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Abstract

A central topic in the logic of science concerns the proper semantic analysis of the-
oretical sentences, that is sentences containing theoretical terms. In this paper, we
present a novel choice-semantical account of theoretical truth based on the epsilon-
term definition of theoretical terms. Specifically, we develop two ways of specifying
the truth conditions of theoretical statements in a choice functional semantics, each
giving rise to a corresponding logic of such statements. In order to investigate the
inferential strength of these logical systems, we provide a translation of each truth
definition into a modal definition of theoretical truth. Based on this, we show that
the stronger notion of choice-semantical truth captures more adequately our informal
semantic understanding of scientific statements.

1 Introduction

A central topic in the logic of science concerns the proper semantic analysis of theoret-
ical terms and theoretical sentences. How, if at all, do theoretical terms refer to their
objects? In what ways do the theoretical postulates of a theory contribute to the spec-
ification of the meaning of these terms? Finally, how should we evaluate semantically
scientific statements that contain theoretical terms? Carnap and Ramsey were the first to
address these question using formal tools, thus providing the foundation for virtually all
subsequent research on the semantics of theoretical terms (cf. [22], [32], [27], [16], [31],
etc.).

Let us explain the challenges of a semantic analysis of theoretical terms with a simple
example, taken from collision mechanics. Suppose we have two spherical objects s1 and
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s2. s2 is at rest at time t, whereas s1 moves toward s2 with a certain velocity v1. Then, s1

collides with s2 to the effect that s1 is at rest at time t′ (t′ > t), whereas s2 moves with the
velocity v′2 = v1 at t′. In other words, the first spherical objects transfers its momentum
to the second by an elastic collision. As is well known, this experiment lets us infer that
the two objects must have the same mass.

How can we draw the distinction between theoretical and observational concepts in this
experiment? Arguably, the concept of mass is theoretical because we understand this
concept in terms of scientific theories, such as collision mechanics and classical mechan-
ics. The metrical concepts of space, time and velocity may be argued to be theoretical
as well because our understanding of these concepts depends on certain measurement
theories. However, we can take these concepts as (relatively) observational in the con-
text of classical and collision mechanics because classical and collision mechanics are not
needed to understand space, time, and velocity in non-relativistic physics.

The challenge arising here is to devise a semantics that explains how classical and colli-
sion mechanics shape the meaning of the concept of mass. Ideally, this semantics should
specify rules for the assignment of truth-values to statements about the mass of the two
objects in our experiment. What may be described as standard semantics fails to ac-
count for the genuine semantic properties of theoretical terms. For when using a logical
language L for the representation of statements about some domain, it is standard to
assume a complete and direct extensional interpretation of the descriptive vocabulary of
L. Such an interpretation fails to display the semantic dependency of theoretical terms
on a scientific theory.

Logical accounts of theoretical terms have in common that the scientific theory in ques-
tion somehow constrains the interpretation of these terms. This constraint leaves some
degree of indeterminacy as it does not result in a unique interpretation of theoretical
terms. In our simple collision experiment, the interpretation of theoretical terms is con-
strained by the laws of elastic collisions, i.e. conservation of momentum as well as con-
servation of energy. Given the values of the velocities of the objects, before and after the
collision, these two conservation laws are verified by a range of interpretations of the
concept of mass. Hence, we have an indeterminacy of interpretation of the concept of
mass. Yet, we want to say that certain statements about the mass of the two bodies are
true, while others are false. By conservation of momentum, we know that m1 = m2 must
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come out true, whereas m1 < m2 should come out false; m1 and m2 designate the mass
of the two objects, respectively.

The question thus arises how the truth-values of the statements about the mass of the
two objects are determined by a range of interpretations. This is the key question to be
addressed in what follows. We shall explain in detail how a scientific theory determines
a range of interpretations of the theoretical terms and how these interpretations, in turn,
determine the semantic values of theoretical statements.

2 Two logical accounts of theoretical terms

In Carnap’s logic of science we can recognize two logical accounts of theoretical terms.
One centers around the notion of an indirect and partial interpretation of theoretical
terms ([6, 7, 8]). Roughly, this account states that the interpretation of the theoretical
terminology of a scientific theory is not specified directly through metatheoretic defini-
tions but indirectly through the postulates of the theory.1 The second account originates
from the Ramsey sentence and makes use of Hilbert’s epsilon operator, thereby aiming
at an explicit definition of theoretical terms ([9, 29]).2 Whereas the former account is
couched in semantic terms, the latter is purely syntactic. Neither approach, however,
gives us an explication of theoretical truth, i.e. a fully-fledged semantics of theoretical
statements.

The present paper has two principal objectives. The first one is to provide an explicit
model-theoretic analysis of the epsilon account of theoretical terms based on a choice-
functional semantics for the epsilon operator ([21, 4, 24]). In particular, we shall develop
two different choice-semantical approaches to the semantics of theoretical statements,
each giving rise to a corresponding logic of such statements. The second objective of the
paper is to investigate the inferential strength of the two logics underlying the different
choice-semantical approaches to theoretical truth. This will be done by relating them to
recent work on the model-theoretic explication of Carnap’s indirect interpretation view of

1See [3] for a survey of different model-theoretic explications of this view in the modern literature.
2Compare [30] for a systematic study of the epsilon reconstruction of theories and its compatibility with

scientific structuralism.
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theoretical terms.3 More precisely, we shall exploit the modal reconstruction of theoreti-
cal truth by Andreas [2]. According to this account, a scientific sentence (containing both
observational and theoretical terms) is theoretically true if and only if it is true in all ad-
missible extensions of its intended observational model, that is, in all model extensions
that interpret the theoretical terms in accordance with the theory’s axioms. This modal
explication turns out to be equivalent with the particular choice-semantical explication
of theoretical truth to be developed here.4

Moreover, the equivalence between the modal explication of the indirect interpretation
view of theoretical terms and the choice functional account of the epsilon reconstruction
of theoretical knowledge also shows that the two accounts are conceptually similar in
several respects. In particular, the meaning of theoretical terms is specified contextually,
i.e. relative to a given theoretical context in both approaches. Moreover, both accounts
make precise in different ways a central intuition driving systematic work on theoretical
terms since Carnap, viz., that the determination of such terms by a scientific theory
remains incomplete (see [2, 30]).

The paper will be organized as follows: Section 3 briefly outlines the epsilon-term recon-
struction of scientific theories as well as the epsilon logic and choice semantics underly-
ing it. Based on this, we present two possible model-theoretic explications of theoretical
truth in line with Carnap’s general approach. Section 4 will then turn to a closer com-
parison between these choice-semantical explications and the above mentioned modal
account of theoretical truth. By means of this comparison, we shall investigate the infer-
ential strength of the two choice-semantical explications of theoretical truth in Section 5.
Finally, Section 7 will give a summary of our findings.

3 Choice semantics and theoretical truth

In this section, we develop a choice-semantical account of theoretical truth based on
Carnap’s epsilon-term definition of theoretical terms [9, 29]. According to the syntactic
(or received) view of theories, a scientific theory T can be expressed in a higher-order

3Compare [16] for a detailed discussion of this account of theoretical terms and its historical development
in Carnap’s work.

4The modal explication is inspired by supervaluation logic, as readers will easily recognize in Section 4.

4



language L(Vo, Vt) that contains a set of observational terms Vo and a set of theoretical
terms Vt. To keep the discussion simple, we will assume that the descriptive vocabulary
consists only of unary predicates and relational symbols. A complex sentence TC of
this language is usually said to express the conjunction of the axioms of T (see, e.g.,
[2, 20]).

Carnap’s logical reconstruction of theories is based on two steps.5 The first one is the
elimination of the theoretical terms in L(Vo, Vt) by the ramsification of a theory. As is
well know, the Ramsey sentence of a given T is constructed by substituting its theoretical
terms by existentially quantified variables of the proper logical category:

∃X1 . . . ∃Xn TC(X1, . . . , Xn, O1, . . . Om)

The Ramsey sentence—henceforth abbreviated by RS(T)—is expressed in the “observa-
tional” sublanguage L(Vo) of the theoretical language L(Vo, Vt). Roughly speaking, it
says that there exist theoretical relations in the universe of the language that have the
features which the theory attributes to them.

Carnap’s second step consists in the subsequent reintroduction of the theoretical vo-
cabulary through an explicit definition in language L(Vo) supplemented by a logical
ε-operator. The ε-operator was originally introduced in Hilbert’s proof-theoretic work
in the 1920s.6 It functions syntactically as a term-forming operator: if A(x) is a formula
with x occurring as free first-order variable in it, then εx A(x) is a term where all occur-
rences of x are bound. This term picks out an arbitrary object from the extension of A
in case this extension is non-empty. Applied to formulas with free higher-order vari-
ables, the epsilon operator functions in a similar way. In the present context, we restrict
our attention to predicate variables (of finite arities): let A(X) be a formula with one
free n-ary predicate variable X occurring in it. The expression εX A(X) then presents a
higher-order term that picks out an arbitrary n-ary relation on the domain of the model
in which statement A is true.

This operator is applied in [9] in the following way: let T = 〈T1, . . . , Tn〉 stand for the
n-ary tuple of all theoretical terms described by T. Then the explicit definition of this
tuple has the following form:

5See also [30] for a more detailed presentation of the epsilon reconstruction of scientific theories.
6See [5] and [35] for discussions of the historical development of the epsilon logic. Compare [21], [24]

and [36] for presentations of the epsilon calculus.
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T := εZ∃X1 . . . ∃Xn(Z = 〈X1, . . . , Xn〉 ∧ TC(X1, . . . , Xn, O1, . . . Om))

Informally speaking, the theoretical symbols are defined here as referring to an arbitrary
tuple of relations that, if assigned to the free variables in RS(T), make the Ramsey sen-
tence true. Put differently, the definition picks out one arbitrary sequence of extensions
of the theoretical vocabulary in case the theory in question is internally consistent and
consistent with the empirical facts.

Based on this general definition of the tuple of all theoretical terms, the extension of each
singular term Ti (for 1 ≤ i ≤ n) can then be specified relative to this particular choice (if
Ti has an extension), namely as the i-th element of tuple Pt:

Ti := εY∃X1 . . . ∃Xn(T = 〈X1, . . . , Xn〉 ∧Y = Xi)
7

The original presentation of the epsilon reconstruction of theories in [9] is purely syntac-
tic in character. Nonetheless, Carnap’s account motivates a semantic analysis of theoreti-
cal terms that captures closely his informal remarks about the indefinite or indeterminate
nature of such terms. Notice that, in his account, theoretical terms do not have a direct
interpretation but are defined indirectly in terms of the observational terminology of a
theory. How is their interpretation specified according to Carnap’s proposal? Specifi-
cally, how does the epsilon-term definition fix a reference of these terms?

To see this, we have to look more closely at the semantics underlying the use of epsilon-
terms here. The standard semantic treatment of epsilon languages is based on a choice-
functional interpretation of the epsilon operator.8 Such a choice semantics for an ex-
tensional ε logic can be characterized in the following way:9 an interpretation M of a
language Lε has the form 〈D, I〉, where D is a domain and I an interpretation function
for the nonlogical vocabulary. The ε-symbol can be interpreted relative to a given choice

7Notice that the ‘local’ definitions of individual theoretical terms are relativized to the prior definition of
tuple Pt. See [9] for details.

8Carnap’s work does not contain an explicit model-theoretic specification of the ε-language used by him.
It is clear, however, that he was familiar with a choice functional interpretation of epsilon terms. There
is a remark in [9] that the epsilon-symbol presents a selection function. Moreover, Carnap refers to [4]
for a specification of the epsilon calculus and its choice semantics, i.e. “a semantical (i.e. set-theoretic)
interpretation in terms of logical selection functions (a function of this kind assigns to each non-empty
subset of the domain of individuals an elements of this subset)” [9, p.156].

9We follow closely here Zach’s presentation of a choice semantics for an extensional epsilon calculus
presented in [36]. For a more detailed study of the semantics of epsilon terms (including a semantics for
intensional epsilon logic based on a universe of Skolem functions) see [24].
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function based on this model.10 Specifically, depending on the logical category of the
variable from which an epsilon expression is constructed, epsilon symbols can refer to
functions of different types. For the first order case, a choice function is a function of the
form δ : ℘(D)→ D such that, for any X ⊆ D:

δ(X) =

x ∈ X, if X 6= ∅;

x ∈ D otherwise.

A choice function thus picks out a “representative” object for any non-empty set and an
arbitrary object from domain D if the set in question is empty.

In the case of second-order epsilon terms built from n-ary predicate variables, a suitable
choice function will be of the form ∆ : ℘(℘(Dn)) → ℘(Dn) such that, for any set of
relations Rel ⊆ ℘(Dn), we have:

∆(Rel) =

X ∈ Rel, if Rel 6= ∅;

X ∈ ℘(Dn) otherwise.

Given this account of extensional choice functions, closed ε-terms are interpreted relative
to a structure M, an assignment function s to first-order and predicate variables, and
choice functions δ, ∆ onM based on the following two valuation rules:11

valM,δ,s(εx A(x)) = δ(valM,s(A(x)))

= δ({d ∈ D | M, s[x/d] |= A(x)})

valM,∆,s(εX A(X)) = ∆(valM,s(A(X)))

= ∆({R ∈ ℘(Dn) | M, s[X/R] |= A(X)})

These rules state that the referent of an ε-term constructed from A is the element (or
relation) that the choice function picks from the set of objects (or relations) defined by
formula A in modelM.

The choice-functional treatment of epsilon logic gives us a way to make precise the

10The epsilon-symbol is treated as a functional variable here that effectively ranges over possible choice
functions on a given model. This variable choice conception is first developed in Asser: “Das Zeichen
ε schlielich ist eine Variable für Auswahlfunktionen des Individuenbereichs J” [4, p.33]. See [21] for a
different account.

11We restrict our attention here to valuation rules for the special case of closed epsilon terms. For a more
general treatment of valuation rules for epsilon terms with parameters, see [24, pp.33-34].
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informal semantics underlying the present account of theoretical terms and theoretical
statements. In order to do so, we have to describe the epsilon reconstruction of theories
also from a model-theoretic perspective. Let us assume in the following that language
L(Vo, Vt) is interpreted relative to a single domain of individuals. All variables of the
language range over domain D or over higher-order domains constructible from it.12 An
important assumption concerning the descriptive vocabulary is that the observational
predicates in set Vo have a fixed and intended interpretation. Thus, we assume that
the statements of sublanguage L(Vo) are fully interpreted in an “observational” or base
model O = 〈D, Ro〉. This model contain a number of observational relations Ro on
domain D that function as the intended interpretations of the observational predicates in
L(Vo).

By contrast, the theoretical vocabulary of the language is usually considered to be unin-
terpreted at first. More specifically, its interpretation is specified only indirectly by the
axioms of the theory expressed in L(Vo, Vt). This fact can be elucidated by looking at
how the Ramsey sentence of a theory is evaluated semantically. What are the truth condi-
tions of the Ramsey sentence of a theory? Informally speaking, we say that RS(T) is true
if and only if there exists at least one set of theoretical relations on the domain that make
the theory true. More formally, RS(T) is true in the base model O, i.e. 〈D, Ro〉 |= RS(T),
if and only if there exists at least one ordered sequence of theoretical relations Rt on D
such that the expanded structure B = 〈D, Ro, Rt〉 satisfies the axioms of the theory, i.e.
〈D, Ro, Rt〉 |= TC, where I(Ti)

B = Ri, for each i ∈ n.13

An interpretation of the theoretical terms is thus specified relative to an expansion of
the base model by relations that satisfy the theoretical axioms in question. We call an
L(Vo, Vt)-structure admissible if it is an expansion of the observational model O that
satisfies the axioms of T (cf. [2], [3]).

Assuming that the Ramsey sentence of a theory is satisfied, it follows that the epsilon-
term definition picks out an arbitrary instance of such a tuple of relations for the inter-
pretation of the theoretical terms. Notice that the definiens in the epsilon-term definition
scheme contains the “variabilized” theory, that is an open formula of the form

12We will also assume that the higher-order quantifiers of L(Vo, Vt) have a standard interpretation. In
particular, predicate variables are supposed to range over the full powerset ℘(Dn), for each arity n.

13See [20, p.293] and [14].
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TC(X1, . . . , Xn, O1, . . . Om)

This formula defines the class of interpretations of the theoretical predicates of language
L(Vo, Vt) relative to theory T:

Ext(Vt)T := {Rt | 〈D, Ro, Rt〉 |= TC}

This is, informally speaking, the class of all extensional interpretations of the theoretical
vocabulary that, if joined with the given observational model, result in full models of
T.14

An epsilon term in the above definition can be evaluated semantically in the base model
O and relative to a particular choice function constructible from it. Such a function as-
signs a particular member of the class Ext(Vt)T to that class.15 The interpretation of
theoretical terms can then be specified relative to such a higher-order choice function.
Specifically, we can specify the interpretation of the tuple T of predicates in L(Vo, Vt)

based on a semantic valuation of its defining epsilon term relative to model O, assign-
ment function s and higher-order choice function ∆ in the following way:

I(T) = valO,∆,s(εXTC(X, O))

= ∆(valO,s(TC(X, O)))

= ∆({Rt | O, s[X/Rt] |= TC(X, O)})

The reference of the theoretical predicates in a full model of the language is specified
here in terms of the choice-functional interpretation of their defining ε-term, namely as
an arbitrary sequence of relations that make the ramsified theory true in model O.

The choice semantics for ε-languages not only gives us a precise account of the reference
of theoretical terms that nicely corresponds to Carnap’s purely syntactic approach. It
also provides the means for a model-theoretic analysis of the semantics of theoretical
sentences, where a sentence qualifies as theoretical if and only if it contains theoretical

14Alternatively, we can take Ext(Vt)
T to be the class of possible assignments to the ‘theoretical’ variables

of the observational language that make RS(T) true in O.
15To give a simple example, let Vt contain only one binary predicate P(x, y). The class Ext(Vt)

T (for a
given theory T) will then consist of relations of type R ⊆ D× D. A suitable choice function will then be a
function of the form: ∆ : ℘(℘(D2))→ ℘(D2) such that

∆(Ext(Vt)
T) =

{
X ∈ Ext(Vt)

T , if Ext(Vt)
T 6= ∅;

X ∈ ℘(℘(D2)) otherwise.
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terms. As is shown in [21, 4, 24, 36], one can define a general notion of truth for state-
ments of Lε based on the standard valuation and satisfaction rules for predicate logic
and the valuation rules for epsilon terms stated above. We will express the fact that
the formula A (containing epsilon terms) is satisfied in model M, relative to a choice
function δ and an assignment function s byM, δ, s |= A.

A semantic evaluation of theoretical statements based on this choice-functional notion
of satisfaction comes in two steps: In the first step, a translation of language L(Vo, Vt)

in the observational language supplemented by an epsilon operator Lε(Vo) has to be
specified that maps all theoretical sentences to their ε-term translations, i.e. to sentences
gained by the systematic substitution of t-terms by their defining ε-terms. Let ϕ be a
sentence in a theoretical language that contains a number of theoretical predicates (and
possibly also observational predicates). Then, given the suggested definition scheme for
theoretical terms, there is a function that maps the theoretical sentence ϕ to a sentence
ϕε in which each occurrence of a term Ti in ϕ is substituted by its defining ε-term. More
formally, a relative translation of language L(Vo, Vt) in Lε(Vo) can be given by a mapping
F that associates each theoretical relation symbol Ti (of arity m) with its epsilon-operator
definition in the above specified sense.16 Based on this, a translation function ϕε for
L(Vo, Vt) sentences ϕ can be specified inductively in the following way:

(Ti(t1, . . . , tm))ε := 〈t1, . . . , tm〉 ∈ εY∃X1 . . . ∃Xn(T = 〈X1, . . . , Xn〉 ∧Y = Xi)

(ϕ ∧ ψ)ε := ϕε ∧ ψε; (ϕ ∨ ψ)ε := ϕε ∨ ψε; (¬ϕ)ε := ¬ϕε

(∃xϕ)ε := ∃x(ϕ)ε; (∀xϕ)ε := ∀x(ϕ)ε

Given this relative translation, the second step is then to evaluate the resulting ε-translation
ϕε of each theoretical statement in terms of the choice-functional semantics presented
above. As should be clear, ϕε can be interpreted in the base model O and relative to a
suitable choice function on it.

Given this, we can give an explication of the truth of theoretical sentences in choice-
functional terms. Specifically, we can distinguish between two types of theoretical truth
based on two different truth conditions for epsilon-term statements given in [24]. Let
ϕ ∈ L(Vo, Vt), let ϕε be its ε-translation in Lε(V0) based on theory T.

16Observational predicates remain invariant under this translation. Moreover, the translation is unrela-
tivized in the sense that the range of the quantifiers remains identical.
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Definition 1 (Local truth and generic truth of ϕε) We say that

1. ϕε is locally true if and only if there exists a choice function δ with respect to O such that
O, δ |= ϕε;

2. ϕε is generically true (or valid) if and only if for every choice function δ with respect to
O, we have O, δ |= ϕε.17

Falsehood is understood in terms of the truth of the negated sentence: ϕε is locally false
if and only if ¬ϕε is locally true. ϕε is generically false if and only if ¬ϕε is generically
true.18

Why do we distinguish between these two notions of truth for epsilon-translations of
theoretical sentences? The semantic values of all epsilon translations of theoretical sen-
tences are indeterminate if no relativization to some choice function or a range of choice
functions is assumed. This cannot be an intended result for the semantics of theoretical
sentences because we do assert and deny theoretical sentences in science. The content
of such assertions and denials should be represented by a proper semantics of theoreti-
cal sentences. Hence, epsilon translations of theoretical sentences should be understood
relative to choice functions.

There seem to be at least three “natural” options for relativizing the semantics of epsilon-
translations to choice functions. First, truth relative to a particular choice function δ with
respect to O. Second, local truth as just defined. Third, generic truth as just defined.
The first option might be in the spirit of the epsilon operator, but it would make the
semantics of theoretical sentences dependent upon an arbitrary choice of a particular
choice function. No such dependence is implied by the latter two options. Hence, it is
reasonable to pursue these options.

The challenge arising here is to decide which, if any, of the two notions of truth expli-
cates the content of our assertions of theoretical sentences in science. In the next two

17The terms local and generic truth are introduced in Meyer Viol’s study of intensional and extensional
epsilon logic in [24]. A similar distinction can already be found in [4]. Notice, moreover, that the local
truth of theoretical statements so construed is closely related to the notion of partial truth discussed in the
framework of partial structures by [12]. It is easy to show that the local truth of ϕε is definable in terms of
the partial truth of ϕ in a simple pragmatic structure.

18Notice that a given formula ϕε can be both locally true (i.e. true relative to a given choice function) and
locally false (relative to another choice function). This problematic fact will be discussed in further detail in
Section 5.
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sections, we shall answer this question by comparing the present approach with another,
well established model-theoretic explication of the semantics of theoretical terms. This
is Andreas’ modal (or supervaluationist) account of theoretical truth ([1], [2]). Based
on his approach, we will propose a modal translation of local truth and generic truth,
respectively. This translation enables us to recognize two different logics to which the
two different notions of truth give rise. It turns out that only one of the two logics is
inferentially strong enough to account for scientific reasoning.

4 A modal translation

As was shown in the previous section, the explicit epsilon-term definition

T =d f εZ∃X1 . . . ∃Xn(Z = 〈X1, . . . , Xn〉 ∧ TC(X1, . . . , Xn, O1, . . . Om))

leaves us with a range of admissible interpretations of the theoretical terms:

Ext(Vt)T := {Rt | 〈D, Ro, Rt〉 |= TC}

Together with the fixed interpretation Ro of the observational predicates, any member
of Ext(Vt)T defines a complete interpretation of L(Vo, Vt). We can conceive of these
interpretations as possible worlds:

W := {〈D, Ro, Rt〉 | 〈D, Ro, Rt〉 |= TC}

Figuratively speaking, any world w ∈ W represents a way things may be like, assuming
the interpretation Ro of the observational predicates and the truth of the Ramsey sentence
RS(T). Let us now adopt a standard S5 modal semantics, where we have R = W ×W
for the accessibility relation R. As we do not distinguish between interpretations of
L(Vo, Vt) and worlds, our first order modal model of L(Vo, Vt) has the following simple
structure:

M = 〈W, R〉

Arguably, this modal model formally represents the interpretation of theoretical terms
in line with [8]. For, first, the postulates TC indirectly interpret the theoretical terms by
constraining their interpretation: TC must be true in any possible world. This constraint
does not yield a complete interpretation of the theoretical terms, however. Their inter-
pretation remains incomplete in the sense of leaving a certain degree of indeterminacy:
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any of the possible worlds w ∈W represents an admissible interpretation.

We are now in a position to define two alternative notions of theoretical truth:19

Definition 2 (Semantics of theoretical sentences) Let ϕ be an L(Vo, Vt) sentence :

1. ϕ is weakly theoretically true if and only if M |= ♦ϕ.

2. ϕ is strongly theoretically true if and only if M |= �ϕ.

That is, an L(Vo, Vt) sentences ϕ is weakly theoretically true if and only if it is true in
at least one world w of W. It is strongly theoretically true if and only if it is true in all
worlds w of W. In other words, strong theoretical truth means that the sentence is true
in all interpretations being admitted by the postulates and by the given interpretation
of L(Vo). These truth-rules are inspired by supervaluation logic and we are deeply
indebted to Priest’s exposition of this logic in [28]. The notion of strong theoretical truth
formally coincides with supertruth, while weak theoretical truth coincides with subtruth
(cf. Williamson’s account of vagueness [34, pp. 142-153]).

For L(Vo) sentences ϕ, the two notions of truth coincide, provided the Ramsey sentence
RS(T) is true. Furthermore, on condition of RS(T), the conjunction TC of postulates
is both strongly and weakly theoretically true. However, there clearly are L(Vo, Vt) sen-
tences ϕ for which the two notions of theoretical truth diverge from one another. This fol-
lows from W not being a singleton. Recall that W cannot be singleton because this would
contradict the doctrine that the interpretation of theoretical terms is incomplete.20

The two modal notions of theoretical truth translate, respectively, the semantics of the-
oretical sentences that we have defined using choice functions in the preceding section:

Observation 1 Let ϕ be a sentence of L(V0, Vt).

1. ϕ is locally true if and only if M |= ♦ϕ.

2. ϕ is generically true if and only if M |= �ϕ.

19Strong theoretical truth has been suggested as an explication of theoretical truth in [2].
20It follows from the incompleteness of the determination of theoretical terms that, for any theoretical

term Ti, there are at least two admissible interpretations of L(Vo, Vt) that interpret Ti differently. Let us call
them w1 and w2. Hence, there is a theoretical sentence ϕ such that w1 |= ϕ and w2 6|= ϕ. Therefore, if W is
the set of admissible interpretations represented by the modal model M, we have M |= ♦ϕ butM 6|= �ϕ.
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This observation follows easily from the definition of M and the way in which choice-
functional truth was specified in Section 3. Recall from above that a theoretical statement
was said to be locally true if there exists at least one choice function on the observational
model that picks out an admissible interpretation of the theoretical vocabulary in question.
In turn, a theoretical statement was said to be generically true if and only if every possible
choice function on the observational base model picks out an admissible interpretation
of these terms.

As we saw, one way to characterize whether an interpretation is theoretically admissible,
i.e. admissible relative to a given axiomatic theory, can be given in terms of the notion of
model expansions. We said that an interpretation of theoretical predicates is admissible
if the expanded structure B resulting from model O by the addition of these theoretical
relations satisfies the theory in question. Given this, the two types of choice-theoretical
truth can be characterized in the following way: Let ϕε be an Lε(Vo) sentence. Then ϕε

is weakly theoretically true if and only if there exists (at least) one choice function δ on
O such that I(T) = Rt = valO,δ(εXTC(X, O)) and 〈D, Ro, Rt〉 |= ϕ(T, O). Put differently,
we say that ϕε is partially true if and only if one can construct an admissible expansion
B from O based on a choice function δ such that B |= ϕ. Since model B is by definition
a possible world in W, it follows that local truth is equivalent to weak theoretical truth
(in the modal sense).

Similarly, we say that the epsilon-translate ϕε of a theoretical statements is generically
true if and only if for every possible choice function δ on O such that I(Pt) = Rt =

valO,δ(εXT(X, O)) we have 〈D, Ro, Rt〉 |= ϕ(Pt, O). Thus, the sentence ϕε is generically
true if and only if ϕ is true in all possible expansions of O to full models of theory T that
are constructed in the above sense. This is again equivalent to our definition of strong
theoretical truth as truth in all possible worlds of M.

5 Inferential strength

In this section, we shall show that strong theoretical truth yields a more reasonable se-
mantics of theoretical sentences than its weak alternative. This result carries over directly
to the alternative between local and generic truth within the choice semantical treatment.
Our two modal notions of theoretical truth give rise to two different logics insofar as they
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define two different relations of logical consequence:

Definition 3 (A |=w (|=s) ϕ) Let A be a set of L(V0, Vt) sentences and ϕ be such a sentence.
Let |=S5 be the S5 consequence relation. �A (♦A) is the set obtained from A by prefixing any
member of A with � (♦).

1. A |=w ϕ if and only if ♦A |=S5 ♦ϕ.

2. A |=s ϕ if and only if �A |=S5 �ϕ.

It turns out that |=s—the consequence relation of strong theoretical truth—is equivalent
to the relation of logical consequence in classical logic ([2]):

Proposition 1 Let A and ϕ be as above. |=cl is the relation of logical consequence in classical
logic. Then, A |=s ϕ if and only if A |=cl ϕ.

Proof. Suppose A |=s ϕ. Then, by definition of |=s, �A |=S5 �ϕ. That is, for all S5
models M, if M |= �α for all α ∈ A, then M |= �ϕ. Therefrom it follows that, for all S5
models M for which W is a singleton, if M |= �α for all α ∈ A, then M |= �ϕ. Hence,
for all classical modelsM, ifM |= A, thenM |= ϕ. Thus, A |=cl ϕ.

For the other direction, suppose (i) A |=cl ϕ. Further, let us assume that (ii), for a set M
of classical models, ifM ∈ M, thenM |= A. (i) and (ii) imply that (iii), for allM ∈ M,
M |= ϕ. From (ii) and (iii) we can infer that for all sets M of classical models M: if,
for all M ∈ M, M |= A, then, for all M ∈ M, M |= ϕ. Hence, for all S5 models M,
if M |= �α for all α ∈ A, then M |= �ϕ. By definition of |=s, it follows therefrom that
A |=s ϕ.

Proposition 1 is clearly a desirable result in the analysis of informal deductive reasoning
in science if one wants to retain (as Carnap did) constant theoretical terms as opposed
to higher order variables. The Ramsey sentence itself, though semantically illuminating,
provides a very cumbersome formulation of a theory that is unsuitable as analysis of
scientific reasoning (cf.[16]). It may be argued, moreover, that virtually all inference rules
of classical natural deduction are needed to account for scientific reasoning.21 Hence, it
is a desirable result that the present logic of theoretical truth retains these inference rules.
Further extensions of this logic, such as logics of nonmonotonic and abductive reasoning,
may be built on top of this classical core.

21Disjunction introduction remains a controversial case, though.
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The consequence relation of weak theoretical truth, however, is much less well behaved.
For example, it is easy to show that |=w fails to validate modus ponens. If modus ponens
were valid for |=w, the following inference rule would have to be valid in S5:

♦α ♦(α→ β)

♦β

A counterexample to this inference rule is easy to construct: let L(V) be a language of
propositional modal logic with V = {p, q}. Let, further W (the set of worlds) be given by
{w1, w2}. Suppose, in w1 p and ¬q hold true, whereas in w2 ¬p and ¬q are true. Then, it
holds that ♦p,♦(p → q) but not ♦q. Hence, there is a propositional modal S5 model for
which modus ponens fails to be valid. This propositional model can easily be transformed
into a first order modal model of the modal extension of L(V0, Vt). Simply assume that
q is an L(V0, Vt) sentence that is false in all w ∈ W. p, by contrast, may be true in some
w ∈W and false in some other world w′ ∈W.

In a similar vein, it can be shown that other important inference rules of natural de-
duction with two premises fail to hold for weak theoretical truth. This is particularly
unfavorable for an account of scientific reasoning in the case of the following inference
rule of first order logic with identity, which is sometimes referred to as the Leibniz prin-
ciple:

s = t ϕ[s]
ϕ[t/s])

f ree(s, t, ϕ[∗])

This inference rule says that, if t = s and ϕ, t can be substituted for s in ϕ at all oc-
currences of s where s is free and t does not become bounded if substituted for s. The
Leibniz principle is used whenever we insert one equation into another; it is thus of
utmost importance in physics and other sciences using mathematical equations. This
principle is not valid in the logic of weak theoretical truth, however. It fails to be valid
because s = t and ϕ may, respectively, be true at different worlds, while there is no world
at which both s = t and ϕ are true.

In sum, the consequence relation of weak theoretical truth fails to validate inferential
patterns that are at the core of scientific reasoning. We must therefore realize that weak
theoretical truth does not explicate well the semantics of theoretical sentences. The se-
mantics of strong theoretical truth, by contrast, lets us preserve the validity of classical
deductive reasoning. This is a desirable result, not only because of Carnap’s adherence
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of classical logic. For, even though classical deductive reasoning may not capture all
of the inference patterns used in science, classical logic continues to serve as the basis
of a logical analysis of science. Various more refined accounts of scientific reasoning,
such as nonmonotonic logics and systems of abductive reasoning, have been defined on
this basis. Moreover, the patterns of classical deductive logic seem to be needed for an
account of pure and applied mathematical reasoning. Hence, strong theoretical truth
scores much better than weak theoretical truth in terms of inferential properties.

Even though the logic of strong theoretical truth is inferentially equivalent with classical
logic, the notion of strong theoretical truth does not satisfy the principle of bivalence.
That is, there are L(V0, Vt) sentences ϕ such that ϕ is neither strongly theoretically true
nor strongly theoretically false. More precisely, ϕ is indeterminate if and only if M |= ♦ϕ

and M |= ♦¬ϕ. It is not obvious whether this is a problem at all. Arguably, the existence
of indeterminate theoretical sentences is a consequence of the incompleteness of the
interpretation of the theoretical terms.

In the case of weak theoretical truth, every L(V0, Vt) sentence is true or false. However,
some L(V0, Vt) sentences are both true and false. More precisely, theoretical sentences
ϕ being indeterminate as regards strong theoretical truth are both weakly theoretically
true and weakly theoretically false. Hence, we have truth-value gluts in the case of weak
theoretical truth. This implies that weak theoretical truth does not satisfy the principle of
bivalence either. It is very questionable, moreover, whether the truth-value gluts of weak
theoretical truth capture any aspect of our understanding of theoretical truth. Hence,
weak theoretical truth does not lead to a more plausible truth-value assignment than
strong theoretical truth.

This not very surprising “victory” of strong theoretical truth over its weak alternative
helps us decide between the two notions of truth that we have distinguished within the
choice semantics of the epsilon operator. By Observation 1 and Proposition 1, we know
that generic truth (as defined by Definition 1) is inferentially equivalent with classical
logic. Observation 1 furthermore, lets us conclude that local truth (as defined by Def-
inition 1) suffers from the problem of inferential weakness in the same way as weak
theoretical truth does. That is, local truth fails to validate inferential patterns that are
at the core of scientific reasoning, such as modus ponens and the Leibniz principle. It is
therefore inferentially too weak to account for scientific reasoning properly.
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Furthermore, the notion of generic truth yields a more plausible assignment of truth-
value to theoretical sentences. The fact that some L(V0, Vt) sentences remain indeterminate—
in the sense of being neither generically true nor generically false—reflects the incom-
pleteness of the interpretation of theoretical terms. With local truth, by contrast, we have
truth-value gluts even for scientific theories TC that are classically consistent. This does
not seem to be a desirable property.

In sum, there are two important criteria that lead us to favor the notion of generic truth
within the choice semantics. First, generic truth is inferentially stronger than local truth
to the extent that it is inferentially equivalent with classical logic. Second, generic truth
comes with a more plausible truth-value assignment than local truth. Hence, we opt for
the following choice semantics as an explication of theoretical truth:

Explication 1 (Theoretical truth) Let ϕ be an L(V0, Vt) sentence and ϕε its epsilon transla-
tion. ϕ is true if and only if for all choice functions δ with respect to O such that O, δ |= ϕε.

6 Inferential properties exemplified

Let us return to our collision experiment to exemplify the inferential weakness of local
truth. Recall that the interpretation of mass is merely constrained by the laws of conser-
vation of energy and conservation of momentum as well as the velocities of the objects
before and after the collision. Given these constraints, it is easy to show that for any
real number x there is a choice function such that m1 = x. Likewise for m2. Hence, the
following theoretical statements are locally true:

m1 = 5 m2 = 7

Now take the following inference:

m1 = 5 m2 = 7 5 < 7
m1 < m2

(1)

The conclusion can be inferred using the Leibniz principle twice. This inference, however,
is not valid according to the semantics of local truth. For there is no choice function such
that m1 < m2 comes out locally true. Hence, the Leibniz principle is not valid for local
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truth.

A similar problem does not arise for generic truth because m1 = 5 and m2 = 7 are not
generically true for obvious reasons. Moreover, the fact that m1 = x is locally true for
any arbitrary value x speaks against explicating theoretical truth in terms of local truth.
Such statements cannot be inferred from the measurements of our collision experiment.
Hence, they should not be true on our account of theoretical truth. By contrast, m1 = m2

is inferable from the measurements, which is generically true, as it should be.

7 Conclusion

We have described two different candidates for a choice-semantics of theoretical truth in
this paper. A central philosophical motivation for such a semantics is to account for the
indefinite nature of the interpretation of theoretical terms. Recall that explicit definition
of such terms via epsilon terms merely constrains the interpretation of such terms but
does not individuate their reference. A choice function can then be understood to pick
out one determinate but arbitrary interpretation from the range of interpretations that
satisfy the constraint by TC.

As we saw, this choice semantic framework leaves us with at least two different options
for explicating the semantics of theoretical sentences. The first option has been described
as local truth: A theoretical statement is true if and only if there exists at least one suitable
choice function δ such that the epsilon translation of this statement is true relative to the
observational model and to δ. The second option has been described as generic truth: A
theoretical statement is true if and only if its epsilon translation is true relative to the
observational model and all possible choice functions (of the relevant type).

Given this framework, the question arises which of the two notions captures the se-
mantics of theoretical sentences in a more appropriate way? We have answered this
question by translating the two notions under consideration into the language of a sim-
ple S5 modal semantics and a subsequent investigation of the inferential properties of
the translates.

It turns out that the logic of generic truth is inferentially equivalent to classical logic,
which is a desirable result. Local truth, by contrast, is inferentially too weak to account
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for scientific reasoning. It could be shown, moreover, that the truth-value assignment
of generic truth is more plausible than that of local truth for two reasons. First, the
former, unlike the latter, avoids truth-value gluts. Second, the semantics of theoretical
truth reflects the incompleteness of the interpretation of theoretical terms. Local truth,
by contrast, may be described as overdeterminate because there are theoretical sentences
being both locally true and locally false.
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