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Abstract 

Nanoparticle aggregates formed in colloidal or aerosol processes have complex 

morphologies. Soot, for example, is formed as aggregates of primary particles. Soot 

properties are influenced by the diameter (𝑑p) and the arrangement of its constitutive 

primary particles. Transmission Electron Microscopy (TEM) is commonly used for the 

characterization of agglomerates’ morphology, but manual analysis of the micrographs is 

extremely labour-intensive. Here, a new method is developed for automatic determination 

of the average primary particles diameter based on the variation of the 2-D pair 

correlation function P(𝑟) at distances 𝑟 measured from the main skeleton of the 

aggregates. It is assumed that P∗ = P(𝑑p/2) is nearly constant. The method has been 

applied to numerical agglomerates and real soot aggregates collected from several 

operating conditions of a gasoline direct injection engine and a heavy-duty compression-

ignition engine. Using a constant value for P∗ determined from the analysis of TEM 

images results in primary particle sizing errors (relative to manual sizing) of ~13% for 

single aggregates. The ensemble-mean values of 𝑑p for manual and automatic sizing 

differed by ~4%. 

1. Introduction 

Aerosol and colloidal aggregates are formed in many industrial and natural environments. 

These nanoparticle aggregates can be either useful or hazardous. Soot, for example, is 

formed by incomplete combustion of hydrocarbons; and has significant adverse impacts 

on human health [1] and climate [2,3]. The morphology of the aggregate influences its 

environmental impacts, and its transport and radiative properties; and primary particle 

diameter (𝑑p) is one of the most important morphological parameters of nano-clusters.  



Production rate and properties of synthetic particles, and accurate measurement of 

emission rate and size distribution of fractal aggregates depend on accurate estimation of 

the morphology of these particles and sizing of their constitutive monomers. Radiative 

properties of soot [4–8] and its impact on atmosphere [9] are non-linearly proportional to 

the diameters of its constitutive primary particles. For example, light scattering and 

absorption cross sections of soot are proportional to the 6th and 3rd powers of 𝑑p [7], 

respectively. Soot toxicity [10,11] and mass also correlate to the 2nd and 3rd powers of 𝑑𝑝, 

respectively. Advanced data inversion and accurate measurement of concentration and 

size distributions of soot particles using Scanning Mobility Particle Spectrometers 

(SMPS) [12] rely on accurate estimation of the primary particle diameter. 

Combined light scattering and absorption measurement were used by Sorensen et al. [13] 

to estimate 𝑑𝑝. However, this approach requires prior information on the fractal 

dimension and optical properties, e.g. refractive index, of soot particles. Light 

depolarization has also been used for the measurement of 𝑑p; however, the method has 

been shown to be sensitive to the fractal dimension, refractive index, and a few other 

morphology parameters of soot [14]. Laser-Induced Incandescence (LII) is another 

method which uses cooling rate of the soot particles to measure primary particle size 

[4,15]. This model is also highly sensitive to soot chemical composition and morphology. 

Eggersdorfer et al. [16,17] have proposed a method for sizing of the primary particles in 

Zirconium aggregates using particle mass and mobility diameter. This method is 

extended to carbon soot particles by Dastanpour et al. [18]. 

Transmission Electron Microscopy (TEM) of particles collected on a microscope grid 

provides visual observation of the soot particles and is commonly used for morphology 

characterization of nano particles [11,19–27]. Statistically reliable results can only be 

acquired from this method when a great number of images are analysed. Primary particle 

diameter are commonly measured manually [20,28] from digitized TEM images; and this 

manual sizing is an exceedingly time-intensive process. 

Grishin et al. [29] have used Hough transform in the analysis of the TEM images for 

automatic determination of primary particle size distribution in individual aggregates. 

However, accurate results can only be acquired when prior information on the size range 

of the primary particles in each aggregate is known. This model can only detect primary 

particles touching the edge of the aggregate and relies on the assumption of perfectly 

spherical structures for primary particles. Testing this method on samples from a 

Gasoline Direct Injection (GDI) engine (described below), we found that the accuracy of 

this model is extremely sensitive to the fitting parameters. For example, by changing the 

engine operating condition an increase of approximately 4 nm in primary particle 

diameter was measured from manual analysis of the TEM images; however the automatic 

method only showed an increase of less than 1 nm in primary particle size. Accurate 

measurement of the primary particle diameter by this method requires algorithm 

calibration for each individual TEM image.  



In another automated sizing algorithm [30], the Euclidian Distance Mapping Surface-

Based Scale Analysis (EDM-SBS) was used for automatic sizing of the primary particles. 

However the influence of particle size on the accuracy of the method has not been 

investigated. De Temmerman et al. [31] have developed a semi-automatic image 

processing method in which the primary particles are detected on binarized TEM images 

by watershed segmentation and their sizes are measured using EDM. Their method is not 

limited by the assumption of spherical structures for primary particles and monomers 

should not necessarily be located on the perimeter of the clusters. 

A simple and robust method for automatic determination of average diameter of the 

primary particles in individual aggregates has been developed here and then tested on 

numerical agglomerates of point touching primary particles and soot aggregates formed 

at different operating conditions of two reciprocating engines. This method can be used 

as an alternative approach for automatic measurement of the primary particle diameters in 

individual2 and ensembles3 of agglomerates. 

2. The Pair Correlation Method (PCM) 

This method uses the 2-D pair correlation function to estimate 𝑑𝑝. The pair correlation 

function P(𝑟) is a weighted average of the particle density at a given radius 𝑟 [32]. For 

binary images, this function estimates the probability of finding another pixel at a 

distance 𝑟 from a reference pixel: 

P(𝑟) =  lim
𝑑𝑟→0

1
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where 𝜃(𝑟ij) = 1 for 𝑟 < 𝑟ij < 𝑟 + 𝑑𝑟 and 𝜃(𝑟ij) = 0 elsewhere, 𝑟ij is the distance 

between pixels i and j, and 𝑁 is total number of the pixels within the projected region of 

the particle. At small distances, P(𝑟) → 1; at distances comparable to the aggregate 

dimensions it falls to zero. 

Simple Pair Correlation Method (PCM) developed here is based on the assumption that 

P∗ = P(𝑑𝑝/2) is nearly constant for all soot particles. First, the value of P* is measured 

for aggregates with known primary particle diameter. To this end, synthetic TEM images 

were produced by random projections of straight chains of monodisperse primary 

particles and numerical fractal agglomerates with different levels of primary particle 

polydispersity and overlap. This parameter was also measured for real TEM images using 

manually measured primary particle radius. P(𝑟) was calculated for all synthetic and real 

TEM images, and its value at the known primary particle radius (P∗) was measured. 

Finally, a constant value was selected for P* by averaging P(𝑑𝑝/2) measured for 

individual synthetic and real TEM images. 
                                                           
2 Average primary particle diameter for each aggregate 
3 Average primary particle diameter in the whole ensemble of aggregates. This is the average of the mean primary 

particles measured for each individual aggregate. 



Once P* is known, PCM can be used for the calculation the average diameter of the 

primary particles in both synthetic and real TEM images. This method consists of three 

main steps. First, the portion of the image corresponding to the projection of each 

individual aggregate should be detected. To this end, real TEM images were 

automatically binarized using Otsu’s algorithm for thresholding [33] and rolling ball 

transformation [29]; and synthetic images were scanned pixel-by-pixel. Second, P(𝑟) 

should be calculated for each aggregate. In order to reduce computational costs, but still 

preserve the structure of the aggregates, values of the pair correlation function (PCF) 

were computed at different distances 𝑟 from the reference points on the skeleton of the 

particles. The particle’s skeleton was detected using MATLAB built-in function 

“bwmorph” and operation algorithm “thin”. This operation removes pixels on the 

boundaries of the projected binary image without breaking the particle. Skeleton and 

P(𝑟) curve of a sample TEM image are illustrated in Figure 1. Finally, average radius of 

the primary particles will be the radius at which P(𝑟) is equal to P* (Fig. 1, panel d). 

 
Figure 1: (a) Sample TEM image of real soot; (b) its skeleton; (c) P(𝑟); (d) detail of P(𝑟) around P∗ and 

𝑟p. 

3. Images used for PCM development and validation 

3.1. Numerical agglomerates 

The PCM was first developed using numerical particles including straight chains and 

three-dimensional fractal agglomerates. Straight chains were composed of monodisperse 

primary particles of point-touching monomers (overlap coefficient4 𝐶ov=0). The total 

number of the monomers (𝑁p) in chains was varied between 1 and 100. Fractal 

                                                           
4 𝐶ov = (𝑑p,𝑖𝑗

̅̅ ̅̅ ̅̅ − 𝐷𝑖𝑗) 𝑑p,𝑖𝑗
̅̅ ̅̅ ̅̅⁄ , where 𝑑p,𝑖𝑗

̅̅ ̅̅ ̅̅  and 𝐷𝑖𝑗  are the average diameter and center-to-center separation distance 

of two adjustment monomers of i and j.  



agglomerates were generated by Eggersdorfer and Pratsinis [34]. The agglomerates were 

produced by a cluster-cluster agglomeration algorithm [34,35] and consisted of 16, 32, 

64, 128, 256, and 512 primary particles. Fractal prefactor, 𝑘f, of the generated particles 

was approximately constant and equal to 1.4 while the fractal dimension, 𝐷f, decreased 

from 1.78 to 1.73 as the primary particles polydispersity increased from 1 to 1.6, 

consistent with the results obtained by Eggersdorfer & Pratsinis [36] for particles 

generated by the DLCA algorithm. Diameters of the primary particles were selected 

randomly from log-normal distributions with geometric standard deviations (𝜎g) of 1.0, 

1.2, 1.4, and 1.6. Considering the range of the values reported for the overlap coefficient 

of soot in literature [19,37,38], three different cases of 𝐶ov=0 (point-touching monomers), 

𝐶ov=0.1, and 𝐶ov=0.3 were considered for each 𝑁p and 𝜎g. The range of the parameters 

considered here covers a large group of fractal structures ranging from gold nanochains 

to zirconia and soot aggregates. Ten aggregates were generated for each 𝑁p, 𝜎g, and 𝐶ov, 

and 50 random synthetic TEM images were produced for each aggregate, a total of 36,000 

synthetic images. A sample numerical agglomerate and the corresponding synthetic TEM 

image is illustrated in Figure 2. 

 
Figure 2: Sample numerical agglomerate (left) and its synthetic TEM image (right). 

3.2. Images of engine exhaust particulate 

Soot particles were collected from several operating conditions of two reciprocating 

engines. A Ford 2.0 Liter, inline 4-cylinder GDI engine was run with three types of fuel 

(gasoline blended with 0%, 10%, and 30% ethanol: E0, E10, and E30, respectively). 

Operating conditions of this engine include transient cold start (CS) and hot start (HS) 

tests, simulated highway cruise (C) condition (2600 RPM and 58 N.m torque), and a 

higher speed and lower torque (S) setting (3000 RPM and 38 N.m torque). Another set of 

samples were collected from a 15 liter, 6-cylinder (5 cylinders were deactivated), 

Cummins ISX High Pressure Direct Injection (HPDI) engine operating with Westport 

Innovations HPDI natural gas combustion system. This engine was run at five different 

operating modes including 25, 37, 50, and 75 percent of maximum load at an engine 

speed of 1500 rpm (B25, B37, B50, and B75). Lower load test points were operated at 



20% exhaust gas recirculation (EGR) while the highest load (B75) test point was ran at 

25% EGR. Engine was also run at 63% maximum load and a lower speed of 1200 RPM 

at 0% EGR (A63). Soot samples were deposited thermophoretically on TEM grids and 

images were produced by a Hitachi H7600 transmission electron microscope operating at 

80 kV under high resolution mode. Details of the experiments and sampling procedures 

are further discussed in [18,20,26]. Several studies have shown that soot from 

combustion sources, unless it has been collapsed by substantial coatings (not the case 

here) has a fractal dimension, 𝐷f, close to 1.8 [39,40]. Soewono studied the fractal 

dimension from one of the test engines here (the HPDI engine) and found only subtle 

variations in 𝐷f [41,42]. 

4. Results and discussion 

4.1. Numerical aggregates 

Each of the synthetic chains and fractal agglomerates were projected randomly into 50 

different orientations5 (500 images for each set of 𝑁p, 𝜎g, and 𝐶ov for fractal aggregates 

and 50 images for each chain size). Synthetic binary images were produced by Monte 

Carlo approach: each particle was scanned by rays in Z direction emerging from every 

single point on the X-Y plane. Once the binary images were produced, skeleton of the 

projected particle was detected and pair correlation function was computed at distances 𝑟 

from the skeleton of each image using Eq. (1); and values of P∗ were calculated at the 

known average 𝑟p. 

Variation of the average P∗ with the particle size (𝑁p) is illustrated in Figure 3 (left panel) 

for chains and fractal agglomerates of point-touching monomers (𝐶ov=0). The effect of 

the overlap coefficient on P∗ of the fractal aggregates is reported in Table 1 and 

illustrated in Figure 4. In Figure 4, the horizontal axis is the ratio of the area-equivalent 

and gyration diameters 𝑑a/𝑑g. This ratio decreases with 𝑁p for fractal dimension <2, and 

unlike the fractal dimension, is obtained directly from the image without assumptions. 

As illustrated in Figures 3 (left panel) and 4, P∗ increases with 𝑁p, 𝜎g and 𝐶ov. As 

particles become larger, a greater portion of the primary particles are shielded by other 

monomers which ultimately results in slower decrease of the value of the pair correlation 

function with 𝑟 and a larger value for P∗. As 𝐶ov increases, the average thickness 

(distance between the skeleton and the edge) of the projected particle also increases; 

which ultimately results in an increase in the value of P∗.  

As 𝑁p increases, P∗ approaches 0.7 (𝑁p ≤100) for chains of monodisperse primary 

particles. Average P∗ varies between 0.84 to 0.95 for aggregates of different 𝑁p, 𝜎g and 

                                                           
5 To insure the accuracy of the algorithm, ten particles were selected and projected randomly into 50 different 

orientations. Measured average P∗ was consistent (<0.01 deviation) with those obtained from 20 projections. 



𝐶ov. Its average varies between 0.89 and 0.93 for aggregates of 𝜎g≅1.2 and 𝐶ov in the 

range of 0.1 and 0.3; which are the most probable primary particle polydispersity (Fig.3 

of [20]) and overlap coefficients [19,37,38] for real soot aggregates. Compared to chains, 

fractal agglomerates have a branched structure and more particle overlap in projected 

images, which might explain the larger P*. 

 
Figure 3: P∗ of straight chains and agglomerates of point-touching primary particles with different sizes 

and polydispersity (left panel); measurement error of PCM. Each point represents the average of the 

desired parameter over 50 synthetic images for chains and 500 synthetic images for agglomerates. 

Table 1: P∗ for agglomerates of different 𝑁p and 𝜎g
1 

𝜎g 𝐶v 𝑁p=16 𝑁p=32 𝑁p=64 𝑁p=128 𝑁p=256 𝑁p=512 Average 

1.0 0.0 0.80 0.83 0.84 0.86 0.87 0.87 0.84 

0.1 0.84 0.87 0.88 0.89 0.90 0.91 0.88 

0.3 0.89 0.92 0.93 0.94 0.94 0.94 0.93 

1.2 0.0 0.81 0.84 0.85 0.86 0.87 0.88 0.85 

0.1 0.85 0.88 0.89 0.90 0.91 0.92 0.89 

0.3 0.90 0.93 0.93 0.94 0.95 0.95 0.93 

1.4 0.0 0.84 0.86 0.86 0.87 0.88 0.89 0.87 

0.1 0.85 0.89 0.90 0.91 0.91 0.92 0.90 

0.3 0.92 0.94 0.94 0.95 0.95 0.96 0.94 

1.6 0.0 0.85 0.87 0.89 0.89 0.90 0.91 0.88 

0.1 0.88 0.91 0.92 0.93 0.93 0.93 0.92 

0.3 0.93 0.95 0.96 0.96 0.96 0.97 0.95 
1 standard deviation of the reported P∗ varies between 0.01 and 0.05 for large 

and small 𝑁p, respectively. 



 

Figure 4: Effect of on 𝐶ov on P∗ of aggregates of different sizes and polydispersity. 

As reported by Dastanpour and Rogak [43], the gyration diameter of the fractal 

agglomerates increases with the polydispersity of the primary particles. Accordingly, P∗ 

is also expected to increase with 𝜎g, but results here show the effect is small for large 

aggregates. The effect of 𝜎g on P∗can be estimated for numerical agglomerates of point-

touching monomers using the following correlation (R2=0.99): 

Pavg
∗ = 0.78 + 0.022 exp (𝜎g) (2) 

Next, the constant values of P∗ obtained for chains (0.7), and fractal agglomerates of 

different polydispersity (right column of Table 1) were used to estimate 𝑑p from the pair 

correlation functions, P(𝑟), calculated for each synthetic image. The deviation of the 

estimated diameter 𝑑p,PCM from the real average primary particle diameter 𝑑p,real was 

estimated using Eq. (3) and is illustrated in Figure 3 (right panel). For simplicity, only 

results obtained for 𝐶ov=0 are illustrated. 

∆𝑑p = 100. |
𝑑p,PCM − 𝑑p,real

𝑑p,real

| 
(3) 

This method resulted in an average primary particle sizing error of approximately 7% for 

straight chains of 𝑁p>10 and less than 14% error for fractal agglomerates of different 

sizes and polydispersity. Maximum error occurs for single spheres and is approximately 



27%. If the aggregated-optimized value of P* is used for analysis of straight chains, the 

error is approximately 18% (Fig. SI1, online supplemental information). 

4.2. Real soot aggregates 

First, primary particle size was measured manually for 11 operating conditions of two 

reciprocating engines. On average 35 aggregates were analyzed for each operating 

condition. Then, Otsu’s algorithm and rolling ball methods were used for automatic 

detection of the aggregate projected area; and the corresponding pair correlation 

functions P(𝑟) were calculated. Using P∗=0.85 obtained from the simulation of the 

numerical agglomerates of point-touching monomers with 𝜎g≅1.2 (approximate 

polydispersity for real soot aggregates according to Fig. 3 in [20]), the average diameter 

of the primary particles was measured for individual aggregates. As shown in Figure SI2 

(online supplemental information) the average sizing error of the model using P∗=0.85 is 

approximately 20%. Real aggregates often have partially fused primary particles, and 

primary particle overlap coefficients in the range of 0-0.3 which suggest that the optimum 

P∗ for soot should be larger than 0.85, which indeed was found to be the case. 

To further improve the accuracy of the method for carbon soot, P∗ was measured for 132 

aggregates randomly selected from the library of the TEM images taken at 5 different 

operating conditions of the GDI engine. Since the number of the primary particles cannot 

be directly measured from 2-D TEM images, P∗ is plotted as a function of 𝑑a/𝑑g in 

Figure 5, as in Figure 4. The average P∗ obtained from the analysis of the TEM images of 

the GDI engine is 0.913±0.02. This is within the range of the P∗ values determined for 

synthetic aggregates with 1.2≤𝜎g≤1.4 and 0.1≤𝐶ov≤0.3. 

 
Figure 5: P∗ of real soot aggregates (“TEM”) as well as synthetic images of chains and fractal 

agglomerates. 



Using P∗=0.913 obtained from the analysis of the TEM images produced for the GDI 

engine, average primary particle size was measured for 390 aggregates captured on TEM 

images of both GDI and HPDI engines. As summarized in Table 2 and Figure 6, the size 

of the primary particles measured manually varies between approximately 10 nm and 50 

nm for individual particles; and its ensemble-average varies between 15 nm and 26 nm in 

different operating conditions. This shows that the proposed method is not limited to a 

narrow range of the primary particle size. PCM estimates the average diameter of the 

primary particles in individual aggregates (𝑑p,agg) with an average error of approximately 

13% for all operating conditions. Considering the nature of the manual sizing which is 

highly time–intensive, PCM provides results with useful level of accuracy in a very short 

processing time (less than 5 seconds for binarization and primary particle sizing on a 

Core(TM) i7-3770 CPU @ 3.40 GHz, 8 GB RAM). The ensemble average diameter of 

the primary particles can be estimated for each operating condition (𝑑p,ens) with an 

average error of 4%. 

Table 2: Average primary particle diameters obtained from manual image processing and PCM 

 Diameters (nm) Errors (%) 

Operating condition Manual 

𝑑p,ens,manual
1 

PCM 

𝑑p,ens,PCM 

∆𝑑p,ens 3 ∆𝑑p,agg 4 

GDI_E0_ C 26(±7)2 24(±9) 7% 17% 

GDI_E0_ S 26(±9) 24(±7) 6% 11% 

GDI_E0_CS 12(±4) 11(±2) 10% 15% 

GDI_E10_ C 21(±6) 22(±7) 3% 10% 

GDI_E10_ S 16(±4) 15(±5) 4% 9% 

GDI_E10 _HS 15(±4) 16(±6) 5% 16% 

GDI_E30_ C 17(±4) 16(±4) 5% 11% 

GDI_E30_S 18(±4) 18(±5) 3% 10% 

GDI_E30_ CS 21(±8) 21(±9) 2% 12% 

HPDI_B50 19(±5) 18(±6) 3% 13% 

HPDI_B25 20(±8) 19(±9) 4% 14% 

HPDI_A63 26(±7) 21(±6) 3% 11% 

HPDI_B37 17(±4) 17(±5) 5% 16% 

HPDI_B75 17(±4) 17(±5) 2% 13% 
1 𝑑p,ens is the average diameter of the primary particles in the ensemble of images 

produced for each operating condition. 
2 Values in parenthesis are standard deviations. 
3 ∆𝑑p,ens is the average error of the automatic method for ensembles of aggregates; 

and is equal to 100 . (𝑑p,ens,model − 𝑑p,ens,manual) 𝑑p,ens,manual⁄ . 

4 ∆𝑑p,agg is the average error for individual aggregates = 
100

𝑁agg
∑ |

𝑑p,model,i−𝑑p,TEM,i

𝑑p,TEM,i
|

𝑁agg

𝑖
, 

where 𝑁agg is the total number of the aggregates analysed at each operating condition. 



 
Figure 6: Average 𝑑p for 390 individual aggregates by PCM vs. manual sizing (“TEM”). Solid line is a 1-

by-1 line, and dashed lines are ±20% error boundaries. 

The accuracy of the PCM is sensitive to the P∗ value; decreasing P∗ from 0.913 to 0.82, 

∆𝑑p,ens increases to from 4% to 10%. However, as described earlier, the optimum value 

of P∗=0.913 is determined here by extensive analysis of thousands of synthetic and real 

TEM images and is shown to provide good accuracy for simulated and real soot particles. 

The model accuracy was estimated using Eq.(3) assuming that the manual measurements 

were perfect. In reality, manual measurements are influenced by human perception and 

also involve statistical uncertainty, so not all of the reported error is attributable to flaws 

in the PCM. As an illustrative calculation, suppose that 16 primaries are measured 

manually for a large aggregate with 𝑁p ≫ 16. The standard deviation is typically 8 nm 

(Table 2), yielding a standard error of 8/√16=2 nm on a typical mean diameter of 20 nm 

(10% error). Thus, roughly half of the reported error could be related the statistics of the 

manual sizing.  

An attempt was made to correlate P* with features that can be obtained directly from the 

image, such as 𝑑a 𝑑g⁄  which were shown earlier to affect P*. As shown in Figures SI3 

and SI4, a simple correlation between the parameters described above and the value of 

the P∗ cannot be easily derived. Although this “generalized” method can handle a wide 

range of particle types (eg. chains to aggregates) better than the simple PCM with 

constant P∗, for normal soot the more complex method provides no improvement. A 

possible explanation is that one of the most important structural features, the overlap 

coefficient, is not easily extracted from the image.  

When either versions of the PCM are used, errors associated with the human biases and 

manual analysis of the TEM images are eliminated. As illustrated in Figure SI6 (online 

supplemental Information), both versions of this method are capable of capturing a size 



correlation between the primary particle and aggregate sizes, consistent with the trends 

reported by Dastanpour and Rogak [20] from the manual analysis. 

Primary particle overlap coefficient can also be measured by the PCM approach. If 

primary particle size is known from other methods (e.g. manual measurement or 

combined mass-mobility experiments as discussed in [18]), the value of P∗ corresponding 

to the known monomer diameter can be calculated. Overlap coefficient can be estimated 

using P∗ and 𝑑a/𝑑g (Figure 4). 

To facilitate the application of this method by interested researchers, developed open 

source program is uploaded online and can be downloaded for free [44]. 

5. Conclusions 

A new method, the Pair Correlation Method (PCM), was developed for automatic 

estimation of the average primary particle size from binary images of aggregates. The key 

assumption is that the pair correlation function drops to a critical value P∗ at the primary 

particle size. Unfortunately P∗ is not the same for all classes of aggregates, and is not a 

simple function of geometric parameters such as aspect ratio or the number of primary 

particles. Fortunately, for broad classes of particles, such as engine soot, P∗ is nearly 

constant. 

Although this method does not provide information on the size distribution of the primary 

particles in individual aggregates, it provides useful results for real soot. Ensemble-

average size distribution of the monomers can also be calculated by this method. P∗ was 

tuned for a portion of the images from one engine and then tested on soot images from 

two types of reciprocating engines. Using a constant value of P∗ resulted in an average 

error below 13% (relative to manual sizing) for individual aggregates and 4% for 

ensemble of the aggregates. This accuracy is comparable to the best available algorithms 

for primary particle sizing, and importantly, the PCM can be used for analysis of TEM 

images of agglomerates without a priori knowledge of the primary particle size.  
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PCM error when average 𝐏∗ obtained from the simulation of the fractal agglomerates is 

used for straight chains: 

 
Figure SI1: Primary particle sizing error of PCM for chains and aggregates of different sizes and 

polydispersity. Chain results are governed with the application of P∗=0.84 (corresponding to fractal 

agglomerates of monodisperse monomers 𝜎𝑔=1) 

Comparison of the manually measured average diameters of the primary particles in 

individual aggregates with PCM, when average 𝐏∗ obtained from the simulation of the 

fractal agglomerates is used for the analysis of the TEM images: 

 
Figure SI2: Average diameter of the primary particles estimated by PCM (using P∗=0.85, obtained for 

point-touching agglomerates with 𝜎𝑔=1.2) vs. TEM (manual) sizing. Solid line is a 1-by-1 line (0% error), 

and dashed lines are ±20% error boundaries. Figure consists of 390 data points. 

  



Generalized model 

An attempt was made to develop a general method for particles of all shapes and 

structures. To this end, the variation of P∗ with four sets of parameters was investigated 

(Figure SI3): i) aspect ratio of the projected particles (𝐿 𝑊⁄ ), where 𝐿 and 𝑊 are the 

maximum length and width of the projected particle, respectively; ii) slope of the pair 

correlation function at two-dimensional gyration radius, 𝑑P(𝑅g) 𝑑𝑟⁄ ; iii) ratio of 𝑑a 𝑑g⁄ ; 

iv) ratio of 𝑑a 𝐿skel⁄  where 𝐿𝑠𝑘𝑒𝑙 is the length of the particle skeleton. The first three 

parameters are correlated to the fractal structure of the particles while the last one is a 

measure of the average particle thickness. As shown in Figures SI3 and SI4, a simple 

correlation between the parameters described above and the value of the P∗ cannot be 

easily derived. The following more complex two-parameter regression was obtained for 

P∗ as a function of 𝑑P(𝑅g) 𝑑𝑟⁄  and 𝐿 𝑊⁄  (R2=0.94): 

Pgen
∗ = (

Pavg
∗ (𝜎g)

0.84
) [0.7 + 0.003 (

𝑑P

𝑑𝑟
|
𝑅g

)

−0.24

+ 0.2 (
𝐿

𝑊
)
−1.13

] (4) 

where Pavg
∗  should be calculated from Eq. (2) for point-touching agglomerates and is 

equal to 0.913 for real soot aggregates. 

 
Figure SI3: Variation of P∗ with i) aspect ratio (𝐿 𝑊⁄ ) where 𝐿 and 𝑊 are the maximum length and width 

of the projected particle, respectively; ii) slope of the pair correlation function at two-dimensional 

gyration radius, dP(𝑅g) dr⁄ ; iii) ratio of 𝑑a 𝑑g⁄ ; iv) ratio of 𝑑a 𝐿skel⁄  where 𝐿skel is the length of the 

particle skeleton. 



 
Figure SI4: Variation of P∗ L W⁄  and dP(Rg) dr⁄ ; and corresponding surface fit. 

As shown in Figure SI6, while the generalized model has the advantage of using a single 

correlation for all particles, its accuracy is slightly lower than the simple PCM with a 

value of P∗ optimized for a particular class of particle. Using the generalized model for 

the analysis of the TEM images, ensemble-average diameter of the primary particles and 

average 𝑑p for individual aggregates can be calculated with approximately 5% and 15% 

error, respectively. 

 
Figure SI5: Generalized model error for chains and agglomerates composed of point-touching monomers, 

and real TEM images of carbon soot. Solid line is a 1-by-1 line (0% error), and dashed lines are ±20% 

error boundaries. 

The generalized version of the PCM is advantageous when the structures of the particles 

under investigation and substantially different (e.g. when the sample contains both chains 

and fractal clusters to the approximately same extent); however, for most collections of 

the images, particle structures and not enormously different and simple PCM is 

preferable. 



When either versions of the PCM are used, errors associated with the human biases and 

manual analysis of the TEM images are eliminated. As illustrated in Figure SI6, both 

versions of this method are capable of capturing a size correlation between the primary 

particle and aggregate sizes, consistent with the trends reported by Dastanpour and Rogak 

(2014) from the manual analysis. 

 

 
Figure SI6: Variation of average primary particle diameter (in individual aggregates) vs. aggregate-

projected area equivalent diameter. Diameters measured by PCM. 


