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a b s t r a c t

Background: In collaboration with the Canadian Immunization Monitoring Program Active (IMPACT), the
National Microbiology Laboratory, the UK Health Protection Agency and Novartis Vaccines, we tested
the potential of an investigational 4-component meningococcal B vaccine (4CMenB) to cover Canadian
strains circulating from 2006 to 2009.
Methods: IMPACT meningococcal surveillance is population based and includes over 50% of Canadian
adults and children. All isolates were characterized by Meningococcal Antigen Typing System (MATS) and
sequencing for factor H-binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial
adhesin A (NadA).
Results: In total, 157 isolates were tested. Overall, 4CMenB MATS predicted strain coverage was 66% (95%
CI: 46–78%), with 26%, 29% and 11% of strains covered by one, two and three vaccine antigens, respectively.
The coverage of each antigen was as follows: 13% PorA, 1% NadA, 52% fHbp and 51% NHBA. The majority

of strains for clonal complex (cc) 41/44 and cc60 were covered by NHBA; the majority of strains for cc269
and cc32 were covered by fHbp and NHBA.

Coverage for two prevalent strains (sequence type (ST)-269 and ST-154) was 95% and 100%, respec-
tively.
Conclusions: 4CMenB has the potential to protect against a significant proportion of Canadian invasive
MenB strains.

© 20 e.
. Introduction
Serogroup B meningococci (MenB) account for 50–80% of inva-
ive meningococcal disease (IMD) in Canada, with the highest

�� Portions of these data have been presented in posters at the 5th Vaccine and
nternational Society for Vaccines Annual Global Congress, October 2–4, 2011, Seat-
le, USA and the 10th Canadian Immunization Conference, December 2–5, 2012,
ancouver, Canada.
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50 West 28th Street, Vancouver, BC V5Z4H4, Canada. Tel.: +1 604 875 2422;
ax: +1 604 875 2635.

E-mail address: jbettinger@cfri.ca (J.A. Bettinger).

264-410X © 2013 The Authors. Published by Elsevier Ltd.
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incidence seen in children <5 years of age [1,2]. Despite the need
for prevention, efforts to develop a vaccine against MenB disease
have been hampered by the similarity of the polysaccharide capsule
of the bacterium to human fetal neural tissue [3,4] and the inabil-
ity to identify common protective surface antigens among MenB
strains. However, reverse vaccinology has enabled the identifica-
tion of several conserved non-capsular protein surface antigens,
overcoming limitations of past epidemic-specific outer-membrane
vesicle (OMV) MenB vaccines [5–7]. Three antigens (Neisserial
adhesin A (NadA) allele 3, Neisseria Heparin Binding Antigen
(NHBA), factor H-binding protein (fHbp) variant 1 along with
OMV of the epidemic strain (PorA P1.4) from New Zealand have

Open access under CC BY-NC-ND licens
been combined into a recently approved vaccine against MenB
disease (4CMenB) [8,9]. Two variants of fHbp have also been
used to create an investigational bivalent MenB vaccine (rLP2086)
[10].

 license.
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To date, three OMV-based vaccines against invasive MenB
isease have successfully contained clonal outbreaks in various
ountries [11–13]. However, immunogenicity of these vaccines was
rimarily based on the PorA outer membrane protein contained

n the OMV and did not provide protection against strains carry-
ng different PorA subtypes [14]. Antigens included in the newer

enB vaccines have the potential to provide broad cross-protection
gainst MenB strains and potentially other serogroups. The pre-
icted protection afforded by these newer vaccines is not known
nd will be highly dependent on both the quantity of vaccine anti-
ens expressed by strains causing disease in a given geographic area
nd on the extent of their immunologic cross reactivity with the
orresponding antigen in the vaccine. To this end, the Meningococ-
al Antigen Typing System (MATS) was developed to predict which
ndividual MenB strains are likely to be covered by the 4CMenB
accine [15]. To understand the potential coverage, a detailed
pidemiologic, microbiologic and genetic characterization of the
ntigens found in MenB disease isolates is required.

In collaboration with the Canadian Immunization Monitor-
ng Program Active (IMPACT) surveillance network, the National

icrobiology Laboratory (NML), the UK Health Protection Agency
HPA) and Novartis Vaccines & Diagnostics, we tested the poten-
ial strain coverage of the 4CMenB vaccine against invasive MenB
trains isolated in Canada from 2006 to 2009. During this time the
ncidence rate of MenB infection was stable at 0.25 per 100,000,
ut a higher rate occurred in Québec as a result of the circulation
f clonal complex (cc) 269, [2,16,17] one of two hyper-endemic ccs
n Canada.

. Materials and methods

Active, metropolitan area population-based surveillance for
dult and pediatric hospital admissions related to infection with
eisseria meningitidis was conducted by the 12 centers of the

MPACT, in collaboration with local public health officials. IMPACT
s a national surveillance initiative with centers located in 8
rovinces [18]. Each center defined a population area and cap-
ured all IMD cases in children and adults. IMPACT meningococcal
urveillance includes over 17 million Canadians, just over 50% of
he population. Inclusion as a case required the isolation of N.
eningitidis from a normally sterile site or a positive PCR test

rom blood or cerebrospinal fluid (CSF). Standardized case infor-
ation was abstracted from the hospital record. Sequelae were

efined as complications attributable to IMD still present at dis-
harge. The surveillance methodology has been detailed elsewhere
19,20]. Ethics approval was obtained at all participating hospitals.
ll IMPACT MenB cases with a viable isolate that occurred from
006 to 2009 and were identified as of August 2010 were included.

NML determined serogroup, serotype, sub-serotype and PorA
equencing of case isolates. The clonal identity of isolates (defined
y Multilocus Sequence Typing (MLST) [21]) and PorA variants
ere determined following the guidelines included in the Neisse-

ia pubMLST website [22]. The classification of fHbp followed the
cheme available in the public fHbp database which divides pep-
ide subvariants among three major variants, 1, 2 and 3 [22]. This
eptide ID is similar to the Novartis classification, although in the
ovartis classification it is preceded by the major variant number.
HBA and NadA classification followed Lucidarme et al. [23] and
ambini et al. [24].

HPA studied the levels of expression and cross-reactivity of
adA, fHbp, and NHBA in the MenB isolates using the MATS ELISA

elative potency (RP) [15]. The MATS method established a mini-

um level of RP, named the positive bactericidal threshold (PBT)

hat predicts whether a given MenB isolate would be susceptible
o killing in the human serum bactericidal antibody assay by anti-
odies induced by 4CMenB. Strain coverage was defined as the
32 (2014) 124–130 125

proportion of strains with RP above the PBT for at least one vac-
cine antigen in the MATS ELISA or matched to the PorA subtype
P1.4 [15].

To account for inter-laboratory differences in the MATS, the 95%
confidence intervals (CI) for vaccine strain coverage were calcu-
lated according to an inter-laboratory standardization study [25].
Chi-square and Fisher’s exact tests were used to test for significant
difference between groups. SAS version 9.3 (SAS Institute, Cary NC)
was used for all analyses.

3. Results

A total of 157/200 (78.5%) MenB cases were tested. A viable iso-
late was not available for 2 cases and 41 cases were confirmed solely
by PCR. No significant differences in PCR confirmation rates were
found by age or center (data not shown).

The most frequent ccs among the 68 different STs identified
were cc41/44 (n = 51), cc269 (n = 51), cc35 (n = 11), cc32 (n = 8) and
cc60 (n = 6) cc213 (n = 2). Of the remaining 28 isolates, 21 were
unassigned and 7 were singularly occurring ccs. Although cc41/44
and cc269 occurred with the same frequency, 25 different sequence
types (ST) were identified among isolates in cc41/44 and only three
of these contained multiple isolates (ST-154 (n = 15) and ST-571
(n = 11) and ST-340 (n = 3). In contrast, only 9 STs were found in
cc269 and 90.1% of these isolates belonged to either ST-269 (n = 37),
or single (n = 6) or double locus variants (n = 3) of ST-269 and the
remaining 5 isolates showed three allelic differences from the ST-
269 (ST-275 and ST-1161). The distribution of the most frequent cc
and ST varied by province (Table 1).

The predicted strain coverage of the 4CMenB vaccine was 66%
(95% CI: 46–78%); ranging, non-significantly, from a high of 72%
(95% CI: 47–84%) in 2006 to a low of 58% (95% CI: 33–70%) in
2008. Overall, 26.1% of strains were covered by one vaccine anti-
gen, 29.0% by two antigens and 11.5% by three. No isolates were
covered by all four antigens. Coverage by each antigen was as fol-
lows: fHbp 52% (95% CI: 40–59%); NHBA 51% (95% CI: 21–71%);
NadA 1% (95% CI: 0.6–3%); and PorA 13% (95% CI: 8–18%). Table 2
shows the frequency of antigen combinations sufficient for cover-
age. The coverage by age group, gender, ethnicity and province is
shown in Table 3. Vaccine strain coverage did not differ significantly
by any of these factors. Of the 6 isolates from fatal cases, 4 (67%)
were predicted covered, as were 23 of the 34 (68%) isolates from
cases that resulted in sequelae.

4CMenB coverage within the two most prevalent cc (cc269 and
cc41/44) was 82% (95% CI: 47–90%) and 65% (95% CI: 55–80%),
respectively. For the two most common STs (ST-269 and ST-154)
this increased to 95% and 100%, respectively, while ST-571 was cov-
ered for only 1 isolate (9%). The occurrence of vaccine antigens in
the most frequent cc is shown in Fig. 1.

3.1. Prevalence and diversity of PorA, fHbp, NadA and NHBA

The four most frequently detected PorA serosubtypes (P1.19
(n = 34), P1.14 (n = 28), P1.9 (n = 22), P1.4 (n = 21)) were found in 105
or 67% of isolates. Strains containing serosubtype P1.19 occurred
predominantly in Québec (n = 30/34) and all strains were from
cc269. P1.14 occurred primarily in Ontario (n = 16) and was found
in a wide variety of cc. PorA P1.4 was present in 21 strains all from
cc41/44. The majority of strains with P1.4 occurred in children 0–4
years of age (n = 14) and were distributed across Canada. Two anti-
gen combinations occurred frequently among the PorA P1.4 strains:
PorA P1.4 and NHBA peptide 2 (n = 19) and PorA P1.4 and fHbp 1.4

(n = 16).

Overall 44 different PorA variable region (VR) genosubtypes
were identified, but only 12 genosubtypes occurred in more than
one isolate. The seven most common PorA genosubtypes included
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Table 1
Most frequent clonal complex and sequence type by province, 2006–2009 (IMPACT surveillance).

Clonal complex Province

Atlantic Quebec Ontario Central Alberta British Columbia Total

cc41/44 (n = 51)
ST154 5 0 7 0 3 0 15
ST571 0 10 1 0 0 0 11
ST340 2 0 0 0 0 1 3
Othera 1 8 5 3 2 3 22
cc269 (n = 51)
ST269 0 33 2 0 1 1 37
ST1986 0 3 0 0 0 0 3
ST275 0 1 0 0 1 0 2
ST1161 2 0 0 0 0 0 2
ST13 0 0 2 0 0 0 2
Otherb 0 2 0 1 0 2 5
cc35 (n = 11)
ST35 0 2 1 0 0 0 3
ST570 0 1 2 1 0 0 4
ST790 0 0 0 0 2 0 2
Otherc 0 1 1 0 0 0 2
cc32 (n = 8)
ST32 0 1 2 0 0 1 4
Otherd 1 2 0 0 0 1 4
cc60 (n = 6)
ST60 0 3 0 0 0 0 3
Othere 1 1 0 0 1 0 3

a Other cc41/44 sequence types occurring once included the following: ST1433, ST146, ST1475, ST1578, ST2678, ST2820, ST2989, ST3752, ST41, ST43, ST46, ST5553, ST6465,
ST6473, ST6541, ST6551, ST6591, ST6623, ST7702, ST7746, ST839, ST944.

b Other cc269 sequence types occurring once included the following: ST1284, ST283, ST6107, ST7812, ST7813.
c Other cc35 sequence types occurring once included the following: ST278 and ST6472
d Other cc32 sequence types occurring once included the following: ST2017, ST2726, S
e Other cc60 sequence types occurring once included the following: ST1754, ST6546 an

Table 2
Percentages of strains covereda by specific antigen combinations in Canada,
2006–2009 (IMPACT surveillance) (N = 157).

Vaccine antigen N %

fHbp 20 12.7
NHBA 21 13.4
fHpb + NHBA 40 25.5
fHpb + PorA 3 1.9
fHbp + NadA 1 0.6
NHBA + NadA 1 0.6
PorA + fHbp + NHBA 18 11.5
Antigen not sufficient for coverage or not presentb 53 33.8

a Strains were defined as covered by 4CMenB if they possessed PorA P1.4 or had
a RP above the PBT for fHbp, NHBA or NadA.

b Included PorA alone, NadA alone, NHBA + PorA, fHbp + NHBA + NadA and
PorA + fHbp + NHBA + NadA.

Table 3
Potential coverage of 4CMenB vaccine in Canada, 2006–2009 (IMPACT surveillance) (n = 1

Characteristic Predicted cover

Number

Age group
0–4 years (n = 79) 48
5+ years (n = 78) 56
Male (n = 80) 50
Female (n = 77) 54
Ethnicity
White (n = 99) 64
Other (n = 19) 13
Unknown (n = 39) 27
Province
British Columbia (n = 14) 6
Alberta (n = 13) 9
Central Canada (Sasktchewan and Manitoba (n = 8) 8
Ontario (n = 38) 23
Québec (n = 72) 48
Atlantic (Nova Scotia and Newfoundland) (n = 12) 10

a Strains were defined as covered by 4CMenB if they possessed PorA P1.4 or had a RP a
.
T33, ST7814.
d ST7877.

P1.19-1,15-11,36 (n = 34); P1.7-2,4,37 (n = 21); P1.22,14,36 (n = 16);
P1.18-7,9,35-1 (n = 16); P1.22-1,14,38 (n = 12); P1.7,16,35 (n = 6);
and P1.5,2,36-2 (n = 5). Together these represented 70.1% of the
MenB isolates.

A total of 39 different fHbp peptides were identified, with 26
occurring only once. The majority (n = 100) were from variant 1;
46 (29.3%) were from variant 2; and 11 (7.0%) were from variant 3.
Isolates from infants <1 year of age showed the greatest variability
in their fHbp antigens: 34% (n = 14) of isolates in infants expressed
fHbp variant 1; 56% (n = 23) expressed variant 2; and 10% (n = 4)
expressed variant 3. In the remaining age groups fHbp variant 1

prevalence ranged from a low of 60% in adults to a high of 92%
in children 5–14 years of age. All of the strains (n = 5) containing
fHbp 1.1 (variant 1, peptide 1, included in 4CMenB) and 81% (n = 77)
of those from variant 1 but with a different peptide (e.g. 4, 110,

57).

ed according to MATSa

Percent 95% CI P-value

60.8 44.3–79.7
0.1471.8 47.4–76.9

62.5 47.5–76.3
0.3170.1 44.2–80.5

64.6 47.5–80.8
0.8668.4 42.1–78.9

69.2 43.6–71.8

42.9 28.6–57.1

0.08

69.2 61.5–76.9
100 75–100

60.5 47.4–63.2
66.7 38.9–84.7
83.3 66.7–100

bove the PBT for fHbp, NHBA or NadA.
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Fig. 1. Predicted 4CMenB vaccine antigen coverage (Strains were defined as pre-
dicted to be covered by 4CMenB if they possessed PorA P1.4 or had a RP above the
PBT for fHbp, NHBA or NadA.) by serogroup B clonal complex in Canadian serogroup
B strains, 2006–2009 (IMPACT surveillance). Note: Other includes 7 clonal complexes
that were assigned only once and 1 clonal complex that was assigned twice. Unas-
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(n = 11) of strains from Québec (and 1 from Ontario) and occurred
primarily in infants (n = 9); and NHBA 21 fHbp 1.15 was found in
49.0% (n = 35) of Québec strains (and 2 Vancouver strains) across
all age groups. Of these two common antigen combination 8.3%
(n = 1) of NHBA 112 fHbp 2.19 were predicted to be covered and
95% (n = 35) of NHBA 21 fHbp 1.15 were covered. The two NHBA 21
fHbp 1.15 strains not predicted to be covered were from Québec.

4. Discussion

This study provides the first data on the potential coverage of
Canadian MenB isolates by the investigational 4CMenB vaccine.
Using a conservative predictor for coverage, 4CMenB appears to
provide good strain coverage (65% for cc41/44 and 82% for cc269)
for the most prevalent recent ccs, which include ST-269 and ST-
154 predicted covered at 95% and 100%, respectively. Across all age
groups, the majority of isolates are predicted to be covered by the
4CMenB vaccine. Of note the vaccine appears to provide coverage
across a wide diversity of endemic strains and is not limited to pro-
tecting against one or two subtypes. At least 40% of isolates were
covered by two or more vaccine antigens, with fHbp and NHBA
contributing the most to vaccine coverage. The 4CMenB antigens
are also found in non-MenB isolates thus protection against these
other serogroups may be an added bonus, particularly in individuals
not immunized with meningococcal conjugate vaccines. In terms
of prevention, over two-thirds of the recent cases caused by MenB
were potentially preventable with this vaccine.

Our results are similar to those found in England and Wales
where the overall proportion of strains estimated to be covered
in 2007–2008 was 73% (57–87%) and the combinations of antigens
with MATS RP above the PBT was similar to that observed in Canada
[26]. The overall frequency of coverage by at least two antigens was
lower (40% vs. 50%) in Canadian than in English and Welsh isolates
[26], thus the chance for escape mutants to emerge with vaccine
use could differ between the two countries.

The last national characterization of MenB isolates was from
1994 to 1996. In this earlier study the most commonly expressed
PorA serosubtypes were P1.14 (13.3%), P1.16 (11.3%), P1.5 (7.9%),
P1.7 (7.0%), P1.13 (7.0%), and P1.2 (4.3%); and the only hypervirulent
clones were cc32 and cc11 [27]. The most noticeable differences
in our current study were the emergence of the ST-269 clone
in Québec and a change in the prevalence of other hyperviru-
lent clones. CC32 decreased from 12.0% in 1994–1996 to 5.1% in
2006–2009 and cc41/44 became a predominant clone, accounting
for about 33% of MenB isolates in 2006–2009. Besides these tempo-
ral changes, we noted geographical differences in the distribution
of common hypervirulent clones from 2006 to 2009 as exemplified
by the finding of ST-269 (cc269) and ST-571 (cc41/44) mainly in
the province of Québec, and ST-154 (cc41/44) from Ontario and the
Atlantic provinces. By province, the predicted coverage of 4CMenB
ranged from 43% to 100% and reflected the strains circulating within
each region and the level of antigen expression within each iso-
late. 4CMenB coverage of Canadian hyper-endemic strains (ST-269
and ST-154, 95% and 100%, respectively) was significantly higher
than other STs in the same cc, indicating that cc cannot be used to
determine if an isolate is potentially covered by 4CMenB. For both
fHbp and NHBA, antigen peptides with high frequency in the sam-
ple were associated mostly with one or two ccs, the most diverse
cc being cc41/44 for both antigens. In general each peptide had
a similar proportion of coverage when found in strains belong-
ing to different ccs, with the exception of the NHBA peptide 21

that was significantly more covered in cc269 than in cc35, sug-
gesting a bias in the level of antigen expression associated with the
genetic diversity between the two ccs. Albeit strains harboring spe-
cific combinations of MLST and antigen genotype were consistently
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overed (e.g. cc32 and fHbp1.1; cc41/44 and fHbp1.4; cc41/44 and
HBA2) the majority of genetic profiles had both strains covered
nd not covered, confirming that antigen genotyping, neither alone
or in combination with MLST, would be sufficient to predict vac-
ine strain coverage for all isolates.

While our active population-based sentinel surveillance data
rovide the most comprehensive measurement of IMD in Canada,
everal limitations apply. MenB IMD is rare and the numbers in
ny given age group or province are small; therefore our ability to
etect differences among subgroups is limited, and differences in
train coverage among age or geographic groups were not statis-
ically significant. Approximately 20% of MenB cases in our data
ere confirmed by PCR only with no isolate available for testing.
dditionally, IMPACT surveillance includes primarily urban areas of
anada and may not be representative of remote or rural regions.
he MATS provides a conservative estimate of vaccine coverage,
hich may be an underestimate [15,28]. Finally, although the nadA

ene was found in 12 isolates (7%) in our study, only two (1%)
xpressed NadA with a RP above the PBT. Since expression of NadA
s repressed in vitro, but not in vivo, conditions, MATS may under-
stimate NadA’s contribution to vaccine strain coverage [29,30].

. Conclusions

Our study characterizes the current MenB molecular epidemi-
logy and provides a good estimate of the potential coverage
f 4CMenB. Accurate post-implementation surveillance and/or
ost-implementation effectiveness studies will be necessary to
etermine the true effectiveness of this new vaccine [31], taking

nto account the level of vaccine coverage in the population and
ny herd protection.
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