
RESEARCH Open Access

Compensating for literature annotation bias when
predicting novel drug-disease relationships
through Medical Subject Heading Over-
representation Profile (MeSHOP) similarity
Warren A Cheung1,2, BF Francis Ouellette3,4*, Wyeth W Wasserman1,5*

From Second Annual Translational Bioinformatics Conference (TBC 2012)
Jeju Island, Korea. 13-16 October 2012

Abstract

Background: Using annotations to the articles in MEDLINE®/PubMed®, over six thousand chemical compounds
with pharmacological actions have been tracked since 1996. Medical Subject Heading Over-representation Profiles
(MeSHOPs) quantitatively leverage the literature associated with biological entities such as diseases or drugs,
providing the opportunity to reposition known compounds towards novel disease applications.

Methods: A MeSHOP is constructed by counting the number of times each medical subject term is assigned to an
entity-related research publication in the MEDLINE database and calculating the significance of the count by
comparing against the count of the term in a background set of publications. Based on the expectation that drugs
suitable for treatment of a disease (or disease symptom) will have similar annotation properties to the disease, we
successfully predict drug-disease associations by comparing MeSHOPs of diseases and drugs.

Results: The MeSHOP comparison approach delivers an 11% improvement over bibliometric baselines. However,
novel drug-disease associations are observed to be biased towards drugs and diseases with more publications. To
account for the annotation biases, a correction procedure is introduced and evaluated.

Conclusions: By explicitly accounting for the annotation bias, unexpectedly similar drug-disease pairs are
highlighted as candidates for drug repositioning research. MeSHOPs are shown to provide a literature-supported
perspective for discovery of new links between drugs and diseases based on pre-existing knowledge.

Introduction
Using previously studied and approved pharmaceutical
compounds and applying them towards novel diseases or
phenotypes - so-called ‘drug repositioning’ - has emerged
as a key issue in biomedical research [1,2]. The cost of
developing a new chemical or molecular entity with pro-
ven therapeutic benefit and established safety was esti-
mated at over $1.8 billion in 2010, and continues to rise
rapidly [3]. Therefore, using compounds with known

biochemical mechanism of action and an established safety
record for new purposes is an alternative to the high cost
of de novo compound research [4]. Advances in drug repo-
sitioning research have identified potential treatments for
Crohn’s disease [5,6], and have raised hopes for advances
in the treatment of rare, orphan disorders [7].
Informatics-based approaches to drug repositioning are

exemplified by the identification of known drug targets in
genes arising in genome-wide association studies [8], the
prediction of structural suitability of a known compound
for a new protein target [9,10], systems biology using gene
expression patterns [6,11], and the study of side effects
[12]. Underlying many of these informatics approaches
has been the availability of reference databases containing
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information about the relationship between genes, drugs
and diseases, such as DrugBank [13], Pharmacogenomics
Knowledge Base [14,15], and the Comparative Toxicoge-
nomics Database [16]. The broader informatics approaches
to drug repositioning have been recently reviewed [2].
Advances in literature and text analysis methods offer a
promising path to drug repositioning based on established
knowledge. Text analysis methods have addressed the
study of FDA package inserts in the SIDER database [17]
to identify side effects, for the comparison of word utiliza-
tion between drug and disease-related abstracts [18,19],
and for the analysis of similarity between gene ontology
process annotations assigned to a known drug target and
genes in disease-associated pathways. Literature-based
drug repositioning has been reviewed [20,21].
The foundation of any text-based analysis is an orga-

nized resource of the primary research literature describ-
ing the properties contained in the text. The central
information source for biomedical literature is the MED-
LINE®/PubMed® database encompassing over 20 million
indexed articles in 2012. PubMed provides a citation
resource tailored to biomedical researchers, globally acces-
sible at no charge. This comprehensive database of medi-
cally relevant citations is curated by expert annotators at
the National Library of Medicine. Each article is indexed
with topics from the controlled vocabulary of Medical
Subject Headings (MeSH) [22] by domain experts at the
National Library of Medicine. MeSH terms include medi-
cally relevant categories such as Anatomy, Disease, Chemi-
cal Compounds (including pharmacologic compounds)
and Psychiatric Disorders. In addition to the topics in the
main MeSH hierarchy, additional chemical compounds
are indexed through the Supplementary MeSH vocabulary.
Despite the increasing wealth of raw literature knowl-

edge, having means to evaluate and navigate the entirety
of this knowledge becomes progressively more challen-
ging. We previously introduced Medical Subject Heading
Over-Representation Profiles (MeSHOPs) as a convenient
quantitative representation of the properties enriched in a
bibliography of scientific literature from MEDLINE [23].
MeSHOPs succinctly describe the most highly associated
MeSH terms for an entity of interest. The quantitative
comparison of MeSHOPs is shown here to allow the pre-
dictive inference of entity-entity relationships in a study of
relationships between drugs and diseases. However, we
observe that the magnitude of research literature intro-
duces a strong bias into the study of entity-entity relation-
ships, with the most popular diseases more likely to be
linked to drugs in the future, and vice-versa. This bias par-
allels the effect seen when predicting gene-disease rela-
tionships via MeSHOPs, where the most popular genes
are more likely to be linked to diseases, and vice-versa
[24]. It is important to be aware of biases and trends in
research that may influence the results of text analysis,

and to correct for these biases to better direct research
efforts [25,26].
In this report, we investigate the capacity of MeSHOP

comparisons to detect functional relationships between
pharmaceutical compounds and diseases with an empha-
sis on the ranking of candidates for drug repositioning
research. We demonstrate that MeSHOPs capture the
properties of drugs, and that such information can be
compared to disease MeSHOPs to reveal functionally
relevant relationships. Entities with limited associated lit-
erature, such as some rare diseases, are shown to have
disproportionate scores in initial MeSHOP comparisons.
To account for existing annotation levels of drug and dis-
ease entities and identify MeSHOP similarity, we measure
the annotation strength for drug and disease entities and
incorporate this prior information into the scoring of pre-
diction strength. Using this improved comparison metric
we demonstrate that drug and disease MeSHOP compari-
sons are improved, as validated by the identification of
novel associations observed in future publications and
against a curated reference collection.

Methods
Pharmacological substances
In this paper, we examine the set of drugs, defined as all
chemical compounds annotated as having a Pharmacolo-
gic Action, taken from both the Medical Subject Head-
ings (MeSH) and Supplemental MeSH vocabularies.
Since 1996, indexers at the National Library of Medicine
track articles where the action of a drug is discussed
(MeSH Basics - http://www.nlm.nih.gov/bsd/disted/
meshtutorial/pharmacologicalactionterms/). In 2003, the
MeSH Category “Pharmacologic Action” was created, in
order to delineate chemical compounds which are used
therapeutically as pharmacologic agents. Such annota-
tions are conservatively assigned, requiring a minimum
of 20 supporting research articles. We analyze these 6512
drugs with respect to the diseases in the MeSH hierarchy.

Constructing drug and disease MeSHOPs
The construction of MeSHOPs has been previously
described in detail [23], but we provide a description here
for the reader’s convenience. A MeSHOP is a quantitative
representation of the MeSH annotations associated with a
set of articles, where the unifying property of the articles is
that each addresses the same, specific entity (for example,
all articles discussing the entity “Acetaminophen”). Each
article has a curator-assigned set of MeSH terms available
in MEDLINE. Comparing the observed frequency of each
MeSH term annotated to the set of articles relative to the
background rate for each term returns a measure of over-
representation (see below for additional details). A
MeSHOP is a vector of tuples < (t1, m1), (t2, m2), ... (tn,
mn) >. For each tuple (ti, mi) in a MeSHOP, ti is a distinct
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MeSH term in the MeSH vocabulary and mi is the over-
representation measure for the term ti . To account for
the tree structure of MeSH, for each MeSH term asso-
ciated with an article, the article is considered associated
to all of the parent terms of that MeSH term.
We consider the 6 512 pharmacologic compounds

identified in MeSH 2007 as the drug entities. The 4 229
terms in MeSH 2007 in Category C “Diseases” composed
the set of disease entities. We take as the set of articles
for a specific entity all the MEDLINE articles annotated
by the associated MeSH term. These MeSH annotations
are manually curated by domain experts at the National
Library of Medicine.

Predicting drug-disease associations
A drug and a responsive disease are anticipated to share
common literature annotations, such as metabolic path-
ways, cellular processes and symptoms, even if no links
between the drug and the disease have been previously
reported in the literature. To infer novel relationships
between a drug and a disease, we perform quantitative
pairwise comparisons of MeSHOPs between members of
each class. We hypothesize that a previously unassociated
disease t is likely to be associated with a drug d if the
MeSHOP Pt for the disease t is highly similar to the drug’s
MeSHOP Pd . When many biomedical terms are common
between two profiles, the likelihood for a future associa-
tion between the entities profiled is expected to increase.
Sixteen distinct similarity measures were evaluated using

Receiver Operating Characteristic Area Under the Curve
(ROC AUC) scores, from counting measures such as term
overlap and term coverage to calculated measures such as
Euclidean (L2) and cosine distance of p-value profiles (See
Table 1). The scores evaluate the shared characteristics
from both the drug and the disease MeSHOPs to make
predictions. Two baselines are presented for comparison:
the number of terms in the drug MeSHOP, and the num-
ber of terms in the disease MeSHOP. These baselines con-
sider only the drug MeSHOP alone, or the disease
MeSHOP alone, respectively, not using any information
from the other MeSHOP.
After implementing and evaluating the scoring metrics

using AUC scores, a consistently effective metric was
determined to be the Euclidean distance of the log of the
p-value for the overlapping terms between the drug and
the disease. P-values were reported by Fisher’s Exact Test
based on a hypergeometric distribution of term utiliza-
tion across a background set of articles. For this report,
two background sets are considered. When working
within a specific class of entities (e.g. drugs), the back-
ground is most appropriately all articles that are asso-
ciated with one or more members of the entity class. For
comparisons between entity classes, a universal back-
ground is used. For this study, the universal set contained

17 million MEDLINE articles assigned MeSH terms in
MEDLINE 2007.

Correcting for pre-existing literature annotation
Given the significant impact of annotation bias on pair-
wise MeSHOP comparison, we introduce a correction of
our similarity scores for these pre-existing literature
effects. This correction aims to normalize the scores
with respect to existing literature annotation, correcting
for inherent biases in the scoring methods and revealing
associations that are due to the similarity of annotation
rather than the amount of annotation (the research
“popularity” of the entity).
Expressed formally, let us consider drug-disease rela-

tionships, with scores Xs, drug annotation levels Xc and
disease annotation levels Xd, where the annotation level
is the number of MeSH terms annotated to articles in
MEDLINE for the drug or disease. For a given drug c
and disease d with drug annotation level xc and disease
annotation level xd and a drug-disease score xs, we want
to determine the probability that xs is more extreme
than a random drug-disease relationship score with drug
annotation level xc and disease annotation level xd :

P(Xs > xs|(Xc = xc) ∧ (Xd = xd))

However, this probability can only be directly com-
puted when the set of drugs and diseases is sufficiently
large that there are many drugs and many diseases with
the same level of annotation. In order to correct for the
previously observed bias, we will seek to adjust the sig-
nificance based on the local distribution of scores
observed for similarly annotated entities.

P(Xs > xs|(Xc ≈ xc) ∧ (Xd ≈ xd))

This can be computed by incorporating the properties
of conditional probability as

P(Xs > xs|(Xc ≈ xc) ∧ (Xd ≈ xd)) =
P((Xs > xs) ∧ (Xc ≈ xc) ∧ (Xd ≈ xd))

P((Xc ≈ xc) ∧ (Xd ≈ xd))

As well since P(Xc ≈ xc) and P(Xd ≈ xd) are indepen-
dent, this can be further simplified to

P(Xs > xs|(Xc ≈ xc) ∧ (Xd ≈ xd)) =
P((Xs > xs) ∧ (Xc ≈ xc) ∧ (Xd ≈ xd))

P((Xc ≈ xc)P(Xd ≈ xd))

We select P(Xc ≈ xc) = P(Xd ≈ xd) = 0.1, and compare
against the 10% of the drugs that are most similar, anno-
tation level-wise, to the drugs in the relationship of inter-
est, and likewise for 10% of the diseases. Specifically, we
take the drugs within ±5 percentile of annotated term
counts, and likewise the diseases within ±5 percentile of
annotated term counts. The similarity scores for each
possible drug-disease pairing between these selected
groups are extracted. By comparison against these scores,
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an empirical significance score of the candidate drug-dis-
ease pairing is assigned. Given the 4 229 diseases and 6
512 drugs, selecting 10% yields hundreds of drug and dis-
ease peers, and several hundred thousand scores with
which to compare.

P((Xs > xs) ∧ (Xc ≈ xc) ∧ (Xd ≈ xd)) is computed by
dividing the number of drug-disease relationships with
score greater than xs and with drug and disease annotation

similar to xc and xd respectively, by the total number of
drug-disease relationships. The correction described allows
us to separate the effect of the level of annotation for the
drug and disease from the similarity of the concepts and
allows the user to distinguish high-scoring drug-disease
relationships that are primarily due to the annotation level
of the drug or disease concept, from high-scoring relation-
ships that arise due to sharing significant profile similarity.

Table 1 Explanation of the scoring functions evaluated.

Scoring Method Description

Cosine Distance of Term Frequency-Inverse Document Frequency
∑
j∈M

(
ci(j)di(j)

)/⎛
⎝√∑

j∈M

(
ci(j)

)2
√∑

j∈M

(
di(j)

)2

⎞
⎠

Cosine Distance of p-values
∑
i∈M

(
cp(i)dp(i)

)/⎛
⎝
√∑

i∈M

(
cp(i)

)2
√∑

i∈M

(
dp(i)

)2

⎞
⎠

Cosine Distance of term fractions
∑
i∈M

(
cf (i)df (i)

)/⎛
⎝
√∑

i∈M

(
cf (i)

)2
√∑

i∈M

(
df (i)

)2

⎞
⎠

Sum of the log of combined p-values

∑
i∈M

log
(
cp(i) + dp(i) − cp(i)dp(i)

)

Sum of the differences of log p values
∑
i∈M

∣∣∣∣log
(

cp(i)

dp(i)

)∣∣∣∣ =
∑
i∈M

∣∣log
(
cp(i)

) − log
(
dp(i)

)∣∣

L2 of log-p of overlapping terms only

√ ∑
i∈(C∩D)

(
log

(
cp(i)

) − log
(
dp(i)

))2

L2 of term fractions of overlapping terms only

√ ∑
i∈(C∩D)

(
cf (i) − df (i)

)2

L2 of log of p-values

√√√√∑
i∈M

(
log

(
cp(i)

dp(i)

))2

=
√∑

i∈M

(
log

(
cp(i)

) − log
(
dp(i)

))2

L2 of p-values

√∑
i∈M

(
cp(i) − dp(i)

)2

L2 of term fractions

√∑
i∈M

(
cf (i) − df (i)

)2

L2 of term frequency

√∑
i∈M

(
c(i) − d(i)

)2

Term Coverage |C ∪ D|
Term Overlap |C ∩ D|
Number of Drug MeSH Terms |C|
Number of Disease MeSH Terms |D|
M refers to the set of all MeSH terms, C and D refer to the MeSH terms for the drug and disease profile respectively. c(i), cf(i), cp(i) and ci(i) refer to the frequency,
term fraction, hypergeometric p-value and term frequency-inverse document frequency for the MeSH term i of the drug profile. d(i), df(i), dp(i) and di(i) refer to
the frequency, term fraction, hypergeometric p-value and term frequency-inverse document frequency for the MeSH term i of the disease profile.
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Validating drug-disease associations
To evaluate drug-disease associations predicted by
MeSHOP similarity, we analyzed the 2007 baseline
release of MEDLINE to generate predictions, and mea-
sured our predictive performance against annotations
appearing in future releases of MEDLINE. The annual
MEDLINE baseline releases 2007 and 2010 were used as
the source of MeSH annotations for articles and were
obtained directly from the NLM. The drug and disease
MeSHOPs, computed for the MEDLINE baseline 2007,
were compared using a panel of 16 similarity scores.
Future disease-drug relationships are predicted if

MeSHOP comparison similarity scores exceed an applied
threshold. Predictions were validated against drug-disease
co-occurrences that appeared in the future MEDLINE
releases which had not appeared in articles before 2007. A
true positive novel association means an article referring
to a previously unconnected drug-disease pair was pub-
lished in the interim period between the 2007 and 2010
MEDLINE baselines.
As a second validation set, the Comparative Toxicoge-

nomics Database (CTD) was used as a source of curated
drug-disease relationships. We matched drugs from the
2011 CTD to the drugs defined in MEDLINE 2007, and
defined a reference collection of 291 novel drug-disease
relationships for those entries in CTD that were defined
by publications appearing in the period of 2007-2011. The
reference collection contains 191 unique drugs and 150
unique diseases.
Using these validation sets, we evaluate the candidate

scoring methods by computing the Receiver Operating
Characteristic (ROC) curve for predictions from analysis
of the baseline 2007 data and reporting the Area Under
the ROC Curve (AUC). Novel drug-disease pairs from the
two reference sets are defined as “true positives”, and all
other drug-disease pairings are defined as “true negatives”
(which is recognized to be conservative, as such pairs may
be validated in future studies). All drug-disease pairs
reported prior to 2007 are excluded from the AUC
analysis.
The gold standard dataset analysed by the PREDICT

algorithm [27] was mapped, with 574 of the 593 drugs
mapping to 2007 MeSH pharmacologic compounds and
the 190 of the 313 diseases mapping to MeSH Category
C disease terms. A small number of drugs were not
identified as pharmacologic compounds in 2007 MeSH.
Diseases mapping to a combination of multiple MeSH
disease phenotypes, or mapping to MeSH terms that
were not in the Disease Category of MeSH were not
included. Overall, 924 of the 1933 associations from the
gold standard were mapped, comprising 406 drugs and
160 diseases. For the purposes of calculating the ROC
validation curves, all other drug-disease associations
between the mapped drugs and diseases are considered

to be false positives. All the drug and disease mapped
terms, as well as all the mapped gold standard drug-dis-
ease relationships are available for download at (http://
meshop.oicr.on.ca/meshop/).

Implementation
The analysis was performed using Python (http://www.
python.org/), XSLT (http://www.w3.org/TR/xslt), and
the MySQL database system (http://www.mysql.com/).
Fisher’s Exact Test p-values were computed using the R
statistics package (http://www.r-project.org/). Results
were generated using 50 CPUs of a compute cluster
running under Sun GridEngine (http://www.oracle.com/
technetwork/oem/grid-engine-166852.html). A typical
cluster machine is a 64-bit dual processor 3 GHz Intel
Xeon with 16 GB of RAM.
Data was leased and downloaded from MEDLINE/

PubMed (http://www.nlm.nih.gov/databases/leased.
html). The Comparative Toxicogenomics Database vali-
dation set was taken from the drug-disease relationships
dataset (http://ctdbase.org/downloads/).
Results are freely accessible on the web at http://

meshop.oicr.on.ca/meshop/. Source code implemented in
Python is available at http://github.com/wac/meshop/
(drug and disease profile analysis) and http://github.com/
wac/cmp-meshop/ (evaluation and validation of results).

Results
Generation of drug MeSH Over-representation Profiles
(MeSHOPs)
MeSHOPs provide a quantitative overview of the biome-
dical knowledge associated with an entity of interest
through the indexed biomedical terms. Following the
described methods, MeSHOPs for all indexed diseases
and drugs in MEDLINE were generated using archived
MEDLINE data up until 2007. A drug MeSHOP is pre-
sented for acetaminophen (Figure 1), and a disease
MeSHOP is presented for Aniridia (Figure 2). The
scores within MeSHOPs are influenced by the back-
ground correction for the expectation of MeSH term
frequency. If one takes the background rate from all
articles in MEDLINE, MeSH terms preferentially asso-
ciated with drugs are likely to be emphasized in the
drug MeSHOPs, such as ‘pharmaceutical preparation’.
The strong scores for such drug-related terms can be
corrected for by using class-specific backgrounds - such
as the subset of articles that address one or more drugs.
For comparisons of MeSHOPs across categories, as will
follow, we select the universal background as a common
background for all entities being compared.

Predicting drug-disease associations
We examine the utility of drug-disease MeSHOP simi-
larity scores for the prediction of drug-disease co-
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annotation in future publications. Table 2 demonstrates
that comparison of drug and disease MeSHOPs predicts
future drug-disease co-occurrence in subsequent years
(2007-2011). The most effective similarity score is the
Euclidean distance of log-p of overlapping terms only,
which produces an AUC score of 0.95 for the prediction
of future co-occurrence in publications:

√ ∑
ie(C∩D)

(
log(cp(i)) − log(dp(i))

)2

(C and D refer to the MeSH terms of drug and disease
MeSHOPs respectively, cp(i) and dp(i) refer to the p-
value for the MeSH term i of the drug or disease profile
respectively).
Enthusiasm for the performance is tempered, however,

by the fact that a simple metric of the number of MeSH
terms associated with a disease when used as a predic-
tion ranking produces an AUC score of 0.84 (and
counts for drug-associated MeSH terms produce a score
of 0.80). Randomly assigned scores will produce an
AUC of 0.5. These results are consistent with a process

Figure 1 MeSHOP for Acetaminophen. All terms are presented in this MeSHOP word cloud associated in the Acetaminophen MeSHOP with a
p-value of 0. The size of the term in the word cloud presented is proportional to the number of related articles for the term.

Figure 2 MeSHOP for Aniridia. The top 150 terms in the profile for the disease Aniridia are shown, where the font size of each MeSH term is
proportional to the negative log p-value for the term.
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in which well-studied diseases (or drugs) are more likely
to be the subject of future research publications and
therefore more likely to co-occur with drugs than dis-
eases that have few publications. These scores reflect a
systematic limitation in the scoring procedure that
needed to be resolved to allow for the identification of
drugs suitable for orphan disorders, as well as to pro-
duce a more refined list of candidates to pursue.
When we examine the mapped validation evaluated by

the PREDICT algorithm, we see a non-random but
weaker predictive ability from the number of terms for
the disease (AUC of 0.60) and the number of terms for
the drug (AUC of 0.58).
Comparing drug-disease MeSHOP profiles can yield

AUC of up to 0.87, comparing favorably to the AUC of
0.90 reported by the PREDICT algorithm on the unmapped
gold standard dataset (See Table 2).

Annotation bias observed for curated drug-disease
relationships
Predicted novel drug-disease relationships were alterna-
tively assessed against a curated reference collection from
CTD that contains bonafide drug uses (i.e. not just co-
occurrence in a paper, but manually assessed evidence that
the drug is used as a treatment for a disorder). As seen in
Table 2, similarity of MeSHOPs is able to accurately pre-
dict novel associations by comparing MeSHOPs of drugs
and diseases, achieving ROC AUC of 0.93 (for the sum of
the log of combined p-values). The Euclidean distance of
overlapping terms metric that performed best for previous
MeSHOP comparison performance tests, produces a
similar ROC AUC of 0.92. As displayed in Figure 3, a

substantial fraction of the validation set is over-represented
for well-studied drugs and diseases. Over half of the 191
drugs are in the top 10% of all drugs in terms of amount of
associated MeSH annotation (the peak to the left of the
histogram). Only slightly less biased, of the 150 diseases,
over half are in the top 15% of diseases, in terms of asso-
ciated MeSH annotation. Consistent with these properties,
using the baseline MeSH term counts for drug or disease
annotation levels as scores, a ROC AUC of 0.83 is achieved.
As for the co-occurrence measure, it is clear that annota-
tion bias is a strong predictor for bona fide interactions.

Controlling for annotation bias
The influence of annotation on the MeSHOP compari-
son scores can be visualized using heatmaps. As seen in
Figure 4, and fully consistent with the AUC scores
above, there is a high degree of correlation between the
amount of annotation for the disease (as measured by
the number of MeSH terms in the disease profile), and
the drug-disease score (Pearson correlation of -0.82). A
correlation of -0.33 is observed when comparing drug-
disease scores against the degree of drug annotation (see
Figure 5). For a candidate list for drug repositioning,
this annotation bias must be eliminated to allow for
more rarely studied drugs or diseases to emerge from
the analysis as candidates. We introduce a corrected
scoring procedure for MeSHOP comparisons that com-
putes the significance of similarity scores based on the
distribution of scores for drug-disease tuples with simi-
lar annotation levels. In short, the observed similarity
score should be remarkable given the level of annotation
of the drug and disease in the tuple. After applying this

Table 2 Performance of a selection of drug-disease similarity scores.

Scoring Method Direct Connection Validation AUC CTD Validation AUC PREDICT Validation AUC

Corrected drug-disease p-value 0.65 0.76 0.66

Cosine distance tf-idf 0.88 0.91 0.87

Cosine distance of p-values 0.64 0.70 0.52

Cosine distance of term fractions 0.78 0.83 0.80

Sum of the log of combined p-values 0.92 0.93 0.80

Sum of the differences of log p values 0.89 0.86 0.58

L2 of log-p of intersecting terms 0.95 0.92 0.66

L2 of term fractions of intersecting terms only 0.64 0.55 0.57

L2 of log of p-values 0.88 0.84 0.57

L2 of p-values 0.87 0.82 0.56

L2 of term fractions P(s < S) 0.85 0.90 0.78

L2 of term frequency 0.87 0.83 0.62

Total number of terms 0.90 0.87 0.62

Number of Intersecting Terms 0.91 0.91 0.63

Number of Drug Terms 0.80 0.83 0.58

Number of Disease Terms 0.84 0.83 0.60

Performance validated using novel direct drug-disease direct co-occurrences from MEDLINE, and novel drug-disease relationships from the CTD. Top scores for
each validation set are presented in boldface type.
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Figure 4 The degree of disease annotation plotted against MeSHOP comparison score. The figure displays a heatmap depicting the
number of drug-disease tuples for a disease annotation level (MeSH terms attached to the disease MeSHOP) on the x-axis and a MeSHOP
comparison score on the y-axis. MeSHOP similarity scores were calculated using Euclidean Distance. The degree of disease annotation, measured
as the total number of distinct MeSH terms associated with a disease, is highly inversely correlated (Pearson correlation score of -0.82) with the
similarity score.

Figure 3 Distribution of drug annotation (A) and disease annotation (B) in the new drug-disease associations of the CTD validation
set. The x-axis represents the quantile of the MeSH term counts for the drugs (part A) and diseases (part B) in the CTD reference collection (part
A). The histograms indicate that both drugs and diseases within the CTD reference collection are biased toward greater numbers of associated
MeSH terms.
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correction for drug-disease annotation bias, both disease
annotation level and drug annotation levels have very low
correlation to the drug-disease score (0.08 and 0.05
respectively) (see Figure 6 and Figure 7). Table 3 demon-
strates how the correction re-ranks the candidate drugs,
shifting focus away from general compounds like mono-
clonal antibodies, immunoglobulin G, epinephrine and
iron to compounds more directly to Arthritis and Gout.
This also highlights some similar compounds that have
not previously been linked to gout such as glucametacin
and imidazole-2-hydroxybenzoate. We see similar results
for the candidate drug lists for Asthma, Cardiac Arrhyth-
mias, Jaundice and Lupus and provide the entire list of
drug-disease relationships with raw and corrected scores
online (See Additional file 1 and Supplementary Table 2
at http://meshop.oicr.on.ca/meshop/tbc2012.html).

Discussion
In this report, we introduce a new literature-based proce-
dure for the analysis of drug-disease similarity with a focus
on the identification of candidates for drug-repositioning.
Using MeSH Over-representation Profiles (MeSHOPs) as

quantitative representatives for biological entities, we seek
to identify drugs and diseases with similar annotation
under the expectation that such similarity may be sugges-
tive of potential for repositioning. Drug-disease MeSHOP
similarity scores, using a panel of metrics, are found to be
strongly influenced by the level of annotation of drugs and
diseases. The most heavily studied diseases and drugs are
disproportionately emphasized by the comparison scores.
A new corrected scoring procedure is introduced to
account for the background expectation of similarity
scores for comparably annotated drugs and diseases. The
new procedure is demonstrated to account for the bias.
Application of the MeSHOP similarity scoring procedure
reveals a set of candidate drugs for future repositioning
research.
The assessment of drug repositioning candidate predic-

tions is necessarily problematic. Given the expense of
validating drug efficacy, there is no reference collection
against which to measure performance. In this report we
elected to take as references two approaches. First, we
predicted future co-occurrence in the research literature.
This measure is indirect, as co-occurrence does not

Figure 5 The degree of drug annotation vs. MeSHOP comparison score. The figure displays a heatmap depicting the number of drug-
disease tuples for a drug annotation level (MeSH terms attached to the disease MeSHOP) on the x-axis and a MeSHOP comparison score on the
y-axis. MeSHOP similarity scores were calculated using L2 distance. The degree of drug annotation, measured as the total number of distinct
MeSH terms associated with a drug, is inversely correlated (Pearson correlation score of -0.33) with the similarity score.
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necessarily reflect a functional tie between the drug and
disease. Furthermore, this measure is particularly suscep-
tible to annotation influence - well studied drugs and dis-
eases have a higher rate of future publications and are
thus more likely to be linked. The second reference col-
lection tested was extracted from the CTD, which
records bonafide drug-disease links. The performance
measurements reflect a similar literature bias on the
CTD results, which may reflect a tendency for well-stu-
died drugs to be tested for utility in well-studied disease
therapy.
Within this report, we observe that the MeSHOP com-

parisons perform better than simple annotation mea-
sures, which indicates that the similarity assessment has
value. Furthermore, we were able to identify and correct
for the annotation bias influence on the analysis. It is our
hope that future annotation-based similarity measures
will be evaluated for the biases we observe here.
The source of the annotation biases identified in the

validation sets may lie in methodological bias or be
intrinsic to the nature of drug-disease relationships. The
case for methodological bias notes the relationship

between the existence of experimental protocols and the
publication of related research. The study of disease
involves the availability of appropriate animal models, a
family with a history of the condition, a large-scale asso-
ciation study, and an accurate protocol to diagnose the
condition. As well, the rarity and severity of the disease
will also change the degree of research interest. Likewise,
the study of drugs also benefits from animal models,
bioassays to detect the compound, the ability and ease to
generate the compound, and the ability to deliver an
appropriate dosage of the compound to the targets of
interest. Other factors motivating research directions are
availability of funding and the focus of existing lab per-
sonnel and their research towards more popular direc-
tions of research.
However, the bias may also intrinsic to the nature of

the disease or of the drug. Gillis and Pavlidis [28] have
previously observed that multifunctional genes are a
strong driver in gene function prediction. They identify
gene multifunctionality through protein interaction and
co-expression datasets, which encompass previous defini-
tions of the “hub-ness” of a particular gene. A drug may

Figure 6 Disease annotation vs. corrected MeSHOP comparison score. The figure displays a heatmap depicting the number of drug-disease
tuples for a disease annotation level (MeSH terms attached to the disease MeSHOP) on the x-axis and a corrected MeSHOP comparison score
on the y-axis. MeSHOP similarity scores were calculated using L2 distance, but were corrected as described in the text to account for
background annotation levels. The degree of disease annotation, measured as the total number of distinct MeSH terms associated with a
disease, is no longer correlated (Pearson correlation score of 0.08) once corrected.
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have a more global effectiveness, due to targeting these
multifunction genes or their pathways, and thereby be
involved in more drug-disease associations. Similarly,
there may be diseases that are involved in key processes,
and therefore be the target of many potential drugs.
Whether the biases are intrinsic to the biology of drugs

and diseases, primarily introduced by the human nature
in the research, or some combination of these factors will
ultimately be revealed by the results of future research.
As our knowledge of the nature of drugs and diseases
increases and matures, the human elements and metho-
dological biases will increasingly become less significant,

Figure 7 Drug annotation vs. corrected MeSHOP comparison score. The figure displays a heatmap depicting the number of drug-disease
tuples for a drug annotation level (MeSH terms attached to the drug MeSHOP) on the x-axis and a corrected MeSHOP comparison score on the
y-axis. MeSHOP similarity scores were calculated using L2 distance, but were corrected as described in the text to account for background
annotation levels. The degree of drug annotation, measured as the total number of distinct MeSH terms associated with a drug, is no longer
correlated (Pearson correlation score of 0.05) once corrected.

Table 3 Comparison of top drug candidates for gout.

Corrected Predictions Original Predictions

Rank Drug Score Articles Drug Score Articles

1 Kebuzone 0.14 2 Antibodies, Monoclonal 3.66E+08 4

2 Alminoprofen 0.17 1 Glucose 3.64E+08 5

3 Benziodarone 0.24 3 Insulin 3.24E+08 5

4 Proquazone 0.26 1 Norepinephrine 3.14E+08 1

5 Isoxicam 0.35 1 Tetradecanoylphorbol Acetate 3.02E+08 1

6 Glucametacin 0.48 Immunoglobulin G 2.98E+08 11

7 proglumetacin 0.52 2 Nitric Oxide 2.97E+08 5

8 imidazole-2-hydroxybenzoate 0.52 Interferon-gamma 2.88E+08 1

9 Prenazone 0.57 1 Serotonin 2.69E+08 4

10 diclofenac hydroxyethylpyrrolidine 0.59 Antibodies 2.62E+08 5

We compare the top 10 drug candidates after applying our described correction against the top 10 candidates before correction. Articles lists the number of
MEDLINE articles in which the MeSH term “Gout” and the drug co-occur.
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leaving us to identify the degree this bias is due to the
biological mechanism and nature of the drugs and
diseases.
The underlying principle motivating the comparison

approach to reveal novel drug repositioning candidates is
that there will be shared characteristics of the drug
actions and disease properties. While the current
approach utilizes universal comparisons across all MeSH
terms, it may be beneficial to restrict the analysis to a
subset of more relevant MeSH terms. Development of a
procedure to restrict the terms (the features) of
MeSHOPs may allow for more specific drug reposition-
ing candidates to emerge in the future.

Future work
MeSH provides a wide spectrum of medically relevant
topics, however, some applications may be better served
by a vocabulary with more specific terms in the field of
interest. For example, there are only eight terms in MeSH
(Akathisia, Drug-Induced; Drug Eruptions; Drug Toxicity;
Dyskinesia, Drug-Induced; Epidermal Necrolysis, Toxic;
Erythema Nodosum; Serotonin Syndrome; Serum Sick-
ness) relating directly to adverse drug events. Instead,
there are several subheadings including “adverse effects”,
“poisoning”, “toxicity” and “contraindications” which can
occur with drug terms, or “chemically induced” and “com-
plications” subheadings occurring with adverse outcomes.
Expanding the analysis to look specifically for these sub-
heading modifiers could allow us to extract a subset of
articles directly relevant to adverse drug reactions for
MeSHOP analysis. Alternatively, an alternative source
linking side effects to articles could be employed to sup-
plement our existing analysis with side-effect data.
CitationRank [29] was used to highlight genes

involved in adverse drug reaction by analyzing the co-
occurrence of genes in articles relating to an adverse
drug reaction. Looking at the comprehensive network of
MeSHOP similarity between genes, drugs and diseases
would allow a similar network-style analysis, adding the
information of the gene entities.
Rather than predicting drug-disease associations

directly, another application of the method could be to
highlight potential links between drugs and mechanisms
of action. Drug therapies can be effective even when the
understanding of the underlying mechanism of action is
incomplete. These predicted drug-mechanism links
could be also related back to relevant diseases, indirectly
helping hypothesize on the biology of a disease and
effective mechanisms for treatment.

Conclusions
Comparing MeSHOPs allows quantitative analysis of
MeSH biomedical topics shared between drugs and dis-
eases through their MEDLINE-indexed primary literature.

Quantitatively measuring MeSHOP similarity is shown to
infer functional relationships between drugs and diseases.
Specifically, the similarity between drug MeSHOPs and
disease MeSHOPs is highly predictive of future drug-dis-
ease ties. The best similarity metric, using Euclidean dis-
tance of the log-p of overlapping terms, achieves a mean
AUC of 0.94, an 11% improvement over baseline. How-
ever, bibliometric characteristics, such as the number of
terms in the disease MeSHOP, are demonstrated to have a
strong bias in drug-disease association. We describe here a
correction that eliminates this bias in the scoring metrics,
separating the effects of the similarity scoring from the
annotation bias.
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