter enabled.
Four-pixel (32-bit word) reads from memory for a 2-

PPUs accelerator are realigned before being pushed into
the FSL channel FIFOs at various time steps, such that
they hold the appropriately shifted pixel columns within
them (Fig. 18).
For simplicity’s sake Fig. 18 above shows only the logical

to physical mapping of pixel-rows 1 to 33 in a SearchWin-
dow (i.e. Physical Memory partition A in Figs. 14 and 16),
the reader is urged to keep in mind that another separate
set of 5 FSL channels are implemented for the pixel-rows
34 to 48 of partition B. In Fig. 18, a single time step refers
to 33 cycles being completed, or in other words one ver-
tical sweep (Search-window buffer scaling section) of the
Search Window being completed.

Experimental results
Before we present the experimental results of the mea-
sured bandwidths in our soft-core controlled system, we
would like to address why experiments are necessary in
the first place. One could argue that analytical analy-
sis alone could suffice to determine the feasibility of our
system, since the bandwidths and operational frequen-
cies of our embedded system components are already
published within their respective technical data sheets.
This is true in that such an analysis would result in an
upper theoretical bound on what level of system per-
formance is possible. However, this estimate is likely
to be overly optimistic and may downplay the realis-
tic result of accelerator throughput degradation in actual
implementation.

Fig. 18 Logical pixel columnsmapped to 5 Physical FSL Channel FIFOs

Many of the embedded system components have
non-deterministic latencies and throughput. These com-
ponents included the MPMC (Multi-Port Memory Con-
troller), the PLB and XCL buses to the MPMC, and even
the Microblaze processor itself given the varying loads
on the buses that it interacts with. All of these factors
combine to make the throughput of an embedded system
based data transfer mechanism highly variable in nature.
This is even more pronounced when the accelerators that
draw data from this system belong to varying application
domains.
The Virtex 5 device used in the synthesis results for the

VBSME accelerator is the XC5VLX330. This chip con-
tains 51 840 Virtex 5 slices (each slice has four 6-input
LUTS and FFs). Table 2 above presents the area and per-
formance results of the VBSME accelerator when paired
with custom RTL implementations of a memory substruc-
ture for each level of scaling; Table 3 then compares the
area and performance of the accelerator paired with our
soft-processor based system of memory data delivery.
Similar results for the DIALIGN DNA Alignment accel-

erator were previously listed in Table 1 (the table is repro-
duced below as Table 4 for reader convenience). Unlike the
VBSME application, DIALIGN did not suffer any perfor-
mance degradation in the adoption of a HW/SWMicroB-
laze interface, and thus performance metrics are not listed
in the table for comparison. The DIALIGN accelerator
was implemented on the 5vlx110tff1136-1 Virtex 5 device,
on the XUP 5 development board [19]. As seen in the
table, moving to the easier development flow of a HW/SW
solution does come at the cost of roughly a 20% increase
resource utilization. This device is a relatively smaller chip
with 17 280 Virtex 5 slices.
Total development hours for the embedded-system

based design of data movement for both of these appli-
cation accelerators was measured in weeks, and less than
a month at a maximum including debug time. In com-
parison, custom RTL based interface design and mem-
ory management for these accelerators was closer to 6
months exclusive of debugging hours. Furthermore, the
RTL designs cannot easily be reused when an IO con-
troller update is required.
For the embedded-system the development time is

quantifiable under two different steps. The first step,
which is the actual configuration of the embedded system
can take up to a week or two to design and test, to ensure
that the FSLs are connected to the accelerator correctly.
The 2nd step is the writing of the embedded software
itself, to transfer data from the SSD to the accelerator. This
resulted in roughly only 500 to 1000 lines of code, between
the two applications, with the debug hours being greater
than the code writing hours.
In contrast, the previous work on custom RTL inter-

faces [35] consisted of five different Verilog modules for

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 18 of 23

Table 2 VBSME accelerator area and performance results with a custom RTL-designed memory subsystem

of PPUs

Areaa Performance

LUTs DFFs
Target resolution

Freq
fps

#(K) % #(K) % (MHz)

1 8.71 4.20 3.42 1.65 640×480 (VGA) 200.6 28

2 18.5 8.92 5.49 2.65 800×608 (SVGA) 199.0 34

4 37.8 18.2 9.64 4.65 1024×768 (XVGA) 198.3 42

8 76.4 36.8 18.0 8.68 1920×1088 (HD Video) 198.3 31

16 154 74.3 34.6 16.7 1920×1088 (HD Video) 198.3 62

aXilinx’s Virtex 5 devices use 4 DFFs & 4 6-input LUTs per Slice

each level of memory subsystem scaling. Then, five other
top-level Verilog modules were also required to accom-
plish the correct wiring of the scalable accelerator to the
chosen memory subsystem module. Each of the Verilog
memory subsystem modules contained sub-components
previously described such as block rams, muxes, and
the most time consuming of all—an FSM based sub-
component acting as the CLU. On average there were
close to 600 lines of RTL across the five Verilog memory
subsystem files.
For the DIALIGN accelerator use case example, the

hardware interface to the SATA controller consisted of
eight Verilogmodules, each consisting of roughly 500 lines
of RTL code. Since these lines of RTL code interact with
a physical external device, often simulation alone is not
enough to diagnose bugs during the debug process. Thus
internal logic analyzers were required to pinpoint issues at
run time. This level of hardware debugging requiresmulti-
ple iterations to complete and suffers from high synthesis
and place and route times between iterations. Visibility
into simultaneous variables (i.e. registers) is also limited
and confined to within usually 1024 clock-cycle sample
windows at a time. Thus the verification process quickly
becomes on the order of months before the system is
functional as intended.
In contrast, the MicroBlaze HW/SW partitioned inter-

face solutions can be implemented and verified within
less than a month, inclusive of debugging hours, since

debugging the interfaces in software does not require the
FPGA device to be synthesized nor placed and routed
for each debug iteration. It is also highly flexible towards
future IO controller updates, while also retaining back-
wards compatibility in software. Above all of these factors
that favour an embedded system approach—when cus-
tom RTL designed access to bare metal IO controllers in
IaaS environments is not permitted at all, an embedded
solution may be the only viable option to provide end
customers with a flexible method to manage to their IO
data.
The Microblaze processor chosen for the experiments

was implemented using the minimum-area tool setting
in XPS (Xilinx Platform Studio) and was clocked at 125
MHz. It also included barrel-shift logic as the only addi-
tional hardware component to its ALU. The VBSME
accelerator using its stand-alone custom RTL memory
substructure could be clocked at least at 198.3 MHz at
16-PPUs scaling, and at a maximum frequency of 200.6
MHz at the single PPU level of scaling. The required
bandwidth to support its native operating frequency is far
above what the FSL channels are capable of supporting
(up to 500 MB/s). Thus the accelerator was underclocked
down to 100 MHz, to run slower than the Microblaze
and thus allowing for the Microblaze processor to keep
up with data delivery demands. This results in a roughly
50% frame rate drop in performance across all the levels
of scaling.

Table 3 VBSME accelerator area and performance results with MicroBlaze (125 MHz) based data delivery

of PPUs

Area∗ Performance

LUTs DFFs
LUTs % Increase DFFs % Increase Freq (MHz) fps

#(K) % #(K) %

1 22.7 10.9 6.70 9.11 6.70 7.46 100 15

2 32.5 15.7 6.78 10.1 6.78 7.45 100 16

4 51.8 25.0 6.80 12.1 6.80 7.45 100 20

8 90.4 43.6 6.80 16.1 6.80 7.42 100 15

16 168 81.0 6.70 24.2 6.70 7.50 100 30

*Xilinx’s Virtex 5 devices use 4 DFFs & 4 6-input LUTs per Slice

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 19 of 23

Table 4 DIALIGN alignment accelerator with custom HW interfaces vs. HW/SW IO interfaces

Areaa

LUTs DFFs LUTs % Increase DFFs % Increase Accelerator frequency (MHz) MicroBlaze frequency (MHz)

#(K) % #(K) %

HW interface 51.0 73.8 36.9 53.4 67.7 N/A

HW/SW interface with
Microblaze

64.5 93.3 52.0 75.2 19.5 21.8 67.7 125

aXilinx’s Virtex 5 devices use 4 DFFs & 4 6-input LUTs per Slice

Discussion
For the VBSME accelerator system, its custom memory
substructure was never the bottleneck of the system. The
IO channel that its memory substructure relied on was
DDR2 or greater device memory, which always supplied a
surplus of memory bandwidth than what was required by
the accelerator [35]. Thus, in this case, transitioning to a
Microblaze soft-core data delivery method hurt its system
performance by 50% or more (i.e. the Microblaze based
FSL channels became a new IO bottleneck).
Despite the less than acceptable frame rates (< 26 fps)

of Table 3 across all but one level of resolution scaling,
an important piece of insight is still gained from the data
within Tables 2 and 3 when analyzed together. In Table 2,
the RTL designed interface, at the highest 1920×1088 HD
target resolution, scaling to 16-PPUs results in a frame
rate of 62 fps. The 62 fps rate, for most video applica-
tions, is beyond what is necessary (263̃0 fps). However,
the same level of scaling, using a software IO interface
in Table 3 still produces a useable frame rate of 30 fps.
What this reveals is an important tradeoff—dialing up the
computational performance of the accelerator can indeed
compensate for limited IO throughput, and compensate
well enough to achieve acceptable system performance.
At first, this revelation seems fairly counter-intuitive.

One would expect that as the computational power of an
accelerator is scaled up, this would then cause existing IO
bottlenecks to be exacerbated further, resulting in unac-
ceptable system performance. However, what we see in
the frame rates of Table 3 is the opposite. As the acceler-
ator performance is scaled higher from a single PPU up
to 16 PPUs the frame rates increase correspondingly as
well (except in the 8-PPUs row, which is an outlier in both
Tables 2 and 3 that will be explained shortly). The reason
for this lies in the architecture of the VBSME accelerator,
and how it correlates a doubling in computational per-
formance with only a single byte increase in the required
input bandwidth. Based on this, one could reason that at
some unknown level of accelerator scaling even a mod-
est amount of IO throughput, such as that offered via a
MicroBlaze solution, will produce the required frame rate
for the system.

The 8-PPUs row is an outlier with respect to correlat-
ing increases in frame rates as the number of PPUs is
increased. This is due to the fact that we are not mea-
suring frame rate performance while holding the frame
resolution as a constant. In other words the frame rate that
we measure is against a targeted resolution per number
of PPUs used. When video industry standards moved to
1080HD video from previous VGA resolutions, the screen
aspect ratio was widened. This widening of the frame
means there are manymore columns of macro-blocks that
must be processed during VBSME. Thus the number of
computations is significantly higher for HD video. As a
result, even though we increase the number of PPUs to
8, the increase in HD resolution workload outweighs the
extra PPUs and thus we do not see an increase in frame
rate relative to the preceding row. However, when the HD
resolution is held constant and the number of PPUs is fur-
ther increased to 16, we see a significant doubling of the
frame rate as expected.
For the DIALIGN DNA alignment accelerator, even

with a custom memory/data delivery system, the slow
SSD write rates of 66 MB/s were the IO bottleneck. In
this case, transitioning to a Microblaze software con-
trolled data infrastructure offered significant advantages
in design time, testing, and future flexibility with no per-
formance loss at all. However, the area overhead costs to
include the Ethernet and SATA controllers as software
driven microprocessor peripherals (versus custom FSM
based controller logic) was just under 20% (for the LUTs
used).
It should also be noted that the particular Virtex 5 device

used did not contain a hardcore processor or memory
controller, thus the MicroBlaze softcore and its required
IP peripherals needed to consume programmable fab-
ric resources in order to be implemented. This, how-
ever, is not the case with all of the modern FPGA
devices on the market today. FPGA vendors have adopted
the System-on-Chip model, where a hardened proces-
sor and memory-controller are well integrated with the
programmable logic by default. Furthermore, volume of
sales does not necessarily place such devices at higher
price points either. In the case of such devices, the

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 20 of 23

programmable logic overhead cost of 20% reported here
would not exist, and the reduction in development time
and effort could be gained without incurring the increased
logic area penalty.

Present advances and shortcomings to hardware
IO interfaces
On the path of making FPGA design more amenable to
software developers, FPGA vendors have adopted soft-
ware frameworks such as OpenCL [11, 36] for accelerator
development. These frameworks, as a side effect of hav-
ing raised the abstraction level in the hardware design
process, have also made it easier to integrate certain IO
devices.
As an example, the Ethernet channel that was used in

this article’s DIALIGN application was integrated using
third party open-source SIRC cores that made the con-
troller and a suitable interface for Ethernet access avail-
able. Today, FPGA vendors, such as Xilinx, have made
Ethernet controllers directly available via their OpenCL
development platforms (Fig. 19).
This step certainly solves the first problem of having at

least a controller readily available to access the IO chan-
nel. However, the application requirements of how the IO
data should be organized and buffered, or when back pres-
sure should be asserted and released still falls into the
user design space. These design choices falling into the
user design space in itself is not a shortcoming. From an
architectural point of view, requirements that will vary
per application, should of course fall into that applica-
tion user’s design space. But the fact that no abstractions
in software are available to manage the IO data stream
within the application accelerator’s design space is the real
limitation.
The present means to emulate the same level of con-

trol that an embedded soft-core or hardened processor

Fig. 19 FPGA vendor supplied Ethernet infrastructure

would have over the data within the OpenCL environ-
ment is as follows. The user must first create custom
data structures such as arrays to contain the incoming IO
data. For DIALIGN the query-sequence and reference-
sequence Ethernet data would be segregated, for example,
into two separate arrays. Then the control sequences by
which the data stream is fed to these two arrays would also
be written. Since all of this is still performed in software
there is no drawback between our proposed solution and
this framework as of yet.
After all of the data organization and control has been

programmed according to the available OpenCL APIs, the
burden will completely fall on the High Level Synthesis
(HLS) tool to implement the fine-grained data move-
ment that is desired. And as discussed previously, having
HLS efficiently manage data across varying clock-domains
and interfaces is still an open-ended problem [7]. Due
to this limitation, the fine-grained data pattern that was
intended by the accelerator developermay notmatch what
is actually implemented, thereby making throughput and
latency worse off compared to manual implementation.
This degradation, as shown in this article, may not affect
the overall application performance. However, in scenar-
ios where it does, an embedded core solution will offer
better IO performance relative to HLS.
Using an embedded IO solution also offers other sig-

nificant benefits to the FPGA vendor or the data centre
that is offering FPGA nodes as Infrastructure as a Service
(IaaS). The integration of future IO controllers yet to be
released (such as SATA controllers), will not require their
own individual FIFO and Bridge IP logic for integration
to the accelerator design. Furthermore, these IO resources
can be virtualized over multiple users’ accelerators with-
out comprising on security by allowing each user to access
the IO controller directly.
The same arguments that we have made so far towards

IO controllers also applies to the device DRAM mem-
ory controller as well. And in the context of device
DRAM being shared by multiple accelerator users, the
case for security over the bare metal controller is even
stronger.
One of the more recent interfaces to FPGA vendor pro-

vided memory controllers is the AXI Stream interface
[25]. This type of interface, allows custom accelerators and
OpenCL based accelerators alike access to DRAM mem-
ory via accompanying AXI interconnect infrastructure
(Fig. 20).
However, as can be seen in the architecture of

Fig. 20, there is no inherent support for memory data
buffering organization beyond relying on HLS or cus-
tom RTL development. As this article has shown, this
organization and control of DRAM data onto on-chip
buffers can significantly affect the application level
performance.

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 21 of 23

Fig. 20 FPGA vendor (Xilinx) supplied Memory-Controller infrastructure

Conclusion
This article has highlighted the need for standardized
mechanisms to handle IO and data transfers to FPGA
accelerators within data centers that offer their Infras-
tructure as a Service. This need arises from the fact that
the end-user of such environments will never have full
access to the underlying FPGA hardware. Thus data trans-
fer methods that can be controlled in software while still
offering performance levels equal to that of custom RTL
interfaces are necessary.
To this end corporations such as Amazon (F1 Instances

[37]) and Microsoft (Azure [38]) at present, for no extra
cost, already offer FPGA “shells” as wrappers that devel-
opers can call to gain IO functionality on their cloud
based FPGA instances. This shell is similar in concept to
the static-region “template” described within this work.
It is similar in that it too eases the pain of handling
IO on FPGAs to the end-customer by providing pre-
implemented IO controllers to standard interfaces such
as PCIe, DDR memory, or even Ethernet in the case of
Microsoft’s Azure. However, this is where the similarity
ends. What is proposed in this article goes another step
beyond the abstraction of providing the IO controllers, we
have presented amethod bywhich the incoming data from
the IO controllers can be effectively tailored to the perfor-
mance needs of a particular accelerated algorithm. In con-
trast, Amazon and Microsoft defer the end-customer to
the use of the FPGA vendor’s HLS tool to handle the data
after it crosses the IO controller boundary. And if HLS
fails to provide optimal data partitioning andmanagement
of IO at the on-die buffering level for a unique applica-
tion’s data path, then the end-user is left to implement

their own custom solution in RTL; if they have the skills
and development time to do so.
We on the other hand have demonstrated an embed-

ded system solution for data transfer, and more impor-
tantly, have shown that for a class of applications that
have physical IO devices as their system level bottle-
neck, the system level performance is not degraded. For
other classes of applications that have no such IO bottle-
necks to begin with, our embedded solution does degrade
system performance, however, we have also shown that
in such cases scaling the acceleration is enough to
counterbalance the IO performance loss caused by our
solution.
Within this work, we have also compared the devel-

opment time effort, performance, and area tradeoffs
between the custom RTL design methodology used when
end-users have full access to their FPGAs, and our embed-
ded solution to be offered by data centres when such
levels of access can not be granted to the end-users.
Through our comparisons of experimental results, we
make an argument in favour of the embedded-system
approach. That conclusion was derived based not only
on the ease of automation available within the current
embedded-system EDA space of FPGA vendors but by the
experimentally verified validity in aggregate performance
and throughput of the accelerators not being compro-
mised. The total effect on power consumption through
the use of our embedded system approach to data trans-
fers is predicted to be higher; however, it was beyond the
scope of this paper to perform any detailed power analysis,
and that remains to be completed as a future work in
progress.

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 22 of 23

Authors’ contributions
TM performed all of the RTL and embedded systems design that were
necessary to conduct the experiments discussed in this article. SG conceived
of the study to contrast embedded systems based IO control with purely RTL
based approaches. Both authors participated in the selection and framing of
the applications chosen for this study. Both authors read and approved the
final manuscript.

About the Authors
Theepan Moorthy (S’04) received the B.A.Sc. in Computer Engineering from
Queen’s University in Kingston, ON, Canada in 2004. After spending two years
in industry working on wireless chipset designs he returned to academia to
pursue graduate degrees, and earned the M.A.Sc. degree from Ryerson
University, Toronto, ON, Canada in 2008.
He later started his doctoral program at the University of British Columbia,
Vancouver, Canada and transitioned from previously having worked on FPGA
acceleration for video encoding to acceleration of bio-informatics algorithms.
During his PhD he has held various internships at PMC-Sierra and Xilinx
Research Labs.
Sathish Gopalakrishnan is an Associate Professor of Electrical & Computer
Engineering at the University of British Columbia. His research interests center
around resource allocation problems in several contexts including real-time,
embedded systems and wireless networks. Prior to joining UBC in 2007, he
obtained a PhD in Computer Science and an MS in Applied Mathematics from
the University of Illinois at Urbana-Champaign. He has received awards for his
work from the IEEE Industrial Electronics Society (Best Paper in the IEEE
Transactions on Industrial Informatics in 2008) and at the IEEE Real-Time
Systems Symposium (in 2004).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 2 April 2017 Accepted: 8 August 2017

References
1. Haidar A, Cao C, Yarkhan A, Luszczek P, Tomov S, Kabir K, Dongarra J

(2014) Unified development for mixed multi-gpu and multi-coprocessor
environments using a lightweight runtime environment. In: Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International.
pp 491–500

2. Liu C, Ng HC, So HKH (2015) Quickdough: A rapid fpga loop accelerator
design framework using soft cgra overlay. In: Field Programmable
Technology (FPT), 2015 International Conference on. pp 56–63

3. Byma S, Steffan JG, Bannazadeh H, Garcia AL, Chow P (2014) Fpgas in the
cloud: Booting virtualized hardware accelerators with openstack. In:
Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE
22nd Annual International Symposium on. pp 109–116

4. Putnam A, Caulfield AM, Chung ES, Chiou D, Constantinides K, Demme J,
Esmaeilzadeh H, Fowers J, Gopal GP, Gray J, Haselman M, Hauck S, Heil S,
Hormati A, Kim JY, Lanka S, Larus J, Peterson E, Pope S, Smith A, Thong J,
Xiao PY, Burger D (2014) A reconfigurable fabric for accelerating
large-scale datacenter services. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA). pp 13–24

5. Lin Z, Chow P (2013) Zcluster: A zynq-based hadoop cluster. In:
Field-Programmable Technology (FPT), 2013 International Conference on.
pp 450–453

6. Norm Jouppi, Distinguished Hardware Engineer, Google, Google
supercharges machine learning tasks with TPU Custom Chip. [Online].
Available: https://cloudplatform.googleblog.com/2016/05/Google-
supercharges-machine-learning-tasks-with-custom-chip.html Jouppi,
Distinguished Hardware Engineer, Google, Google supercharges
machine learning tasks with TPU Custom Chip. [Online]. Available:
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.html

7. Cong J, Liu B, Neuendorffer S, Noguera J, Vissers K, Zhang Z (2011)
High-level synthesis for fpgas: From prototyping to deployment. IEEE
Trans Comput. Aided Des Integr Circ Syst 30(4):473–491

8. Ma S, Andrews D, Gao S, Cummins J (2016) Breeze computing: A just in
time (jit) approach for virtualizing fpgas in the cloud. In: 2016
International Conference on, ReConFigurable Computing and FPGAs
(ReConFig). pp 1–6

9. Chen F, Lin Y (2015) FPGA accelerator virtualization in OpenPOWER cloud.
In: OpenPower Summit

10. Milford M, Mcallister J (2016) Constructive synthesis of memory-intensive
accelerators for fpga from nested loop kernels. IEEE Trans Signal Process
99:4152–4165

11. Munshi A (2009) The OpenCL Specification. Khronos OpenCL Working
Group

12. Altera ALTERA SDK FOR OPENCL. [Online]. Available: https://www.altera.
com/products/design-software/embedded-software-developers/
opencl/overview.html

13. Morris GW, Thomas DB, Luk W (2009) Fpga accelerated low-latency
market data feed processing. In: 2009 17th IEEE Symposium on, High
Performance Interconnects. pp 83–89

14. Chrysos G, Sotiriades E, Rousopoulos C, Pramataris K, Papaefstathiou I,
Dollas A, Papadopoulos A, Kirmitzoglou I, Promponas VJ, Theocharides T,
Petihakis G, Lagnel J (2014) Reconfiguring the bioinformatics
computational spectrum: Challenges and opportunities of fpga-based
bioinformatics acceleration platforms. IEEE Design Test 31(1):62–73

15. Lockwood JW, Monga M (2015) Implementing ultra low latency data
center services with programmable logic. In: 2015 IEEE 23rd Annual,
Symposium on High-Performance Interconnects. pp 68–77

16. Erdmann C, Lowney D, Lynam A, Keady A, McGrath J, Cullen E,
Breathnach D, Keane D, Lynch P, Torre MDL, Torre RDL, Lim P, Collins A,
Farley B, Madden L (2014) 6.3 a heterogeneous 3d-ic consisting of two
28nm fpga die and 32 reconfigurable high-performance data converters.
In: 2014 IEEE International Solid-State, Circuits Conference Digest of
Technical Papers (ISSCC). pp 120–121

17. Morgenstern B, Frech K, Dress A, Werner T (1998) DIALIGN: Finding Local Si
milarities by Multiple Sequence Alignment. Bioinformatics 14(3):290–294

18. Boukerche A, Correa Jan M, Cristina A, de Melo MA, Ricardo Jacobi P
(2010) A Hardware Accelerator for the Fast Retrieval of DIALIGN Bilogical
Sequence Alignments in Linear Space. IEEE Trans Comput 59(6):808–821

19. Xilinx Xilinx University Program XUPV5-LX110T Development System.
[Online]. Available: http://www.xilinx.com/univ/xupv5-lx110t.htm

20. Moorthy T, Gopalakrishnan S (2014) Gigabyte-scale alignment
acceleration of biological sequences via ethernet streaming.
In: Field-Programmable Technology (FPT), 2014 International Conference
on. pp 227–230

21. Woods L, Eguro K (2012) Groundhog - A Serial ATA Host Bus Adapter
(HBA) for FPGAs. IEEE 20th Int. Symp Field-Programmable Cust. Comput.
Mach:220–223

22. Xilinx MicroBlaze Soft-Processor IP Protocol Specification. [Online].
Available: http://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/mb_ref_guide.pdf

23. Eguro K (2010) SIRC: An Extensible Reconfigurable Computing
Communication API. 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines:135–138

24. Mendon AA, Huang B, Sass R (2012) A high performance, open source
SATA2 core. Field Programmable Logic Appl. (FPL), 2012 22nd Int. Conf.
421–428

25. ARM AMBA AXI Protocol Specification. [Online]. Available:
http://www.arm.com/products/system-ip/amba-specifications.php

26. Xilinx Fast Simplex Link IP Protocol Specification. [Online]. Available:
http://www.xilinx.com/products/intellectual-property/fsl.html

27. Multi-Port Memory Controller IP Protocol Specification. [Online]. Available:
http://www.xilinx.com/products/intellectual-property/mpmc.html

28. Processor Local Bus IP Protocol Specification. [Online]. Available:
http://www.xilinx.com/products/intellectual-property/plb_v46.html

29. Summers J, Brecht T, Eager D, Gutarin A (2016) Characterizing the
workload of a netflix streaming video server. In: 2016 IEEE International
Symposium on, Workload Characterization (IISWC). pp 1–12

30. Delimitrou C, Kozyrakis C (2013) The netflix challenge: Datacenter edition.
IEEE Comput. Archit. Letters 12(1):29–32

31. Aaron A, Li Z, Manohara M, Lin JY, Wu ECH, Kuo CCJ (2015) Challenges in
cloud based ingest and encoding for high quality streaming media.
In: Image Processing (ICIP) 2015 IEEE International Conference on.
pp 1732–1736

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://www.altera.com/products/design-software/embedded-software-deve lopers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-deve lopers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-deve lopers/opencl/overview.html
http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.xilinx.com/products/intellectual-property/fsl.html
http://www.xilinx.com/products/intellectual-property/mpmc.html
http://www.xilinx.com/products/intellectual-property/plb_v46.html

Moorthy and Gopalakrishnan Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:20 Page 23 of 23

32. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the
h.264/avc video coding standard. IEEE Trans. Circ. Syst. Video Technol
13(7):560–576

33. ITU Telecom. Standardization Sector of ITU., Advanced video coding for
generic audiovisual services. ITU-T Recommendation H.264, May 2003

34. Liu Z, Huang Y, Song Y, Goto S, Ikenaga T (2007) Hardware-Efficient
Propagate Partial SAD Architecture for Variable Block Size Motion
Estimation in H.264/AVC. Proc 17th Great Lakes Symp. VLSI. 160–163

35. Moorthy T, Ye A (2008) A Scalable Computing and Memory Architecture
for Variable Block Size Motion Estimation on Field-Programmable Gate
Arrays. Proc. 2008 IEEE conf. Field Programmable Logic Appl:83–88

36. Stone JE, Gohara D, Shi G (2010) OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Comput. Sci. Eng
12(3):66–73

37. Amazon Amazon EC2 F1 Instances. [Online]. Available: https://aws.
amazon.com/ec2/instance-types/f1/

38. Microsoft Microsoft Azure. [Online]. Available: https://azure.microsoft.
com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-
based-configurable-cloud/

39. Moorthy T (2008) Scalable FPGA Hardware Acceleration for H.264 Motion
Estimation. Ryerson University, Theses and Dissertations

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based-configurable-cloud/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based-configurable-cloud/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based-configurable-cloud/

	Abstract
	Keywords

	Introduction
	FPGAs as managed hardware in IaaS data centres
	Bioinformatics application study
	Application characteristics
	The DIALIGN algorithm
	DIALIGN implemented with fully RTL based IO interfaces
	Intermediate data storage support between partitions

	DIALIGN implemented with software IO interfaces
	HW/SW partitioned architecture
	Soft-processor data management
	Resource utilization across interface solutions

	Video application study
	Motion estimation implemented with fully RTL based IO interfaces
	External DRAM throughput requirements
	VBSME accelerator operation
	Search-window buffer scaling

	Motion Estimation implemented with Software IO interfaces

	Experimental results
	Discussion
	Present advances and shortcomings to hardware IO interfaces
	Conclusion
	Authors' contributions
	About the Authors
	Competing interests
	Publisher's Note
	References

