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Abstract

Background: Drought is the major environmental stress threatening crop-plant productivity worldwide. Identification
of new genes and metabolic pathways involved in plant adaptation to progressive drought stress at the reproductive
stage is of great interest for agricultural research.

Results: We developed a novel Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage
(CSA:Drought) to identify key drought adaptive genes and mechanisms and to test their evolutionary conservation.
Empirically defined filtering criteria were used to facilitate a robust integration of 17 deposited microarray experiments
(148 arrays) of Arabidopsis, rice, wheat and barley. By prioritizing consistency over intensity, our approach was able to
identify 225 differentially expressed genes shared across studies and taxa. Gene ontology enrichment and pathway
analyses classified the shared genes into functional categories involved predominantly in metabolic processes (e.g.
amino acid and carbohydrate metabolism), regulatory function (e.g. protein degradation and transcription) and
response to stimulus. We further investigated drought related cis-acting elements in the shared gene promoters,
and the evolutionary conservation of shared genes. The universal nature of the identified drought-adaptive genes
was further validated in a fifth species, Brachypodium distachyon that was not included in the meta-analysis. qPCR
analysis of 27, randomly selected, shared orthologs showed similar expression pattern as was found by the CSA:
Drought.In accordance, morpho-physiological characterization of progressive drought stress, in B. distachyon,
highlighted the key role of osmotic adjustment as evolutionary conserved drought-adaptive mechanism.

Conclusions: Our CSA:Drought strategy highlights major drought-adaptive genes and metabolic pathways that
were only partially, if at all, reported in the original studies included in the meta-analysis. These genes include a
group of unclassified genes that could be involved in novel drought adaptation mechanisms. The identified
shared genes can provide a useful resource for subsequent research to better understand the mechanisms involved in
drought adaptation across-species and can serve as a potential set of molecular biomarkers for progressive drought
experiments.
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Background
Drought stress adversely affects plant growth and product-
ivity worldwide. It is estimated that about 40% of all crop-
lands are affected by moderate to extreme water stress
(http://www.wri.org/applications/maps/agriculturemap).
Moreover, agro-ecological conditions expected to de-
teriorate, due to foreseen global climatic changes, to-
wards reduced availability and increased variability of
water resources. The ever-increasing human population
that is expected to exceed 9 billion people by 2050
(http://www.fao.org/wsfs/world-summit/en) together with
the loss of agricultural land, poses serious challenges to
agricultural plant research. Thus, developing drought-
resistance crop-plants with enhanced productivity and im-
proved water-use efficiency is the most promising solution
for alleviating future threats to food security.
Plants have evolved various adaptive mechanisms to

cope with drought stress at multiple levels such as mo-
lecular, cellular, tissue, anatomical, morphological and
whole-plant physiological level [1-3]. Transcriptional pro-
filing analyses, in various species, have been widely used
to identify drought-related genes (e.g. [4-7]). These experi-
ments resulted in condition- and/or genotype-specific
genes with little overlaps across studies (reviewed by [8]).
Meta-analysis is a powerful strategy to exploit the po-

tential of transcriptome studies [9]. The combination of
multiple studies, addressing similar experimental setups,
enhances the reliability of the results by increasing the
statistical power to reveal a more valid and precise set of
differentially expressed genes (DEGs) [10]. Moreover,
combining gene expression information across species
can improve the ability to identify core gene sets with
high evolutionary conservation. These genes are conserved
in both sequence and expression across multiple species
and are thus key components of the biological responses
being studied [11]. In animals, microarray meta-analyses
have been extensively used for gene discovery (reviewed by
[12,13]). However, only few microarray meta-analyses were
reported in plants, with the majority conducted in Arabi-
dopsis (Arabidopsis thaliana) [14-22]. Even fewer studies
involved more than one plant species (e.g. [23-25]). To
date, an extensive amount of transcriptome data, from
various plant species, developmental stages, tissues and
experimental conditions, are publicly available. Thus,
re-analyzing published data using a meta-analysis and a
cross-species approach could promote detection of con-
served key genes and pathways that were overlooked using
other analytical approaches and facilitate prediction of
functional drought responses in non-model species.
In the current study, we developed a novel Cross-Spe-

cies meta-Analysis of progressive Drought stress at the
reproductive stage (CSA:Drought), using Arabidopsis,
rice, wheat and barley microarray studies. Based on this
dataset we identified shared key genes and metabolic
pathways involved in whole plant adaptation to progres-
sive drought stress across-species. We further evaluated
the level of sequence conservation between shared and
species-specific DEGs and detected common regulatory
cis-acting elements in their promoters. Finally, based on
transcriptional and morpho-physiological analyses, we val-
idated the universal nature and functional conservation of
selected shared DEGs in a fifth species, Brachypodium
distachyon.

Results
Meta-analysis of microarray progressive drought stress
studies
A schematic workflow, summarizing each step of the
CSA:Drought strategy is described in Figure 1. A wide
survey of deposited drought related microarray studies,
in various plant and crop species, was conducted. Focus
was given to studies involving progressive drought stress
at the reproductive stage. Most of the microarray studies
found in databases (~4,000) were conducted in Arabidop-
sis (~3000), with only 15 studies involving drought stress
at the reproductive stage. Among other plant species, only
rice (10 studies), wheat (5 studies) and barley (2 studies)
included more than one drought stress experiment at the
reproductive stage. Altogether, 32 studies, conducted at
the reproductive stage, from four different plant species,
were found in our survey. To further homogenize the
experimental setup, only Affymetrix GeneChip plat-
form and aboveground tissues of soil grown wild type
(WT) plants were included. It is worth noted that all
selected Arabidopsis experiments used Col-0 ecotype,
while, for other plants, different genotypes were included,
due to low number of studies from the same genetic back-
ground (Additional file 1: Table S1). Following a hierarch-
ical clustering analysis to assess the quality of the studies,
additional eight arrays were removed due to inconsistent
expression profile across biological replicates within the
same experiment (Additional file 2: Figure S1). In total,
148 arrays corresponding to 17 progressive drought stress
studies, from four different plant species, were included in
the CSA:Drought pipeline (Table 1).
Microarray data from each species was integrated into a

comparable meta-analysis platform using the rank product
approach. The number of significant DEGs detected for
Arabidopsis (3.5 k), rice (7.3 k), wheat (2.4 k) and barley
(2.7 k) (Figure 2A and Additional file 3: Table S2) was not
affected by the array size (r = −0.05, P = 0.9). However, the
number of studies integrated in the meta-analysis affected
the number of significant DEGs detected in each species
(r = −0.88, P = 0.004). This effect is inherent to meta-
analysis and was previously reported (e.g. [20]). Despite
the negative effect of less overlapping DEGs when increas-
ing number of studies, the improved statistical power and
augmented stringency further supported the inclusion of
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Figure 1 A schematic overview of the Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage (CSA:Drought) approach.
Following selection of relevant microarray drought stress studies, raw data, from each species, was integrated into separate datasets using rank product
analysis. This statistical method generated lists of up- and down-regulated genes based on their expression (i.e. rank) across the individual experiments
within each species. Significantly differentially expressed genes (DEGs), were used for intra-species analysis to retrieve enriched gene ontology (GO)
terms and to classify genes into functional pathways. Next, DEGs within each species were transformed to rice orthologs and the penalized Fisher
method was used to combine P-value distributions across species meta-analysis. Finally, the shared drought-adaptive DEGs were characterized and
their universal nature was validated in a fifth species that was not included in the meta-analysis.
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more studies over the cost of false negative calls. The per-
centage of DEGs (with respect to the transcriptome size)
highlighted Arabidopsis as the most drought-responsive
species (16% DEGs), followed by rice and barley (12%
DEGs). Wheat had the lowest percentage (4%) of DEGs,
which may be to the outcome of partial representation of
transcripts on the Affymetrix array. Completion of the
wheat genome sequence will facilitate the discovery of
additional and novel drought-adaptive DEGs. Notably, the
percentages of the identified DEGs were not associated
with the different number of studies (r = −0.18, P = 0.82),
and therefore reflect true differences between species.

Gene ontology characterization in each species
The significant DEGs, in each species, were subjected to
gene ontology (GO) enrichment analysis for functional
characterization of their biological processes (Additional
Table 1 Overall summary of within species microarray meta-a

Plant species Clade Studiesa A

Arabidopsis Eudicot 8 4

Rice Monocot 3 3

Wheat Monocot 4 3

Barley Monocot 2 3
a. Details of the individual microarray studies that were included in the CSA:Drough
b. Affymetrix Genechip® Microarray of Arabidopsis, rice, wheat and barley.
c. Differentially expressed genes, false-positive prediction (PFP) ≤ 0.05.
d. Enriched gene ontology biological processes (FDR ≤ 0.05).
file 4: Figure S2). The highest number of significantly
enriched biological-processes was found in Arabidopsis
(663), followed by rice (180), wheat (86) and barley (27)
(Figure 2B and C and Table 1). Strikingly, 81% of the
biological-processes detected in Arabidopsis were species-
specific while rice, wheat and barley had only 48%, 34%
and 7% of species-specific enriched biological-processes,
respectively (Figure 2B and C). The substantial differences
in the number and uniqueness of the GO biological-
processes in each species may reflect the considerable lag
in research and gene annotations that characterizes crop-
plants.
To test the ability of the meta-analysis to identify new

biological processes, we compared Arabidopsis GO list,
obtained by the meta-analysis, with a subset of three ori-
ginal GO lists, obtained from WT Arabidopsis studies
included in the meta-analysis. Interestingly, only 34%
nalysis

rrays Probe-setsb DEGsc GOsd

0 22 k 3.5 k 663

4 57 k 7.3 k 180

8 61 k 2.4 k 86

6 22 k 2.7 k 27

t is given in Additional file 1: Table S1.



Figure 2 Within species microarray meta-analysis. (A) Expression profiles of significantly differentially expressed genes in each species based on
the rank product analysis. Length of heatmap is proportional to number of probe-sets. Unique and common (B) up- and (C) down-regulated
gene ontology biological processes (FDR≤ 0.05) based on significantly differentially expressed genes within each species. Unique and common
(D) up- and (E) down-regulated orthologs (FDR≤ 0.05).
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similarity was observed (Additional file 5: Figure S3),
and all common biological-processes, found among the
three individual lists, were also detected by the meta-
analysis approach. The ability of the meta-analysis ap-
proach to detect additional 66% biological-processes
demonstrates its analytic power to reveal new pathways
that have been overlooked by individual studies.

Identification of drought-adaptive genes using cross-species
meta-analysis
A comparative platform across-species was developed by
combining the fold-change scores obtained for each gene
in the meta-analysis. To accomplish this, an injective
(one-to-one) orthology relationship was defined, using
the Model Genome Interrogator (MGI) and predicted
orthologs among the four species were identified. The
rice database was used as a reference for all species due
to the high number of orthologs detected compared with
Arabidopsis (9,104 vs. 4,939 for rice and Arabidopsis
orthologs, respectively; Additional file 6: Table S3). The
transformation to rice orthologs reduced dramatically
the number of detected genes. From a total of 15,953 de-
tected genes across the four species in the meta-analysis
(Table 1 and Additional file 3: Table S2), 8,471 orthologs
remained (53%; Additional file 6: Table S3), of which
5,520 orthologs belong to rice. A prominent reduction
in gene number was observed for Arabidopsis and wheat
(73% and 74% loss, respectively) followed by barley
(49%) and rice (25%). The reduced number of wheat
orthologs could result from an incomplete database,
which may explain the substantial difference between
the number of orthologs common to rice and barley
(264 genes) compared with the number of orthologs
common to rice and wheat (83 genes). It may also account
for the low number of orthologs (28 genes) present in all
three monocots (Figure 2D and E and Additional file 7:
Table S4). In Arabidopsis, the reduced number of ortho-
logs could also be explained by the high evolutionary
distance from rice (i.e. eudicot vs. monocots).
Another analytical challenge in combining datasets of

various species is to overcome species-specific residual
variation in fold-change and substantial differences in
database size. Penalized Fisher method was used to com-
bine P-value distributions from each species meta-analysis.
Significant cross-species DEGs were detected using ad-
justed P-value cutoff of 0.05 without setting a cross-species
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fold-change threshold. The advantage of this analytical setup
is its improved ability to detect genes with consistent ex-
pression differences across taxa, which may have been over-
looked due to their mild expression change. This approach
resulted in identification of 225 DEGs across-species, com-
prised of 162 up-regulated (Average FC= 1.42, SDFC = 0.20)
and 63 down-regulated (Average FC = 1.38, SDFC = 0.17)
shared orthologs (Table 2 and Additional file 8: Table S5).
To compare the CSA:Drought results to the original

experiments included in the meta-analysis we examined
two case studies using Arabidopsis and wheat experi-
ments (Additional file 9: Figure S4). Among the 225
shared DEGs, only five genes (two genes involved in pro-
teolysis, two genes encoding transporters and one gene
associated with purine catabolism) were also reported
among all three Arabidopsis studies [5,26,27]. The ma-
jority (62%) of the shared drought-adaptive DEGs were
not reported in any of these experiments (Additional file
9: Figure S4A and Additional file 10: Table S6). This pat-
tern was even more prominent among wheat studies
[28-30], where none of the shared DEGs was detected by
all three individual studies. Moreover, 82% of the shared
DEGs were not reported in any of the three wheat studies
(Additional file 9: Figure S4B and Additional file 10: Table
S6). Remarkably, a higher number of overlapping genes
was detected among the three individual Arabidopsis ex-
periments (e.g. 46 genes present in all three studies). These
common DEGs may imply Arabidopsis specific adaptations
to drought stress rather than general plant drought
adaptations.

Metabolic pathway analysis of shared drought-adaptive DEGs
The 225-shared drought-adaptive DEGs were further an-
alyzed for their associated GO biological-process terms
and functional categories. GOs describe gene products
in a species-independent manner [31], making it a useful
functional classification for cross-species comparisons.
REVIGO clustering highlighted response to abiotic stimu-
lus and carbohydrate metabolism among up-regulated
biological processes, whereas, metabolism of amines and
aromatic compounds, and transport were included
among down-regulated biological processes (FDR ≤ 0.05)
(Additional file 11: Table S7). To complement this ap-
proach, the 225-shared drought-adaptive DEGs were
analyzed for their corresponding functional categories
based on the species-specific MapMan annotations.
Additional effort to minimize the number of DEGs with
unknown function or classification was undertaken
using the BLAST2GO program (Figure 3 and Table 2).
The largest functional group (41%) of DEGs was associ-

ated with metabolic processes (e.g. metabolism of lipids,
nucleotides, secondary metabolites and cell wall), suggest-
ing a considerable rearrangement in plant metabolism as
part of progressive drought adaptation. Thirty-five of these
genes were involved in carbohydrate and amino acid
metabolism (e.g. up-regulation in synthesis of stress-
related sugars such as raffinose, galactinol and trehal-
ose and synthesis of proline and GABA). Several of
these genes were shown to be involved in synthesis of
osmoprotectants, which ameliorate the detrimental ef-
fects of drought (reviewed by [32]). Up to 29% of the
shared DEGs were involved in putative regulatory func-
tions (e.g. transcription regulation, signaling, protein
degradation, post-translational modifications and hor-
mones). The expression of genes involved in abscisic
acid transduction and synthesis was found to be up-
regulated, whereas genes associated with gibberellin
biosynthesis and regulation exhibited down-regulation.
Additional functional group of genes associated with
response to stimulus (9%) was largely up-regulated (e.g.
heat stress and xenobiotics degradation). Up-regulation of
heat stress responsive genes was in accordance with up-
regulation of heat-shock transcription factors. It is note-
worthy, that 8% of the shared DEGs remained unclassified.
These unassigned genes are intriguing since they hold the
potential to contribute to drought adaptation and hence
are novel drought-adaptive genes (Table 2).

Promoter analysis of shared DEGs
To test whether putative regulatory regions, spanning
DEG promoters, are enriched with cis-acting elements,
across-species, DEG promoter motif enrichment analysis
was conducted. Motif enrichment was limited to Arabi-
dopsis and rice due to insufficient database support for
wheat and barley. Significant motif enrichment was found
only for the putative promoters of up-regulated DEGs. In
Arabidopsis, three putative enriched motifs (GaCACGtg,
GACACGTgTC and GacACGTGTC), found in 22 out
of the 100 DEG promoters, are highly similar to the
CACGTG core G-box motif (Additional file 12: Figure
S5A). G-box was suggested to regulate gene expression
in response to phytohormones and abiotic stimuli [33].
G-box motif can also be part of the ABA-Responsive
Element (ABRE; ACGTGT), to which the two latter
putative motifs are highly similar. In rice, three putative
enriched motifs were identified (CGCACGc, TGCGTG
and gCGTGCG; Additional file 12: Figure S5B) in 50 out
of the 150 DEG promoters. The first motif (CGCACGc)
is highly similar to a rice motif (GCACGC) that was
enriched among dehydration inducible promoters [34]. The
other two motifs contain the core sequence of Xenobiotic
Response Element (XRE; GCGTG), which was found in
promoters of animal genes, encoding xenobiotic metabolic
enzymes [35], as well as in promoters of plant genes [36].

Conservation analysis of drought-adaptive DEGs
Functional and sequence conservation of the drought-
adaptive DEGs across-species were further investigated



Table 2 Functional classification of the shared drought-adaptive DEGs across-species

General
category

Main functional
category

Rice genes and their Arabidopsis orthologs as predicted by MapMan and BLAST2GO

Up-regulated Down-regulated

Regulatory functions

RNA regulation Transcription
regulation

loc_os02g02390 (AT1G12800, S1 RNA-binding domain-
containing protein), loc_os06g35960 (AT3G24520, HSFC1),
loc_os05g38820 (AT2G37060, nuclear factor yb2)

loc_os12g42610 (AT2G26580, YAB5),
loc_os03g08790 (AT1G09750, chloroplast
nucleoid DNA-binding protein-related)

RNA binding,
transcription

loc_os03g17060 (AT2G37510, RNA-binding), loc_os03g44484
(AT4G21710, NRPB2), loc_os08g30820 (AT4G29820, CFIM-25)

Signaling Calcium loc_os02g03020, loc_os06g46950
(AT2G46600, calcium-binding protein),
loc_os03g20370 (AT2G27030, CAM5)

Light loc_os03g10800 (AT2G14820, NPY2), loc_os07g08160
(AT3G22840, ELIP1)

G-proteins and
miscellaneous

loc_os03g05280 (AT5G03530, RAB ALPHA), loc_os07g33850
(AT5G54840, SGP1),loc_os07g44410 (AT4G01870, tolB
protein-related)

Protein Degradation loc_os01g12660 (AT1G64110, DAA1), loc_os01g52110
(AT5G25560, zinc finger family protein), loc_os04g45470,
loc_os02g43010 (AT1G62710, β-VPE), loc_os08g38700
(AT1G55760, BTB/POZ domain-containing protein),
loc_os02g02320 (AT3G10410, scpl49), loc_os02g27030
(AT4G39090, RD19), loc_os05g44130 (AT1G78680, GGH2),
loc_os06g21380 (AT3G57680, peptidase S41 family protein),
loc_os11g26910 (AT5G42190, ASK2), loc_os02g13140
(AT4G29490, aminopeptidase), loc_os03g54130 (AT5G45890,
SAG12), loc_os05g35110 (AT1G21410, SKP2A)

loc_os12g24390 (AT3G54780, zinc finger
family protein), loc_os06g03580 (AT3G63530,
BB), loc_os02g48870 (AT5G10770, chloroplast
nucleoid DNA-binding protein)

Postranslational
modification

loc_os03g27280 (AT1G78290, SNRK2.8), loc_os01g40094
(AT1G17550, HAB2), loc_os01g64970 (AT1G10940 ,SNRK2.4),
loc_os01g10890 (AT5G45820, CIPK20), loc_os01g35184
(AT4G24400, CIPK8), loc_os09g25090 (AT5G25110, CIPK25),
loc_os12g02200 (AT5G07070, CIPK2), loc_os06g08280
(AT3G46920 ,protein kinase family protein)

loc_os01g70130 (AT5G50860, protein
kinase family protein), loc_os05g51420
(AT5G62740, HIR1)

Folding and
targeting

loc_os06g02380 (Chaperonin-60BETA2), loc_os12g02390
(AT3G52850, VSR1)

Synthesis loc_os05g31020 (AT1G12920, ERF1-2), loc_os05g51500
(AT1G76810, elF-2 family protein)

Chromatin
structure

Histone loc_os01g05630 (AT5G22880, H2B)

Development LEA protein,
unspecified

loc_os06g23350 (AT3G22490, LEA protein), loc_os05g46480
(LEA3), loc_os03g21060 (AT1G69490, NAP), loc_os12g41680
(AT1G56010, NAC1), loc_os02g53320 (AT3G03270, USP family
protein), loc_os04g43200 (AT2G33380, RD20),
loc_os01g66120 (AT1G01720, ATAF1), loc_os03g26870
(AT1G78070, Transducin/WD40 repeat-like superfamily
protein)

loc_os12g32620 (AT1G10200, WLIM1),
loc_os09g36600 (AT4G34950, nodulin
family protein)

Hormone
metabolism

Abscisic acid loc_os02g52780 (AT3G19290, ABF4), loc_os03g57680
(AT5G20960, AAO1), loc_os05g49440 (AT1G05510)

Gibberelic acid loc_os06g15620 (AT1G74670, GASA6),
loc_os03g42130 (AT3G19000, oxidoreductase)

Ethylene loc_os01g32780 (AT1G68300, USP family protein),
loc_os12g36640 (AT2G47710, UPS family protein),
loc_os01g51430 (AT2G26070, RTE1)
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Table 2 Functional classification of the shared drought-adaptive DEGs across-species (Continued)

General
category

Main functional
category

Rice genes and their Arabidopsis orthologs as predicted by MapMan and BLAST2GO

Up-regulated Down-regulated

Response to stimulus

Abiotic and
biotic stress

Heat, drought loc_os02g32520 (AT5G51070, ERD1), loc_os05g44340
(AT1G74310, HSP101), loc_os03g16030, loc_os01g04380
(AT5G59720, HSP18.2), loc_os03g11910 (AT2G32120, HSP70T-2),
loc_os03g31300 (AT5G15450, APG6), loc_os05g38530
(AT3G12580, HSP70), loc_os11g47760 (AT5G02500,HSP70.1),
loc_os11g26760 (dehydrin Rab16C)

loc_os02g04120 (AT2G18250, COAD),
loc_os04g33060 (AT1G32220,dehydratase
family protein)

Signaling loc_os02g10350 (AT4G02600, MLO1)

Unspecified and
biotic stress

loc_os06g40120 (AT5G20150, SPX1), loc_os03g18850 (PR1),
loc_os11g10480 (AT1G77120, ADH1)

loc_os08g35760 (AT5G20630, GLP3),
loc_os04g38450 (AT4G39640 ,GGT1),
loc_os01g28500 (AT2G14610, PR1)

Biodegradation
of Xenobiotics

loc_os01g47690 (AT1G53580, GLX2-3), loc_os06g20200
(AT5G23530, CXE18)

Localization & organization
Transport TIP/NIP loc_os03g05290 (AT2G36830, TIP1;1),

loc_os06g22960 (AT3G16240, TIP2;1),
loc_os10g36924 (AT4G10380, NIP5;1),
loc_os06g12310 (AT5G37820, NIP4;2)

Sugars loc_os02g17500 (AT1G67300, hexose transporter) loc_os07g39350, loc_os03g10090 (AT3G18830,
ATPLT5), loc_os07g01560 (AT1G11260, STP1)

Amino acids loc_os02g54730 (AT2G41190, amino acid transporter family
protein)

loc_os07g04180 (AT5G49630, AAP6)

Nitrate loc_os04g40410 (AT5G50200, NRT3.1)

Peptides and misc. loc_os05g32630 (AT3G05290, PNC1), loc_os08g06010
(AT3G47420, G3PP1), loc_os03g43720 (AT3G13050, NIAP),
loc_os02g39930 (AT5G58070, ATTIL), loc_os04g36560
(chloride channel)

loc_os10g22560 (AT2G02040, PTR2-B),
loc_os04g57200 (metal ion transport)

Metal handling Metal binding loc_os04g17100 (AT5G66110, metal ion binding),
loc_os04g32030 (AT5G50740, metal ion binding)

Cell Organization loc_os07g37560 (AT1G50360, VIIIA) loc_os07g38730 (AT5G19780, TUA5)

Death loc_os03g05310 (AT3G44880, ACD1)

Energy

Mitochondrial
electron
transport

Electron transfer
flavoprotein

loc_os04g10400 (AT5G43430, ETFBETA), loc_os03g61920
(AT1G50940 ETFALPHA)

Cytochrome c
reductase

loc_os02g33730 (AT1G15120, ubiquinol-cytochrome C
reductase complex 7.8 kDa protein)

Photosynthesis Light reaction and
Calvin cycle

loc_os01g12710 (AT4G13250, SDR family protein) loc_os07g05360 (AT1G79040, PSBR),
loc_os11g47970 (AT2G39730, RCA),
loc_os05g22614 (AT3G46780, PTAC16)

Metabolic processes

Carbohydrate
metabolism

Starch synthesis and
degradation

loc_os05g50380 (AT1G27680, APL2), loc_os07g22930
(AT1G32900 , Starch synthase), loc_os03g04770 (AT3G23920,
BAM1), loc_os09g29404 (AT4G09020, ISA3)

loc_os10g40640 (AT4G16600, transferase)

Sucrose synthesis
and degradation

loc_os08g20660 (AT5G20280, SPS1F), loc_os04g33490
(AT5G22510, INV-E), loc_os02g01590 (AT1G12240 , VAC-INV),
loc_os05g45590 (AT4G29130, ATHXK1), Loc_os09g33680
(AT1G02850, BGLU11)

Raffinose and
galactinol synthesis

loc_os07g48830 (AT1G56600, AtGolS2), loc_os03g20120
(AT2G47180, AtGolS1) loc_os08g38710 (AT1G55740, AtSIP1)

Galactose
metabolism

loc_os10g35070 (AT5G08380, AGAL1), loc_os07g48160
(AT3G56310, AGAL putative), loc_os01g33420 (AT3G26380,
AGAL putative), loc_os05g51670 (AT4G10960, UGE5)

loc_os04g38530 (AT5G15140, Galactose
mutarotase-like superfamily protein)

Trehalose synthesis loc_os10g40550 (AT4G22590, TPPG), loc_os02g44230
(AT5G51460, TPPA)

Miscellaneous loc_os03g45390 (AT1G64760, glycosyl hydrolase family 17
protein), loc_os03g15020 (AT2G28470, BGAL8),
loc_os07g23880 (AT3G23640, HGL1)
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Table 2 Functional classification of the shared drought-adaptive DEGs across-species (Continued)

General
category

Main functional
category

Rice genes and their Arabidopsis orthologs as predicted by MapMan and BLAST2GO

Up-regulated Down-regulated

Amino acid
metabolism

Synthesis loc_os05g38150 (AT2G39800, P5CS1), loc_os04g52450
(AT3G22200, GABA-T)

loc_os04g33390 (AT1G08250, ADT6),
loc_os07g42960 (AT1G22410, DAHP synthase),
loc_os03g63330 (AT5G13280, AK1)

Degradation loc_os05g03480 (AT3G45300, IVD), loc_os03g44150
(AT5G46180, Δ-OAT), loc_os06g01360 (AT5G54080, HGO),
loc_os05g39770 (AT3G08860, PYD4)

loc_os04g53230 (AT1G11860,
aminomethyltransferase), loc_os04g43650
(AT1G08630, THA1)

Miscellaneous loc_os04g20164 (AT4G12290, amine oxidase)

Polyamine
metabolism

Spermidine
synthase

loc_os06g33710 (AT5G53120, SPDS3)

TCA\organic
transformation

Organic acid
transformaitons,
carbonic anhydrases

loc_os02g07760 (AT1G79440, ALDH5F1), loc_os09g28910
(AT4G33580, BCA5), loc_os01g11054 (AT3G14940, ATPPC3)

loc_os04g33660 (AT3G52720, ACA1)

Fermentation Aldehyde
dehydrogenase

loc_os09g26880 (AT1G54100 ,ALDH7B4), loc_os08g32870
(AT1G74920, ALDH10A8)

loc_os02g43194 (AT4G36250, ALDH3F1)

Pyruvate
decarboxylase

loc_os01g06660 (AT4G33070, PDC1)

Lipid
metabolism

Synthesis loc_os11g05990 (AT3G11670, DGD1), loc_os09g21230
(AT5G23050, AAE17), loc_os12g04990 (AT5G27600, LACS7),
loc_os01g57420 (AT2G20900, DGK5), loc_os10g39810
(AT4G12110, SMO1-1)

Degradation loc_os09g37100 (AT4G35790, PLDDELTA), loc_os07g47250
(AT5G18640, lipase class 3 family protein), loc_os07g47820
(T3G06810, IBR3), loc_os11g39220 (AT5G65110, ACX2),
loc_os10g04620 (AT5G16120, hydrolase), loc_os03g07180
(embryonic protein DC-8)

loc_os03g40670 (AT5G08030, GDPD6)

Desaturation,
transfer

loc_os11g24070 loc_os03g18070 (AT3G11170, FAD7)

Secondary
metabolism

Isoprenoids loc_os02g07160 (AT1G06570, PDS1), loc_os01g02020
(AT5G47720, AACT1)

loc_os02g04710 (AT2G07050, CAS1)

Phenylpropanoids
and misc.

loc_os07g42250 (AT3G51420, SSL4) loc_os04g15920 (AT4G39330, CAD9),
loc_os11g32650 (AT5G13930, CHS)

Tetrapyrrole
synthesis

Glutamyl-tRNA
reductase

loc_os10g35840 (AT1G58290, HEMA1)

Nucleotide
metabolism

Synthesis, adenine
salvage

loc_os05g49770 (AT3G12670, emb2742) loc_os02g40010 (AT1G80050, APT2)

Degradation loc_os02g50350 (AT3G17810, PYD1), loc_os08g13890
(AT1G67660, exonuclease)

loc_os04g58390 (AT4G04955, ALN)

Cell wall Modification loc_os06g48200 (AT5G57550, XTR3),
loc_os01g60770 (AT1G69530, EXPA1),
loc_os10g40720 (AT1G65680, ATEXPB2),
loc_os05g39990 (AT2G40610, ATEXPA8)

Degradation loc_os09g31270 (AT3G57790, Pectin lyase-like superfamily
protein), loc_os03g53860 (AT5G20950, glycosyl hydrolase
family protein),

Redox Ascorbate,
glutathione

loc_os12g29760 (AT4G33670, L-GalDH) loc_os02g44500 (AT4G11600, GPX6)

Heme loc_os02g33020 (AT3G10130, SOUL heme-binding family
protein

Miscellaneous loc_os03g16210 (AT5G06060, tropinone reductase), loc_os03g04660 (AT4G39490, CYP96A10),
loc_os07g48020 (AT5G05340, peroxidase),
loc_os07g48050 (AT5G05340, peroxidase)

Unspecified
processes

loc_os03g17470 (AT3G55040, GSTL2), loc_os01g08440
(AT4G15550, IAGLU), loc_os01g05840 (AT2G37540, SDR
family protein), loc_os02g51930 (AT1G22400, UGT85A1),
loc_os10g40570 (AT1G63370, FMO family protein),
loc_os12g21789 (AT3G49880, glycosyl hydrolase family
protein 43), loc_os11g03730 (AT3G10740, ASD1),
loc_os06g22080 (AT3G51520, diacylglycerol acyltransferase
family), loc_os06g49990 (AT3G51130)
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Table 2 Functional classification of the shared drought-adaptive DEGs across-species (Continued)

General
category

Main functional
category

Rice genes and their Arabidopsis orthologs as predicted by MapMan and BLAST2GO

Up-regulated Down-regulated

Unclassified

loc_os10g32680 (AT1G07040), loc_os11g37560 (AT3G55760),
loc_os01g46600 (PM41), loc_os03g51350, loc_os01g40280
(AT5G35460), loc_os09g20930, loc_os03g45280 (dehydrin),
loc_os04g34610 (AT1G43245), loc_os03g48380 (AT1G27150),
loc_os08g33640 (AT1G23110), loc_os01g58114 (AT4G27020),
loc_os05g33820 (AT1G10740), loc_os02g48630 (AT5G48020),
loc_os05g48230 (AT4G13400), loc_os09g04100 (AT4G31830),
loc_os01g26920 (AT2G39080)

loc_os02g38240 (AT4G24750), loc_os07g12730
(AT5G01750)
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by comparing the expression profiles and sequences of the
identified DEGs. Due to substantial differences among spe-
cies, only genes for which orthology could be determined
in all four species were included in the analysis. A hierar-
chal clustering of pair-wise distance matrix, based on the
expression fold-change in ortholog genes across species, re-
capitulated the known plant phylogeny (Figure 4A). Se-
quence conservation in shared versus species-specific DEGs
was evaluated by comparing the corresponding sequences
between the rice ortholog and each species (excluding a
self-comparison for rice). For both shared and species-
specific DEGs, higher sequence conservation was found
among rice-barley and rice-wheat than for rice-Arabidopsis
comparison (Figure 4B). Both functional and sequence con-
servation patterns found among species further support the
CSA:Drought detection of cross-species DEGs. Significantly
higher sequence conservation level of shared DEGs com-
pared with species-specific DEGs, was found for barley
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Figure 3 Functional classification of shared drought-adaptive DEGs based
(tWelch = 5.91, P ≤ 0.0001) and wheat (tWelch = 14.13, P ≤
0.0001) (Figure 4B). The non-significant difference found in
Arabidopsis, is presumably the consequence of the ample
genetic distance between monocots and eudicots, indicated
by a general lower sequence similarity and resolution.

A case study of drought-adaptive genes in Brachypodium
distachyon
To validate the identified shared DEGs and evaluate their
universality, we used the model grass B. distachyon [37] as
a case study. Morpho-physiological characterization of
plant adaptation to drought stress resulted in dramatic
effects on plant growth (Figure 5A), spike morphology
(Figure 5B) and root development (Figure 5C). More-
over, a significant reduction in culm length (P = 0.0001;
Figure 5D), total biomass (P = 0.0001; Figure 5E) and
yield production (P = 0.002; Figure 5F) was observed.
Under drought stress, plants exhibited significant lower
6

5

25

1

8

6

2

3

5

2

2

13

2

5

7 11

2

2 1

3

1 3

21

7 6

2

6 2

12 2

3 3

1

3 2

2 4

3 4

9

216

ucture

n

n of xenobiotics

l electron transport

is

 metabolism
olism

entation

lism

etabolism
ynthesis

etabolism

rocesses

Down-regulatedUp-regulated

on MapMan and BLAST2GO annotations.



A

B

B
it

 s
co

re

Arabidopsis Wheat Barley

100

200

300

400

Species-specific DEGs
Shared DEGs ***

***
500

Arabidopsis

Rice

Wheat

Barley

82

91

100

0.5
Log FC

Figure 4 Conservation analysis. (A) Hierarchal clustering of pair-wise
distance matrix based on expression profile of orthologs in each
species. Bootstrap scores supporting the consensus tree (percentage)
are indicated at each node. (B) Sequence conservation of shared
DEGs versus species-specific DEGs. For each species, the bit score,
obtained from the permutated blastn analysis, was compared between
shared DEGs and species-specific DEGs. Bold horizontal bars indicate
the average, boxes indicate the upper and lower 0.25 quartile, dashed
bars indicate the max/min scores (excluding extremes), circles indicate
the extremes, and notch overlaps indicate non-significant differences
(P≤ 0.05).

Shaar-Moshe et al. BMC Plant Biology  (2015) 15:111 Page 10 of 18
chlorophyll content (P = 0.02) based on transformed
chlorophyll absorbance in reflectance index (TCARI;
Figure 5G), higher osmotic potential (net solute accumula-
tion in the cell: −1.19 ± 0.05 compared with −1.74 ± 0.04
for the control and drought treatment, respectively;
Figure 5H) and a minor reduction in RWC (Figure 5I).
A subset of 27 drought-adaptive DEGs, identified in

the CSA:Drought, with various expression patterns, was
selected for qPCR validation in B. distachyon. In general,
this assay showed similar expression pattern as the CSA:
Drought (except for BdGOLS1), with 20 significant genes
(Figure 6, Additional file 13: Figure S6 and Additional
file 14: Table S8). These genes included carbohydrate
metabolic enzymes as Granule-bound starch synthase 1
(GBSS1, regulator of amylose synthesis), β-Amylase 1
(BAM1, involves in starch degradation), Trehalose-6-
phosphate phosphatase G (TPPG, involves in trehalose
synthesis), Alkaline/neutral invertase E (INV-E, hydroly-
ses sucrose into hexoses) and Hexokinase 1 (HXK1, in-
volves in hexoses catabolism and sugar signaling). Genes
that encoded amino acid metabolic enzymes as Homo-
gentisate 1,2-dioxygenase (HGO, involves in tyrosine deg-
radation), 3-Deoxy-D-arabino-heptulosonate 7-phosphate
synthase (DAHPS, the first committed enzyme of the
shikimate pathway), Delta1-pyrroline-5-carboxylate syn-
thetase (P5CS1, the rate-limiting enzyme in proline bio-
synthesis) and Aspartate kinase 1 (AK1, catalyzes the
first reaction of lysine synthesis). Genes related to pro-
tein degradation as Early responsive to dehydration 1
(ERD1, encodes a Clp protease regulatory subunit) and
Serine carboxypeptidase-like 49 (SCPL49, involves in
proteolysis). Hormone metabolic enzymes and tran-
scription factors, including ABRE binding factor 4
(ABF4, a bZIP transcription factor that mediates ABA-
dependent stress responses), SNF1-related kinase 2.4
(SnRK2.4, involves in osmotic stress responses and ABA
signaling), Gibberellin 20 oxidase 2 (GA20ox2, a key
enzyme in gibberellin synthesis) and NAC domain con-
taining protein 1 (NAC1, involves in transcriptional regula-
tion). Additionally, a random set of unknown function
(putative late embryogenesis abundant protein, group 3,
LEA3) and unclassified (BRADI2G17170, BRADI3G28120
and BRADI2G42030) genes were also analyzed.
The similar expression pattern, obtained in a fifth spe-

cies that was not included in the CSA:Drought, reinforces
the consistency of the shared DEGs as key genes involved
in adaptation to progressive drought stress across-species
(Figure 6).

Discussion
Traditionally, comparisons between two contrasting water
regimes were used to identify drought-related DEGs. This
strategy yielded hundreds to thousands of DEGs, depend-
ing on the selected significance threshold, however, focus
was predominantly given to genes with high fold-change
(usually ≥ 2), overlooking functionally and biologically im-
portant genes with relative mild expression differences.
Moreover, in most cases very limited overlaps were found
among different studies. Our working hypothesis is that
plant adaptation to drought stress involves combination of
evolutionary conserved pathways, as well as, species-
specific genes. Here we developed a novel cross-species
meta-analysis platform to reveal a core set of shared genes
and pathways by integrating transcriptional data from
Arabidopsis, rice, wheat and barley into one meaningful
analytical framework.
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Most (75%) drought transcriptome studies have been
conducted on Arabidopsis under artificial and extreme
conditions (e.g. detached leaves and shocks) for short pe-
riods (e.g. minutes to hours) at the vegetative phase (e.g.
young seedlings), with survival or recovery as selective
traits. In addition, while functional analysis of candidate
genes significantly improved drought resistance in trans-
genic lines under laboratory conditions, limited success
was reported for transgenic crop-plants under field condi-
tions [38], where crop-plants are often exposed to longer
episodes of slowly developing drought stress [39]. There-
fore, we focused our CSA:Drought strategy on progressive
drought stress studies at the reproductive stage. This ap-
proach enabled detection of 225-shared drought-adaptive
DEGs with enhanced functional and evolutionary conser-
vation across-species (Figures 3, 4 and Table 2). Moreover,
we were able to detect with the CSA:Drought approach
128 and 178 shared ortholog DEGs in Arabidopsis and
wheat, respectively, that were missed by the original stud-
ies (Additional file 9: Figure S4). It is worth noted that
while in Arabidopsis only treatment differed between
studies (i.e. all studies conducted using Col-0 ecotype), in
wheat both genotypes (e.g. genotypes Creso, Chinese
Spring, Y12-3 and A24-39) and treatments differed, which
may account for the limited overlaps compared with the
shared DEGs. Additionally, in most cases, transcriptome
analyses use arbitrary fold-change thresholds combined
with significance levels to reduce the number of detected
DEGs from few hundreds/thousands to a tractable sub-
set. Such an approach highlights mostly species- and/or
treatment-specific DEGs. In contrast, meta-analysis strat-
egy facilitates detection of consistent and biologically im-
portant DEGs, which were overlooked in the original
studies due to relatively low fold-change.
Relatively high level of sequence conservation was found

among the shared DEGs compared with the species-
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specific DEGs (Figure 4B). This result should be consid-
ered in the light of the evolutionary distance between the
four species and recent genetic bottlenecks involved in
domestication and consciously evolution under domes-
tication of rice, wheat and barley. It is worth notice that
we cannot determine by our analysis if these genes
were converged among species sometime during their
separated evolutionary history. Although this seems un-
likely, the sample size used in this study and the experi-
mental design used in the original studies prevent us
from completely rule out this option. Whether the se-
quence and functional similarity found among these
genes is a consequence of conservation or convergence
(or both), this shows that the shared DEGs play funda-
mental roles in drought adaptation.
Classification of the shared DEGs into functional categor-

ies suggests the involvement of various mildly expressed
regulatory and metabolic pathways that jointly elicit an or-
chestrated drought adaptation (Figure 3 and Table 2).
Among the metabolic processes carbohydrate and amine
metabolisms are assigned as the largest sub-category (39%),
which is involved in biosynthesis and accumulation of
compatible solutes (Additional file 15: Figure S7). The
functional conservation of these genes was demonstrated
in an additional species. A randomly selected subset of 11
carbohydrate and amine metabolic B. distachyon orthologs
showed similar expression pattern as CSA:Drought. In
accordance, a higher osmotic potential was measured
in drought stressed compared to control B. distachyon
plants. Compatible solutes are small, nontoxic mole-
cules that include sugars (maltose and trehalose), sugar
alcohols (galactinol and mannitol), amino acids (pro-
line) and amines (spermidine and glycine betaine)
(reviewed by [40]). Compatible solutes are an important
adaptive mechanism under drought stress as well as
under additional abiotic stresses as salinity and extreme
temperatures. Osmoprotectants facilitate maintenance
of cell turgor and cellular water potential under stress,
as well as acting in membrane and macromolecules
stabilization and ROS scavenging (reviewed by [41]).
Some of these osmoregulation-related shared genes
have already been shown to improve drought tolerance.
TPPA and TPPG, genes involved in trehalose synthesis,
were included among up-regulated shared DEGs. Over-
expression of yeast TPS-TPP in tobacco, Arabidopsis,
rice and alfalfa significantly improved the transgenic
plant drought tolerance [42-45]. Invertases mediate su-
crose hydrolysis to glucose and fructose, which con-
tributed to better osmoregulation [46]. Accordingly,
INV-E was up-regulated under drought (Figure 6 and
Additional file 13: Figure S6). Complex mechanisms
operate in plants to coordinate the interactions be-
tween carbon assimilation and nitrogen metabolism
[47]. Carbon and nitrogen balance is a key component
in plant adaptation to drought stress [48]. Proline, syn-
thesized via the glutamate pathway (P5CS), or from
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ornithine (Δ-OAT) [49], is believed to act as a store of
carbon and nitrogen, as well as in ROS scavenging
[50]. Both P5CS1 and Δ-OAT expression levels were
up-regulated under drought (Additional file 15: Figure
S7). Accordingly, several studies have shown that over-
expression of either P5CS, or Δ-OAT, in different plant
species resulted in increased proline levels, which
could contribute to enhanced stress tolerance [51-53].
Remarkably, among DEGs reported in studies included
in the meta-analysis, only 16 osmoregulation-related
shared genes were detected, with majority of these genes
(10) present only in one study (Additional file 10: Table
S6). It is worth noted that all Arabidopsis microarray
experiments included in the meta-analysis overlooked the
osmoregulation-related genes [5,26,27], and for other spe-
cies only partial results were discussed [4,7,28-30,54].
Carbohydrate metabolism and lipid degradation may also
be involved in supplying energy that is required for main-
tenance of drought adaptation and osmoprotectant syn-
thesis through breakdown of energy reserves. Additional
large group of genes were assigned to protein regulation
and metabolism. Apart from its regulatory function, pro-
tein degradation during drought-induced leaf senescence
results in increment of the free amino acid pool available
for osmotic adjustment [48,55].
Phytohormone homeostasis is a key factor in plant

drought adaptation that mediates a wide range of adaptive
responses (reviewed by [1]). One of the fastest responses
of plants to drought stress is synthesis of ABA, which in-
duces gene expression, triggers stomata closure and even-
tually restricts cellular growth, leading to whole plant
growth retardation. In accordance with ABA effects on
reproductive tissue development, through transcrip-
tional reprogramming [56] and ABA gene expression
regulation during drought, which is mediated by tran-
scription factors such as ABF4 (Figure 6), promoters of
shared Arabidopsis orthologs were enriched with the
cis-acting element ABRE (Additional file 12: Figure S5).
ABRE involvement in ABA-regulated gene expression
occurs after the accumulation of ABA and therefore
many ABA-inducible transcription factors are involved
mainly in late and adaptive drought processes [57].
Among the enriched ABRE genes included those involved
in starch degradation and accumulation of compatible
solutes [56], as detected by CSA:Drought and validated
in B. distachyon, both transcriptionally and physiologically
(Figures 5 and 6).
Interestingly, several genes that are known to regulate

rapid drought-induced gene expression, were also detected
by the CSA:Drought analysis. These genes included tran-
scription factors as SnRK2.4 and SnRK2.8, and a protease
regulatory subunit as ERD1. Most drought-induced genes
were detected under extreme drought conditions and
short period assays, which might explain their annotations
as early drought-responsive genes. However, the induction
of these genes also during long, mild drought stress might
imply on their involvement in maintenance of study-state
gene expression level as part of drought adaptation. These
discrepancies emphasize the importance of using physiolo-
gically oriented approach when designing stress assays.

Conclusions
Our CSA:Drought strategy identified a set of 225 key
drought-adaptive genes that were only partially, if at all,
reported in the studies included in the meta-analysis.
Functional categorization of the shared DEGs underlined
various regulatory and metabolic pathways as conserved
drought-adaptive mechanisms across species. Physio-
logical and transcriptional characterization of drought
stressed B. distachyon, further supported these results.
Additionally, we have identified and validated a group of
unclassified genes (8%) that could be further investigated
of their functional prospective roles in drought adaptation
mechanisms. The shared DEGs provide useful resource
for subsequent research and can serve as a potential set
of molecular biomarkers for drought experiments and
as candidate genes for engineering drought-tolerant
crop-plants.

Methods
Microarray meta-analysis
Raw microarray data files (.CEL) of progressive drought
stress studies at the reproductive stage were obtained from
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo) and ArrayExpress (http://www.ebi.ac.uk/arrayexpress).
Description of the obtained studies depicted in Additional
file 1: Table S1. Both species-specific probe-set annotation
file and the corresponding probe-gene maps were down-
loaded from the Affymetrix site (http://www.affymetrix.
com). For each species, Affymetrix raw data files were con-
verted and normalized in R (http://www.r-project.org)
using the bioconductor ‘affy’ package [58]. Quality control
analyses of the obtained microarrays included quantile
normalization for each array, followed by across array
robust multichip average (RMA) normalization and trans-
formation to log2 scale.
Meta-analysis was conducted using the rank product

statistics [59], which enabled to combine data of different
origins and identify DEGs between treatment and control
conditions. This non-parametric test was conducted over
all replicates within species to decrease the residual effect
of each study and increase statistical power to identify
DEGs across experiments using the Bioconductor ‘Rank-
Prod’ package [60]. Briefly, genes are ranked based on
their expression (up- or down-regulation) in response to
drought in each experiment individually. The null hypoth-
esis is that the order of genes in an experiment is random,
hence the probability to detect a gene ranked among the
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top genes equals to its rank among the total number of
genes in each experiment. For each gene a combined
probability was calculated as the product of ranks across
experiments and its significance was determined using
100 permutations to accurately estimate P-values [61].
DEGs were selected after correcting for multiple testing
using the percentage of false-positive prediction, which
also controls for the accumulated false positives with a
cutoff of 0.05. For each species, DEGs heat-map was con-
structed using ggplot2 package [62]. To be able to com-
pare between species, the number of detected DEGs was
divided by the corresponding species array size.

Gene ontology analysis
The DEGs were subjected to enrichment of gene ontol-
ogies (GOs) using the AgriGO toolkit (http://bioinfo.cau.
edu.cn/agriGO). GO enrichment was based on the hyper-
geometric statistics followed by a 0.05 FDR correction for
multiple comparisons with a minimum of five entities
mapped to each category. The enriched GO biological
processes were clustered and visualized using the web-
server REVIGO (http://revigo.irb.hr). REVIGO clustering
algorithm finds a single representative GO term, for clus-
ters of semantically similar GO terms, thus resulting in re-
duced, non-redundant GO term sets (i.e. superclusters).
The size of each supercluster reflects its P-value.

Cross-species meta-analysis
We used the Model Genome Interrogator (MGI) tool in
PLEXdb (http://www.plexdb.org) to retrieve predicted
orthologs between each species and homologous loci in
the rice model genome. The MGI matches one or more
predicted orthologs to a selected microarray probe-set
using GeneSeqer (parameters: −x 12 -y 16 -z 24 -w 0.2)
followed by blastx to protein database and blastn to FL-
cDNA sequence database (both with E-value < 1e-20),
and back, producing a quality score for each pair. To de-
fine an injective (one-to-one) orthology between genes,
only best alignment score for each probe-set-ortholog
hit was considered. Shared DEGs were identified using
the penalized Fisher method that combines the P-value
distributions from all four species:

X2
g ¼

Xk
i¼1

−2loge Pgi
� �

where Pgi is the probability that gene g was not differen-
tially expressed between treatments (based on false-
positive prediction). This method could be affected by dif-
ferences in dataset size between species, i.e. small P-values
in one species may lead to subsequent small P-values in
the cross-species combined distribution, as was detected
for the non-normalized data (data not shown). Therefore,
P-values were quantile normalized within each species
prior to the penalized Fisher method. The combined
P-values were further corrected using the FDR adjustment
[63]. To enable the detection of significant items even
when not present in all datasets, missing items from at
most one dataset were included, dragging a P-value pen-
alty equals to one instead of a missing value. Z-transform
normalization was also examined, but was found to be
sensitive to the use of penalty (not shown), due to summa-
tion compared with multiplication in the penalized Fisher
method. For each DEG the average fold-change across-
species was calculated using the geometric mean:

�Dg ¼ exp
1
k

Xk
i¼1

loge Dgi
� � !

where D is the expression fold-change of gene g in species
i, and k is the number of species from which the average
fold-change was calculated.

Metabolic-pathway analysis
DEGs were assigned to processes and pathways using
MapMan software, which organizes genes in blocks, rather
than as pathways. This designation allows genes to be ten-
tatively assigned, even when their function is only roughly
known [64]. Unassigned genes were further annotated
with the program BLAS2GO (http://www.blast2go.com)
using default parameters.

Promoter analysis
Sequences of shared DEGs were extracted from Gramene
BioMart (http://www.gramene.org) with 1 kb upstream to
the transcription start site. Promoter analysis was con-
ducted on the two model species Arabidopsis and rice,
since wheat genome is not supported by BioMart, and
approximately third of the barley gene sequences are
not at adequate quality (i.e. < 800 bp or >200 N). Ana-
lysis of significantly overrepresented motifs within pro-
moter sequences was conducted in BioProspector program
[65] integrated in the Tmod software [66]. To model
the base dependencies of each species, the second-
order Markov background models were constructed
based on a random sample of 100 and 150 promoters,
which are equivalent to the size of up-regulated across-
species genes in Arabidopsis and rice, respectively. Since
several cis-acting elements, involved in plant responses
to drought, e.g. ABA-responsive element (ABRE) and
dehydration-responsive element (DRE), contain core
hexamer sequences [67,68], a fixed motif width was set
to 6 bp. For all other parameters the default settings
were used and a null score was obtained based on the
distribution of 100 Monte-Carlo simulations. The de-
tected motifs, were further optimized and validated
using the BioOptimizer program [69]. Logos were
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generated using WebLogo program (http://weblogo.
berkeley.edu).

Evolutionary analysis
To study the functional clustering of the four species, a
pair-wise distance matrix was calculated using the ex-
pression profile of each species. The Euclidean distance
between orthologs, as were determined by the Model
Genome Interrogator and the following filtering proced-
ure, was calculated using the expression fold-change in
response to drought of all genes expressed across-
species. A hierarchical clustering was conducted in R
using a complete agglomeration of the pair-wise distance
matrix and a phylogenetic tree was constructed after 100
bootstraps.
Shared DEGs were further analyzed for their DNA se-

quence conservation among the four species. For each
shared DEG, the ortholog in rice was determined using
the MGI tool and was used as a transitive anchor
across species. The corresponding sequence in rice was
obtained from the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu) and mapped to the
barley genome (Morex assembly [70]), wheat draft gen-
ome (LCG assembly [71]), and Arabidopsis genome
(TAIR10; http://www.arabidopsis.org). The blastn pro-
gram was used to compare all rice ortholog sequences
to the other three species genomes with an E-value cut-off
of e−10 and the bit-score was considered as a measurement
for similarity between sequences. The use of bit-score en-
abled to reduce the bias introduced by the size of the
searched database [72], which varies extensively between
species. To avoid the residual variation introduced by gene
duplication after speciation (paralogy), whole genome
duplication (ohnology) or polyploidization (homeology)
(in wheat), only the best hit (i.e. lowest E-value) was
considered. The conservation of shared DEGs was fur-
ther compared with DEGs uniquely detected in each
species (i.e. species-specific DEGs). The ortholog se-
quences of unique DEGs in each species were obtained
from the rice genome. A random sample of 50 genes
was selected from each of the two DEGs lists of each
species. The rice ortholog sequences were then com-
pared to the corresponding species genome using
blastn with same settings as previously described and
the average bit score was recorded. This procedure was
permutated 100 times with replacement and the average
bit score over all samples was compared between the two
DEG lists for each species using the Welch t-test.

Physiological characterization of drought adaptation in
Brachypodium distachyon
Seeds of B. distachyon accession 21–3 were obtained from
the National Small Grains Collection (NSGC). Seeds were
sown in trays containing soil mixture (Tuff Merom Golan,
Israel) and stored in 4°C for 48 h followed by 5d in dark
room (15°C). Seedling were transferred to greenhouse
(22°C/16°C day/night, 10 h light/14 h dark) and planted
in pre-weighted 1 L pots. Plants were fully irrigated
three times a week and fertilized with 1 g L−1 N:P:K
(20% nitrogen, 20% phosphorus, 20% potassium) +
micronutrients, two months after germination. Plants
were transferred to a long day regime (15 h light/9 h
dark) 10 weeks after germination (six replicates in each
treatment). At booting stage (BBCH scale 4.5 [73])
drought was applied gradually and maintained at 40%
relative soil water content for 17d.
Measurements of osmotic potential and relative water

content (RWC) were conducted on third leaf at mid-day.
For osmotic potential analysis, leaves were placed in vials
containing double-distilled water and kept in dark cold
room for 4 h. Leaves were then dried and frozen in li-
quid nitrogen. Osmotic potential of the leaf sap was
assessed using a vapor pressure osmometer (Vapro5600,
Wescor Inc., USA). For RWC analysis, leaves were
placed in pre-weighted vials. Vials were immediately
weighted to obtain fresh weight (FW) followed by hydra-
tion for 6 h to full turgid. Samples were weighted to obtain
leaf turgid weight (TW) and then oven dried at 75°C for
72 h to obtain dry weight (DW). RWC was calculated as:

RWC¼ FW ‐DW=TW ‐DWð Þ � 100
Leaf spectral reflectance, at wavelengths from 400 to

1000 nm with an interval of ~0.2 nm, was measured at
mid-day using a portable narrow-band width spectrometer
(CI-700, CID Bio-Science Inc., USA). Leaf chlorophyll
concentration was estimated using transformed chloro-
phyll absorption in reflectance index (TCARI) [74]:

TCARI ¼ 3�½ W700−W670ð Þ−0:2�
W700−W550ð Þ� W700=W670ð Þ�

Culm length was measured from soil to spike base.
Spikes and vegetative dry matter were harvested separately
at the end of the experiment and oven dried (75°C for
72 h). Samples were weighed and total biomass was
calculated.

RNA extraction and qPCR assay
Flag and second leaf samples from six independent
plants were collected in the morning of the 17th day of
drought stress and immediately frozen in liquid nitro-
gen. Total RNA was extracted using Plant/Fungi Total
RNA Purification Kit (Norgen Biotek Corp., Canada)
with on-column DNase treatment (Qiagen, Germany).
RNA integrity was assessed with 2100 Bioanalyzer (Agi-
lent Technologies Inc., Germany) and first strand cDNA
was synthesized using qScript™ cDNA Synthesis Kit
(Quanta Biosciences Inc., USA) following manufacturer’s
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instructions. qPCR was carried out using PerfeCTa®
SYBR® Green FastMix® (Quanta Biosciences Inc., USA)
on the PikoReal RT-PCR system (Thermo Fisher scientific
Inc., USA). Gene-specific primers were designed using
Primer-BLAST software [75] (Additional file 14: Table S8).
The 2-ΔΔCT method [76] was used to normalize and cali-
brate transcript values relative to two housekeeping genes
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
BRADI3G14120) and S-adenosylmethionine decarboxylase
(SamDC, BRADI2G02580) [77], whose their expression
did not change in response to drought.
Availability of supporting data
The datasets supporting the results of this article are in-
cluded within the article and its Additional files.
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