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Abstract—Free-space optical communication links operating
over lognormal turbulence channels using on-off keying (OOK)
are studied in this work. Such systems can suffer from irreducible
error floors that result from the use of demodulation with fixed
and unoptimized detection thresholds. The resulting error floors
are analyzed for the general case of low and high state offsets
(i.e., finite extinction ratios). An electrical signal-to-noise ratio
(SNR) optimized detection system is applied. The system uses
the electrical SNRs to implement adaptive detection thresholds
and eliminate the error floors. The system can accommodate
operation with finite extinction ratios, as it uses the method
of moments and maximum likelihhod estimation techniques to
estimate the low and high state offsets and electrical SNR.
Numerical results show that the SNR gap between the electrical-
SNR-optimized detection system and the adaptive detection
system is 2.3 dB at a bit-error rate of 10−5 without a state
offset. The SNR gap increases to 4.5 dB with a state offset of
ξ = 0.2.

Index Terms—Atmospheric turbulence, optical wireless com-
munications, on-off keying.

I. INTRODUCTION

Free-space optical (FSO) communication links have impor-
tant advantages over radio frequency links. Such FSO systems
offer broadband operation, high link security, and freedom
from spectral license regulations. But optical signals that are
transmitted over free-space are subject to amplitude and phase
distortion due to transient inhomogeneities of atmospheric
temperature and pressure [1], [2]. The resulting scintillation
or fading is a major cause of performance degradation for
FSO systems. The performance degradation is especially pro-
nounced for FSO systems using irradiance modulation and
direct detection (IM/DD) with on-off keying (OOK) and fixed
detection thresholds that are non-adaptive and inherently unop-
timized [3], [4]. This can produce irreducible error floors when
operation is extended to high signal-to-noise ratios (SNRs) [5],
[6].

Attempts to overcome the irreducible error floors of OOK
IM/DD systems have focused on the application of adaptive
detection thresholds. Adaptive detection of OOK signal can
be classified into three categories. The first category, idealized
adaptive detection, applies bit-by-bit adaptations to the detec-
tion threshold on the (typically) nanosecond timescale of the
bit interval [2], [7]. The second category, quasi-static adaptive
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detection, applies adaptations to the detection threshold on
the (typically) millisecond timescale of the turbulence coher-
ence time [8], [9], [10]. The third category, electrical-SNR-
optimized detection [11], [12], [13], unlike the prior two cate-
gories, does not require knowledge of the instantaneous chan-
nel state information (CSI), and it applies adaptations to the
detection threshold on the second- or minute-long timescale
over which the turbulence exhibits stationary statistics [14].
Operation with electrical-SNR-optimized detection offers the
practical advantages of operation with fixed detection thresh-
olds, as only slow adaptations are needed to define the de-
tection thresholds1. Operation with electrical-SNR-optimized
detection also offers the performance advantages of operation
with idealized adaptive detection thresholds, as it avoids
irreducible error floors. Unfortunately, existing electrical-SNR-
optimized systems must assume perfect knowledge of the
electrical SNR and turbulence probability distribution function
(pdf).

While perfect knowledge of the turbulence distribution can
be difficult to realize, it is possible to determine and make
use of the statistical moments of the turbulence. The authors
in [15]- [18] have, for example, made use of moments with
Pearson curves, John curves and saddlepoints to approximate
pdfs, albeit with somewhat restrictive conditions [19]. Sim-
ilarly, the authors in [20] have recently derived unified pdf
formulas based on the generalized Laguerre polynomial series
expansion, although its parameters depend on the type of
fading distribution.

In light of above systems and limitations, the contributions
of this paper are as follows:

1) Novel analytical error floor expressions are derived for a
general representation of practical FSO links with finite
low and high state offsets (i.e., finite extinction ratios)
operating over various turbulence channels.

2) The electrical-SNR-optimized system is implemented
without requiring perfect knowledge of the instantaneous
CSI and turbulence pdf. The turbulence pdf is approxi-
mated by a sum of Laguerre polynomials. With perfect
knowledge of the turbulence pdf and no state offsets, the
optimum detection rule reduces to that shown in [11],
[12].

3) Method of moments estimation (MoME) and maximum
likelihhood estimation (MLE) are used to estimate the

1On the timescale of stationary statistics, the electrical SNR is constant,
and the detection threshold is a fixed detection threshold.
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state offsets and electrical SNR, and the electrical-SNR-
optimized system is then employed to operate without
irreducible error floors.

The reminder paper is organized as follows. Section II
describes the system and channel models (for a finite extinc-
tion ratio). Section III derives the irreducible error floors of
OOK with fixed detection thresholds. Section IV introduces
our electrical-SNR-optimized detection system for operation
with unknown turbulence model. Section V addresses the
estimation of unknown state offsets for operation with finite
extinction ratios and electrical SNRs. Section VI presents
numerical results and discussions. Section VII makes some
concluding remarks.

II. SYSTEM AND CHANNEL MODELS

In an OOK IM/DD system, the transmitted intensity is a
positive quantity that can be expressed as

ŝ(t) = 1 + ξ +
∑
i

aig(t− iTp) (1)

where ai ∈ {−1, 1} is the data, and Tp is the symbol duration.
In (1), pulse shaping is defined as g(t) = 1 for 0 < t < Tp,
and g(t) = 0 otherwise, and the positive parameter ξ is the
low and high state offset that results from operation with a
finite extinction ratio2 [21], i.e., extinction ratio = (2 + ξ)/ξ.
Finite extinction ratios are due to practical considerations for
semiconductor laser transmitters, which often operate with
finite power levels for the low and high states. Typical values
of ξ are between 0.1053 and 0.2857 [22]. When ξ ̸= 0, the low
and high states of the received electrical signal are affected
by turbulence. When ξ = 0, the received electrical signal
specializes to the classical model discussed in [5].

The signal ŝ(t) is transmitted through an atmospheric tur-
bulence channel and is distorted by a multiplicative intensity
process I(u, t). The received electrical signal after photode-
tection can be written as

r(t) = R[(1 + ξ)I(u, t) +
∑
i

I(u, t)aig(t− iTp)] + n(u, t).

(2)
The photodetector responsivity, without loss of generality, is
R = 1, and I(u, t) is assumed to be a normalized stationary
random process for signal scintillation caused by atmospheric
turbulence and is modeled as lognormal distribution in this
work, where u is an event in the sample space. The term
n(u, t) is additive white Gaussian noise process due to thermal
noise and/or ambient shot noise. Using a p-i-n photodiode and
following [11], the shot noise is assumed to be dominated
by ambient shot noise. (Both ambient shot noise and thermal
noise are statistically independent of the desired signal.) The
total noise power is σ2

g = σ2
s + σ2

T , where σ2
s and σ2

T denote
the respective ambient shot noise power and the thermal noise
power.

The received signal is sampled at time Tp. The sample
I(u, t = Tp) is a random variable (RV) I , and the sample

2Extinction ratio, when used to describe the performance of an optical
transmitter used in digital communications, is simply the ratio of the power
used to transmit a logic state “1”, to the power used to transmit a logic state
“0”.

n(u, t = Tp) is a RV N having zero mean and variance
σ2
g = N0/2, where N0 is the noise power spectral density.

If “0” is transmitted, s0 is true and the laser is in the low
state, so the sample for demodulation is r|s0 = ξI + N. If
“1” is transmitted, s1 is true and the laser is in the high state,
so the sample for demodulation is r|s1 = (2 + ξ)I + N . It
is important to note that the nonzero state offset ξ leads to
turbulence dependence for the received signal when s0 or s1
is true.

The common statistical models that are used to character-
ize atmospheric turbulence channels are the lognormal, K,
negative exponential, and Gamma-Gamma models [23]. The
lognormal distribution characterizes weak turbulence and is
suitable for characterizing FSO communications in clear sky
links over several hundred meters [24]. The K-distribution is
suitable for describing strong turbulence over links that are
several kilometers in length [25]. The negative exponential
distribution describes the limiting case of saturated scintillation
[26]. The Gamma-Gamma distribution is a generalized model
that can be applied to a wide range of turbulence conditions
[27]. In this work, a lognormal turbulence channel is em-
phasized, but the developed detection algorithm is sufficiently
general and can be applied to any turbulence models.

For the lognormal channel model, the optical irradiance I
is given by

I = exp(X) (3)

where X is a Gaussian RV with mean µ and variance σ2.
Consequently, I follows a lognormal distribution with a pdf
given by [24]

fI(I) =
1√
2πσI

exp

(
− (ln I − µ)2

2σ2

)
. (4)

Normalizing the mean, i.e., E[I] = 1, where E[·] is the
expectation operation, the pdf of I can be written as

fI(I) =
1√
2πσI

exp

(
− (ln I + σ2/2)2

2σ2

)
. (5)

The parameter σ is the scintillation level [28]. Turbulence
effects on the performance are minimal when scintillation
levels are below 0.1, so the electrical-SNR-optimized detection
system is characterized for scintillation levels ranging from 0.1
to 0.5. This is the typical range for scintillation levels [11],
[29]. In this paper, the case for which the statistical details of
(4) or (5) are completely unknown at the receiver is considered.

III. OOK WITH FIXED AND UNOPTIMIZED DETECTION
THRESHOLDS

In the low state, the received signal (r = ξI +N ) is a sum
of two RVs, N and Is, where Is = ξI . Since N and Is are
assumed to be independent, the pdf of the received low state
signal is the convolution of the marginal pdfs of Is and N
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according to

f(r|s0) =
1

ξ
fI

(
r

ξ

)
∗ fN (r)

=

∫ ∞

0

1√
2πσx

exp

−

(
ln x

ξ + σ2

2

)2
2σ2


× 1√

2πσg

exp

(
− (r − x)2

2σ2
g

)
dx

(6)

where ∗ denotes the convolution operation, and fN (r) =
1√

2πσg
exp

(
− r2

2σ2
g

)
denotes the noise pdf.

In the high state, the pdf of the received signal (r = (2 +
ξ)I +N ) can be defined in a similar manner according to

f(r|s1) =
1

2 + ξ
fI

(
r

2 + ξ

)
∗ fN (r)

=

∫ ∞

0

1√
2πσx

exp

−

(
ln x

2+ξ + σ2

2

)2
2σ2


× 1√

2πσg

exp

(
− (r − x)2

2σ2
g

)
dx.

(7)

For a given fixed detection threshold Tth, the probability of
false alarm PF and probability of miss PM can be respectively
written as

PF =

∫ ∞

Tth

f(r|s0) dr =

∫ ∞

Tth

1

ξ
fI

(
r

ξ

)
∗ fN (r) dr (8)

and

PM =

∫ Tth

−∞
f(r|s1) dr =

∫ Tth

0

1

2 + ξ
fI

(
r

2 + ξ

)
∗fN (r) dr.

(9)
Assuming that p1 represents the a priori probability that “1”
is sent, i.e., p1 = 1

2 means “0”s and “1”s are equally likely to
be sent, one can write the bit-error rate (BER) for OOK using
a fixed detection threshold Tth as

Pe = (1− p1)PF + p1PM

=
(1− p1) exp

(
−σ2

8

)
√
2πσ

∫ ∞

0

√
ξ

x3/2
exp

(
−
ln2 x

ξ

2σ2

)

×Q

(
Tth − x

σg

)
dx+

p1 exp
(
−σ2

8

)
√
2πσ

∫ ∞

0

√
2 + ξ

x3/2

× exp

(
−
ln2 x

2+ξ

2σ2

)
Q

(
x− Tth

σg

)
dx

=
(1− p1) exp

(
−σ2

8

)
√
2πσ

∫ ∞

0

√
ξ

x3/2
exp

(
−
ln2 x

ξ

2σ2

)

×Q (
√
γ(Tth − x)) dx+

p1 exp
(
−σ2

8

)
√
2πσ

∫ ∞

0

√
2 + ξ

x3/2

× exp

(
−
ln2 x

2+ξ

2σ2

)
Q (

√
γ(x− Tth)) dx

(10)

TABLE I
ERROR FLOOR EXPRESSIONS FOR FSO SYSTEMS EMPLOYING FIXED

DETECTION THRESHOLDS OF Tth = (1 + ξ)E[I] OVER A LOGNORMAL
FADING CHANNEL WITH σ = 0.25

ξ 0.15 0.18 0.2 0.25
Theoretical error floor 0.0044 0.0049 0.0054 0.0065
Simulated error floor 0.0045 0.0049 0.0054 0.0066

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt is the Gaussian Q-function,
and we have denoted the electrical SNR by γ = (E[I])2/N0

[11], or simply γ = 1/N0 under a normalized mean assump-
tion.

In large SNR regimes, when γ approaches infinity or
equivalently when σ2

g = N0/2 approaches zero, the Gaussian
distribution approaches a Dirac delta function δ(·). Hence, one
can have

lim
γ→∞

fN (r) = δ(r) (11)

and
lim
γ→∞

1

a
fI

( r
a

)
∗ fN (r) =

1

a
fI

( r
a

)
(12)

where a is a constant taking either ξ or 2 + ξ. When the
electrical SNR is asymptotically large (i.e., γ → ∞), using
(8), (9), and (12), one obtains

lim
γ→∞

PF =

∫ ∞

Tth

1

ξ
fI

(
r

ξ

)
dr = 1− FI

(
Tth

ξ

)
(13)

and

lim
γ→∞

PM =

∫ Tth

0

1

2 + ξ
fI

(
r

2 + ξ

)
dr = FI

(
Tth

2 + ξ

)
(14)

where FI(·) represents the cumulative distribution function
(CDF) of the irradiance I . Therefore, the false alarm prob-
ability and miss probability in large SNR regimes are deter-
mined by the CDF of the irradiance evaluated at Tth/ξ and
Tth/(2 + ξ), respectively. Substituting (13) and (14) into (10)
gives

lim
γ→∞

Pe = lim
γ→∞

(1− p1)PF + p1PM

=(1− p1)Q

(
lnTth − ln ξ + σ2/2

σ

)
+ p1Q

(
ln(2 + ξ)− lnTth − σ2/2

σ

) (15)

which is the error floor for an OOK IM/DD system with a fixed
detection threshold through lognormal turbulence channels. As
shown from (15), the error floor depends on both Tth and
ξ, and typically one chooses the fixed detection threshold as
Tth = (E[r|s1] + E[r|s0])/2. When ξ = 0, Tth = E[I],
and the analytical error floor expression in (15) is equivalent
to [5, eq. (20)], which was derived under an assumption of
normalized second moment, i.e., E[I2] = 1. When ξ ̸= 0, it
is simple to show that Tth = (1 + ξ)E[I].

It is important to note that the error floor varies with the
offset ξ. For a lognormal turbulence channel with σ = 0.25
and equal a priori data symbol probability, the predicted error
floors are shown in Table I for different values of ξ. It is
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seen that an increase of ξ results in a higher error floor. The
theoretical error floors are verified with simulated BER limits
in Table I.

Following the same approach, one can predict the error
floors for different turbulence channel models based on the
corresponding CDFs. The resulting error floors are summa-
rized in Table II, where Kα−β(·) denotes the modified Bessel
function of the second kind with order α−β, and the function
h(x, y, z, w) is defined as

h(x, y, z, w)

=
(xyz

w

)x Γ(y − x)

Γ(x+ 1)Γ(y)
1F2

(
x;x+ 1, x− y + 1;

xyz

w

)
(16)

where Γ(·) is the Gamma function and 1F2(·; ·, ·; ·) is the
generalized hypergeometric function [30].

IV. OOK WITH ELECTRICAL-SNR-OPTIMIZED
DETECTION THRESHOLDS

A performance trade-off can be established between opera-
tion with fixed detection thresholds (which can suffer from
irreducible error floors) and adaptive detection thresholds
(which require knowledge of the instantaneous SNR for each
data symbol). This is done with an electrical-SNR-optimized
detection system [11], [12]. The approach considers the opti-
mization problem

argmin
Tth

Pe = argmin
Tth

[(1− p1)PF + p1PM ]. (17)

From (10) and (17), it is clear that electrical-SNR-optimized
detection requires knowledge of Tth, ξ, and the underlying tur-
bulence model. To find the detection threshold that minimizes
the BER at a given electrical SNR, one can take the derivative
of (10) with respect to Tth and set it to zero, i.e., ∂Pe

∂Tth
= 0.

This gives

−(1− p1)f(Tth|s0) + p1f(Tth|s1) = 0 (18)

where f(Tth|s0) and f(Tth|s1) are the likelihood functions
evaluated at Tth. Assuming perfect knowledge of the pdf for
the turbulence model and ξ = 0, the optimum detection rule
reduces to the rule discussed in [11], [12]. The location of
the electrical-SNR-optimized detection threshold lies at the
intersection of two scaled likelihood functions: (1−p1)f(r|s0)
and p1f(r|s1). As shown in Fig. 1, when the electrical SNR
approaches infinity, the total area underneath the intersected
pdfs, i.e., (1 − p1)PF + p1PM , will become infinitely small.
The electrical-SNR-optimized detection can therefore be used
to eliminate the error floors caused by a receiver using fixed
detection thresholds [13], [31].

To accommodate the fact that the FSO receiver may not
always know the underlying turbulence model, the turbulence
distribution can be approximated by sample moments. The
approximated turbulence distribution can then be used to
derive the electrical-SNR-optimized detection threshold.

The density functions of numerous statistical models on
the positive half-line can be approximated by a sum of
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Fig. 1. The likelihood functions f(r|s0) and f(r|s1) with σ = 0.25 and
ξ = 0.2 when γ = 2 dB and γ = 8 dB. The likelihood functions are a result
of the convolution of the lognormal pdf and Gaussian pdf.

Laguerre polynomials [19], [32]. Using this approach, one can
approximate the pdf of I as [33]

fI(I) ≈
Iv exp(−I/c)

cv+1Γ(v + 1)

∞∑
j=0

δjLj(v, I/c) (19)

where Lj (v, I/c) is a Laguerre polynomial of order j in I/c
and is written as

Lj

(
v,

I

c

)
=

j∑
k=0

(−1)kΓ(v + j + 1)

k!(j − k)!Γ(v + j − k + 1)

(
I

c

)j−k

(20)
and

δj =

j∑
k=0

(−1)k
j!Γ(v + 1)

k!(j − k)!Γ(v + j − k + 1)
µ I

c
[j − k] (21)

where the jth moment of I is denoted by µI [j]. In (19), the
parameters c =

µI [2]−µ2
I [1]

µI [1]
and v = µI [1]

c − 1 are chosen to
have the mean and variance of the Gamma RV I0, whose pdf
is fI0(I) = Iv exp(−I/c)

cv+1Γ(v+1) , match those of RV I . From (19),
the corresponding characteristic function (CF) and moment
generating function (MGF) for RV I can also be obtained.
The detailed derivations are given in the Appendix. These
analytical expressions can be used to estimate the performance
of an FSO system over the lognormal fading. Substituting (19)
into (6) and (7) yields the likelihood functions

f(r|s0) =
1

ξ
√
2πσgcv+1

∞∑
j=0

δj

∫ ∞

0

(
x

ξ

)v−1

exp

(
− x

ξc

)
× exp

(
−γ(r − x)2

)
Lj

(
v,

x

ξ

)
dx

(22)
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TABLE II
PDF AND ERROR FLOOR EXPRESSIONS FOR VARIOUS TURBULENCE CHANNEL MODELS

Turbulence Models PDF Error Floors

Lognormal 1√
2πσI

(1− p1)Q
(

lnTth−ln ξ+σ2/2
σ

)
× exp{− (ln I+σ2)2

2σ2 } +p1Q
(

ln(2+ξ)−lnTth−σ2/2
σ

)
K-distribution 2α

α+1
2

Γ(α) I
α−1
2 (1− p1){1− 1

2 [h(1, α, Tth, ξ) + h(α, 1, Tth, ξ)]}
×Kα−1(2

√
αI) +p1{1

2 [h(1, α, Tth, 2 + ξ) + h(α, 1, Tth, 2 + ξ)]}

Gamma-Gamma 2(αβ)
α+β

2

Γ(α)Γ(β) I
α+β

2 −1 (1− p1){1− 1
2 [h(β, α, Tth, ξ) + h(α, β, Tth, ξ)]}

×Kα−β(2
√
αβI) +p1{1

2 [h(β, α, Tth, 2 + ξ) + h(α, β, Tth, 2 + ξ)]}
Negative Exponential 1

µ exp{− I
µ} (1− p1) exp

(
Tth

ξµ

)
+ p1

{
1− exp

[
Tth

(2+ξ)µ

]}
and

f(r|s1) =
1

(2 + ξ)
√
2πσgcv+1

∞∑
j=0

δj

∫ ∞

0

(
x

2 + ξ

)v−1

× exp

(
− x

(2 + ξ)c

)
exp

(
−γ(r − x)2

)
Lj

(
v,

x

2 + ξ

)
dx.

(23)

Substituting (22) and (23) into (18) yields

− 1− p1
ξ

∞∑
j=0

δj

∫ ∞

0

(
x

ξ

)v−1

exp
(
−γ(x2 − 2xTop)

)
× exp

(
− x

ξc

)
Lj

(
v,

x

ξ

)
dx+

p1
2 + ξ

∞∑
j=0

δj

×
∫ ∞

0

(
x

2 + ξ

)v−1

exp
(
−γ(x2 − 2xTop)

)
× exp

(
− x

(2 + ξ)c

)
Lj

(
v,

x

2 + ξ

)
dx = 0.

(24)

The detection threshold can be obtained numerically with
respect to a given offset ξ and electrical SNR from (24).
On the timescale of stationary statistics, the electrical SNR
is constant, and the detection threshold is a fixed detection
threshold. A comparison of the electrical-SNR-optimized de-
tection thresholds, acquired by the approximated and exact
lognormal pdfs, are presented in Table III. The thresholds
are obtained by averaging 10 calculated detection thresholds.
As shown from Table III, the approximated pdf can be used
to calculate the detection threshold with high accuracy when
the electrical SNR is less than 16 dB. For higher values of
SNR, the calculated detection thresholds lose accuracy, and
the corresponding BER curve deviates from the BER curve
obtained with perfect knowledge of the lognormal pdf. This
discrepancy occurs because the Laguerre-polynomial-based
pdf approximation can not accurately describe the behaviors of
the lognormal pdf near the origin. Fortunately, this inaccuracy
does not concern most practical FSO systems, as they typically
operate at relatively low SNR values [34].

V. PARAMETER ESTIMATION

As the electrical-SNR-optimized detection threshold intro-
duced in Section IV requires knowledge of the state offset
ξ and electrical SNR γ, it is necessary to estimate ξ and γ.
MoME and MLE are used for this estimation in this section.

TABLE III
COMPARISON OF DETECTION THRESHOLDS BY USING AN EXACT AND

APPROXIMATED LOGNORMAL PDF WITH σ = 0.25

SNR (dB) Thresholds with Thresholds with Sample
exact PDF approximated PDF variance

0 0.9497 0.9505 3.11× 10−8

4 0.8633 0.8637 2.27× 10−8

8 0.7528 0.7496 1.89× 10−8

12 0.6302 0.6214 2.56× 10−8

16 0.5087 0.4984 1.08× 10−7

20 0.3981 0.4697 8.62× 10−6

24 0.3036 0.5239 1.03× 10−5

With bit-by-bit interleaved fading channels3 [2], [11], it is
assumed that there are 2L sampled signals during the observa-
tion interval. The vectors R = [r[0] ... r[2L− 1]]T , If =
[I[0] ... I[2L− 1]]T , and N = [n[0] ... n[2L− 1]]T

represent the received signal vector, fading coefficient vec-
tor, and noise vector, respectively. Assuming that a training
sequence of length 2L is transmitted with L consecutive 1’s
followed by L consecutive 0’s, one can write the received
signal at the lth bit interval when bit 1 is transmitted as

r[l]|s1 = (2 + ξ)I[l] + n[l], l = 0, 1, ..., L− 1 (25)

where I[l] and n[l] represent the fading coefficient and noise
during the lth bit interval, respectively. Similarly, if L 0’s are
transmitted, the received signal at the kth bit interval can be
written as

r[k]|s0 = ξI[k] + n[k], k = L,L+ 1, ..., 2L− 1. (26)

A. Method of Moments Estimation

Using (25) and (26), one can obtain the estimation of ξ as

ξ̂ =
1
L

∑2L−1
k=L r[k]|s0

1
2L

∑L−1
l=0 r[l]|s1 − 1

2L

∑2L−1
k=L r[k]|s0

. (27)

3A typical Gbps FSO system operates in a quasi-static atmospheric tur-
bulence channel with a coherence time on the order of milliseconds. This
coherence time is much longer than the nanosecond bit interval. Thus, the
same fading coefficient affects a block of information bits, and the system
performance suffers from correlation. However, we can transform a quasi-
static channel into a block fading channel by way of block interleaving [35].
In such a system, we place each information bit in different blocks, such that
each block (i.e., information bit) experiences independent fading from that of
neighbouring blocks.
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To assess the performance of the moment estimator ξ̂,
approximate expressions can be derived for the mean and vari-
ance of ξ̂ when the sample size is asymptotically large. Assum-
ing the statistics T = [T1 T2]

T , where T1 = 1
L

∑L−1
l=0 r[l]|s1

and T2 = 1
L

∑2L−1
k=L r[k]|s0, one can obtain the covariance

matrix as

CT =

(
Var[T1] Cov[T1, T2]
Cov[T2, T1] Var[T2]

)
=

(
1
L [σ

2
g + (2 + ξ)2Var[I]] 0

0 1
L (σ

2
g + ξ2Var[I])

)
.

(28)

Here, Var[·] denotes the variance, and Cov[·, ·] denotes covari-
ance of two RVs. The estimator ξ̂ can be rewritten as

ξ̂
∆
= φ(T) =

2T2

T1 − T2
. (29)

The estimator in (27) is consistent, i.e., ξ̂ Pr−→ ξ as L −→ ∞,
and is asymptotically Gaussian distributed, i.e.,

√
L(ξ̂−ξ)

L−→
N (0, σ2

ξ̂
). Performing a first-order Taylor expansion of φ(·)

about the point T = E[T] gives [36]

ξ̂ ≈ φ(T)

∣∣∣∣∣T=E[T] +
2∑

i=1

∂φ

∂Ti

∣∣∣∣∣
T=E[T]

(Ti − E[Ti]) (30)

where E[T] = [(2 + ξ)E[I] ξE[I]]T . Taking the expectation
of (30), one has

E[ξ̂] ≈ φ(T)

∣∣∣∣
T=E[T]

= ξ (31)

and the asymptotic variance of ξ̂ can be expressed as [37]

σ2
ξ̂
=Var[ξ̂] =

∂φ

∂Ti

∣∣∣∣T
T=E[T]

CT
∂φ

∂Ti

∣∣∣∣
T=E[T]

=
σ2
g [ξ

2 + (2 + ξ)2] + 2ξ2(2 + ξ)2Var[I]
4L(E[I])2

.

(32)

Using (25) and (26), one can obtain the estimation of the
turbulence mean m = exp(µ+σ2/2) and N0, respectively, as

m̂ =
1

2L

L−1∑
l=0

r[l]|s1 −
1

2L

2L−1∑
k=L

r[k]|s0 (33)

and

N̂0 = 2
(m̂|s1)2 µ̂r[2]|s0 − (m̂|s0)2 µ̂r[2]|s1

(m̂|s1)2 − (m̂|s0)2
(34)

where m̂|s1 = 1
L

∑L−1
l=0 r[l]|s1, µ̂r[2]|s0 = 1

L

∑2L−1
k=L r2[k]|s0,

m̂|s0 = 1
L

∑2L−1
k=L r[k]|s0, and µ̂r[2]|s1 = 1

L

∑L−1
l=0 r2[l]|s1.

Using (33) and (34), one can obtain the estimation of γ as

γ̂ =
m̂2

N̂0

=
(m̂|s1 − m̂|s0)2

[
(m̂|s1)2 − (m̂|s0)2

]
8
[
(m̂|s1)2 µ̂r[2]|s0 − (m̂|s0)2 µ̂r[2]|s1

] . (35)

B. Maximum Likelihood Estimation

The estimator based on the maximum-likelihood principle is
the most popular approach to obtaining practical estimators.
Additionally, for most cases of practical interest, its perfor-
mance is optimal for large data records and is approximately
the minimum variance unbiased estimator due to its approxi-
mate efficiency.

For the MLE, with bit-by-bit interleaved fading channels
[2], [11], we transmit a training sequence consisting of 2L
consecutive 1’s. Assuming the received signal model is the
same as (25), one can write the pdf of the received signal as
[13]

f(r[k]|s1;θ) =fI (r[k]) ∗ fN (r[k])

=

∫ ∞

0

exp

(
− (lnx− ln (2 + ξ)− µ)

2

2σ2

)

× 1√
2N0πσx

exp

(
− (r[k]− x)2

N0

)
dx

(36)

where θ = [µ σ2 N0 ξ]T denotes the unknown vector,
and fN (r[k]) = 1√

πN0
exp

(
− r2[k]

N0

)
is the noise pdf. Assum-

ing that the components of the received signal vector R are
independent, we can write the pdf of the received signal when
s1 is true as

f(R;θ) =
2L−1∏
k=0

f(r[k]|s1;θ)

=
2L−1∏
k=0

∫ ∞

0

exp

(
− (lnx− ln (2 + ξ)− µ)

2

2σ2

)

× 1√
2N0πσx

exp

(
− (r[k]− x)2

N0

)
dx.

(37)

The MLE of the unknown vector θ is obtained by maxi-
mizing the log-likelihood function

L(R;θ) = ln f(R;θ)

= ln
2L−1∏
k=0

fI (r[k]) ∗ fN (r[k])

=

2L−1∑
k=0

ln

∫ ∞

0

exp

(
− (lnx− ln (2 + ξ)− µ)

2

2σ2

)

× 1√
2N0πσx

exp

(
− (r[k]− x)2

N0

)
dx.

(38)

Taking the derivative of (38) with respect to the unknown
parameter and setting it equal to zero, we can obtain the
MLE of the unknown vector θ. As it is difficult to obtain
a closed-form expression for each unknown parameter, the
expectation-maximization (EM) algorithm can be implemented
numerically to determine the MLE. This method, although
iterative in nature, is guaranteed under mild conditions to
converge and produce a local maximum [37].

In order to simplify the problem, we decompose the original
data sets into the independent data sets y1[k] = I[k] and
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y2[k] = n[k], where y1[k] and y2[k] are the complete data, and
they are related to the original data as r[k] = y1[k]+y2[k]. In-
stead of maximizing ln f(R;θ), we can maximize ln f(Y;θ),
where Y = [y1 y2]

T , y1 = [y1[0] ... y1[2L− 1]]T and
y2 = [y2[0] ... y2[2L− 1]]T . Since y1[k] = I[k], we have

ln f(y1[k];θ)

= ln

(
1√

2πσ2y1[k]
exp

(
− (ln y1[k]− ln (2 + ξ)− µ)2

2σ2

))

= − ln
√
2πσ2 − ln y1[k]−

(ln y1[k]− ln (2 + ξ)− µ)2

2σ2
.

(39)

Similarly, we have

ln f(y2[k];θ)

= ln

(
1√
πN0

exp

(
−y22 [k]

N0

))
= − ln

√
πN0 −

y22 [k]

N0
.

(40)

Assuming θ̂
(j)

= [µ̂(j) (σ̂2)(j) (N̂0)
(j) (ξ)(j)]T is an

estimate of θ in the jth iteration, each iteration of the EM
algorithm can be written as follows.
E-step: This step determines the conditional expectation of the
complete data

U(θ, θ̂
(j)

) = E
Y|R;θ̂

(j) [ln f(Y;θ)]

= E
y1|R;θ̂

(j) [ln f(y1;θ)] + E
y2|R;θ̂

(j) [ln f(y2;θ)]

=

∫
ln f(y1;θ)f(y1|R; θ̂

(j)
)dy1

+

∫
ln f(y2;θ)f(y2|R; θ̂

(j)
)dy2.

(41)

where we have

f(y1|R; θ̂
(j)

) =
f(R|y1; θ̂

(j)
)f(y1; θ̂

(j)
)

f(R; θ̂
(j)

)
(42)

and

f(y2|R; θ̂
(j)

) =
f(R|y2; θ̂

(j)
)f(y2; θ̂

(j)
)

f(R; θ̂
(j)

)
(43)

and where

f(R|y1; θ̂
(j)

) =
2L−1∏
k=0

1√
2π(σ̂2)(j)(r[k]− y1[k])

× exp

(
− (ln(r[k]− y1[k])− ln (2 + (ξ)(j))− µ̂(j))2

2(σ̂2)(j)

)
(44)

and

f(R|y2; θ̂
(j)

) =
2L−1∏
k=0

1√
π(N0)(j)

exp

(
− (r[k]− y2[k])

2

(N0)(j)

)
.

(45)
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Fig. 2. BERs of OOK modulated systems using fixed detection thresholds
Tth, electrical-SNR-optimized detection thresholds and adaptive detection
thresholds over a lognormal turbulence channel with σ = 0.25 and ξ = 0.

M-step: This step maximizes (41) with respect to θ

θ(j+1) = argmax
θ

U(θ, θ̂
(j)

) (46)

where θ̂
(j+1)

is the new estimate of θ. For the EM algorithm,
the conditional expectation of the complete data is nondecreas-
ing until it reaches a fixed point. This fixed point is the MLE
of θ, i.e., θ̂ML = [µ̂ML σ̂2

ML N̂0,ML ξ̂ML]
T . Based on

the invariance property of the MLE, we obtain the MLE of
µI as µ̂I,ML = exp

(
µ̂ML +

σ̂2
ML

2

)
. The MLE of γ can be

obtained as

γ̂ML =
(µ̂I,ML)

2

N̂0,ML

=

(
exp

(
µ̂ML +

σ̂2
ML

2

))2
N̂0,ML

. (47)

The Cramér-Rao lower bound (CRLB) of γ̂ can be calcu-
lated using [37]

Var[γ̂]

≥
[
∂γ
∂µ

∂γ
∂σ2

∂γ
∂N0

∂γ
∂ξ

]
I−1(θ)

[
∂γ
∂µ

∂γ
∂σ2

∂γ
∂N0

∂γ
∂ξ

]T
(48)

where I(θ) is the Fisher information matrix.

VI. NUMERICAL RESULTS

Figures 2 and 3 show the BERs versus electrical SNR when
the OOK modulated system uses fixed detection thresholds of
Tth = 1 and Tth = 1.2 with σ = 0.25 for the lognormal
channel. For expository purposes, the parameter ξ is set to be
ξ = 0 for Fig. 2 and ξ = 0.2 for Fig. 3. It is observed that the
BER curves obtained by using Monte Carlo simulation show
excellent agreement with the derived error floors in large SNR
regimes and the error floors decrease for lower fixed detection
thresholds.

To eliminate the error floors and improve the performance,
the system with electrical-SNR-optimized detection thresholds
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Fig. 3. BERs of OOK modulated systems using fixed detection thresholds
Tth, electrical-SNR-optimized detection thresholds and adaptive detection
thresholds over a lognormal turbulence channel with σ = 0.25 and ξ = 0.2.

is used. The BERs for the system with the electrical-SNR-
optimized detection thresholds are shown in Figs. 2 and
3, along with the BERs for the system with the adaptive
detection thresholds. Both electrical-SNR-optimized detection
thresholds are obtained by using the approximated lognormal
pdf with J = 3 sample moments. Both the electrical-SNR-
optimized and adaptive detection threshold results exhibit no
error floors for increasing electrical SNR values. As expected,
the system with electrical-SNR-optimized detection thresholds
does not perform as well as the optimum OOK system using
adaptive detection thresholds. For example, in Fig. 2, the OOK
modulated system using adaptive detection thresholds requires
an SNR of 13 dB to attain a BER of 10−5, while the system
using electrical-SNR-optimized detection thresholds requires
an SNR of 15.3 dB to achieve the same BER performance.
The corresponding SNR penalty factor in Fig. 2 for the system
using an electrical-SNR-optimized detection threshold, is 2.3
dB at BER of 10−5. The corresponding SNR penalty factor
in Fig. 3 for the system using an electrical-SNR-optimized
detection threshold, increases to 4.5 dB when ξ = 0.2.
This performance difference can be factored into the ultimate
FSO system design to offset the complexity of implementing
systems with adaptive detection thresholds (and their need for
knowledge of the instantaneous SNR). It is also important to
point out that the BER performance achieved by the electrical-
SNR-optimized system does not require rapid adjustment of
the detection threshold. Since practical FSO systems typically
operate at constant transmit power, the detection threshold only
needs to be calculated once over durations of seconds or even
minutes. The electrical-SNR-optimized system can therefore
reduce the implementation complexity, compared to that of
the idealized system using adaptive threshold detection.

In Fig. 4, the approximated lognormal pdf using J = 3
sample moments is compared with the exact lognormal pdf, for
σ = 0.25. The absolute errors between these pdfs are shown
explicitly in Fig. 5. The approximated lognormal pdf shows
good agreement with the exact lognormal pdf when σ = 0.25.
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Fig. 4. Comparison of an approximated pdf using J = 3 sample moments
and an exact pdf for a lognormal fading channel with σ = 0.25.

However, for higher σ values (σ > 0.75), the approximation
of the lognormal pdf becomes inaccurate as integer moments
can not uniquely determine the lognormal pdf. Fortunately,
such scintillation levels are not encounted in practice [38]. A
comparison of absolute errors from the pdf approximations
using different numbers of sample moments is also given
in Fig. 5. Clearly, larger numbers of sample moments can
reduce the absolute error, but this comes at the cost of higher
computational complexity. In general, a higher scintillation
level σ will require higher order sample moments and the
resulting approximation can become increasingly inaccurate.
The Laguerre-polynomial-based approximation is accurate for
the 0.1 to 0.5 range of σ values that is of interest to FSO
applications [11], [29].

In Fig. 6, we compare the BER performance between the
approximated lognormal pdf, for different values of σ with
J = 3 sample moments, and the exact lognormal pdf. The
two simulated error rate curves show good agreement over a
wide range of SNR values. For the large SNR regime, the
BER results from the approximate pdf have reduced accuracy,
because the approximated pdf based on Laguerre polynomials
is unable to characterize the behaviors of the lognormal pdf
near the origin.

In order to evaluate the estimator performance, the sample
variance of the electrical SNR estimator is compared with the
CRLB. The variance of the electrical SNR estimator is given
by

σ̂2
γ̂ =

1

M − 1

M−1∑
i=0

(γ̂i − ¯̂γ)2 (49)

where γ̂i is the estimation by using MoME or MSE at the
ith trail, M represents the total number of trails, and ¯̂γ is
the sample mean of the electrical SNR estimator. In order
to assess the estimator, Monte Carlo simulations are used
to obtain σ̂2

γ̂ . In the simulation, different training sequence
lengths are used to estimate the mean and noise variance,
M = 1 × 104 trials are used to calculate the variance of the
electrical SNR estimator, and ξ is set as 0.2. Figure 7 plots the
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different training sequence lengths over a lognormal turbulence channel with
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normalized sample variance of the electrical SNR estimator,
which is defined as the sample variance scaled by γ, versus
the average electrical SNR. It is shown that the normalized
sample variance for MLE attains the normalized CRLB, which
is obtained by scaling the CRLB by γ. However, there is
a discrepency between the normalized sample variance for
MoME and the normalized CRLB for SNR values greater than
12 dB due to the inaccurate estimation of the noise variance. It
is shown that the discrepency between the normalized sample
variance for MoME and the normalized CRLB will disapear
when ξ = 0. In this case, the received signal is the noise when
0 is transmitted. Thus, the noise variance can be accurately
estimated by transmitting a training sequence with consecutive
0’s. When ξ ̸= 0 and 0 is transmitted, the received signal is
the noise as well as the fading coefficient term. This leads
to inaccurate estimation of the noise variance if a training
sequence transmitted with consecutive 0’s.

VII. CONCLUSION

It is known that FSO systems operating with OOK and
fixed detection thresholds can suffer from irreducible error
floors and power inefficiency. With this in mind, the resulting
error floors are analyzed here (and validated with simulations)
for lognormal turbulence channels and quantified for the
general case having low and high state offsets, i.e., with
finite extinction ratios. It is shown that the error floors can
be eliminated by using electrical-SNR-optimized detection
thresholds that minimize the average BER. The electrical-
SNR-optimized system with the Laguerre-polynomials-based
approximate pdf for the turbulence is found to be effective
for typical FSO systems, which operate at relatively low
SNR values, as it yields near-optimal BER performance. It
is concluded that MLE is the preferred estimation technique
for electrical-SNR-optimized detection with a finite extinction
ratio, although such estimation comes at the cost of higher
computational complexity.

APPENDIX

The CF of a RV I is the Fourier transform of its pdf, fI(I),
and it is defined by

ΦI(ω) =

∫ ∞

−∞
fI(I) exp(jωI) dI (50)

or

ΦI(ω) = Re[ΦI(ω)] + jIm[ΦI(ω)] (51)

where j2 = −1. In (51), Re[·] and Im[·] denote the real and
imaginary parts, respectively. Both can be written, respectively,
as

Re[ΦI(ω)] =

∫ ∞

0

fI(I) cos(ωI) dI (52)

and

Im[ΦI(ω)] =

∫ ∞

0

fI(I) sin(ωI) dI. (53)
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Using (19), one can approximate (52) as

Re[ΦI(ω)]

≈
∫ ∞

0

Iv exp(−I/c)

cv+1

∞∑
n=0

δnLn

(
v,

I

c

)
cos(ωI) dI

=
1

cv+1

∞∑
n=0

δn

∫ ∞

0

Iv exp(−I/c)Ln

(
v,

I

c

)
cos(ωI) dI.

(54)

Substituting (20) into (54), one has

Re[ΦI(ω)] ≈
1

cv+1

∞∑
n=0

δn

n∑
k=0

(−1)kΓ(α)

k!(n− k)!Γ(α− k)

×
∫ ∞

0

Iv exp(−I/c)

(
I

c

)n−k

cos(ωI) dI

=
∞∑

n=0

δn

n∑
k=0

(−1)kΓ(α)

k!(n− k)!Γ(α− k)(1 + c2ω2)
α−k

2

× cos((α− k) arctan(cω))
(55)

where α = v+ n+1. In deriving the last equality of (55), an
integral identity [30, eq. 3.944(6)] has been used.

Similarly, substituting (19) and (20) into (53) and using an
integral identity [30, eq. 3.944(5)], one obtains

Im[ΦI(ω)] ≈
∞∑

n=0

δn

n∑
k=0

(−1)kΓ(α)

k!(n− k)!Γ(α− k)(1 + c2ω2)
α−k

2

× sin((α− k) arctan(cω)).
(56)

The approximate CF is then found to be

ΦI(ω) ≈
∞∑

n=0

δn

n∑
k=0

(−1)kΓ(α)

k!(n− k)!Γ(α− k)(1 + c2ω2)
α−k

2

× [cos((α− k) arctan(cω)) + j sin((α− k) arctan(cω))].
(57)

Using an integral identity [30, eq. 3.326(2)], one can obtain
the MGF as

MI(s) ≈
∞∑

n=0

δn

n∑
k=0

(−1)kΓ(v + n+ 1)

k!(n− k)!(1− sc)v+n−k+1
. (58)
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