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Abstract
Background: West Nile virus (WNv) has recently emerged as a health threat to the North
American population. After the initial disease outbreak in New York City in 1999, WNv has spread
widely and quickly across North America to every contiguous American state and Canadian
province, with the exceptions of British Columbia (BC), Prince Edward Island and Newfoundland.
In this study we develop models of mosquito population dynamics for Culex tarsalis and C. pipiens,
and create a spatial risk assessment of WNv prior to its arrival in BC by creating a raster-based
mosquito abundance model using basic geographic and temperature data. Among the parameters
included in the model are spatial factors determined from the locations of BC Centre for Disease
Control mosquito traps (e.g., distance of the trap from the closest wetland or lake), while other
parameters were obtained from the literature. Factors not considered in the current assessment
but which could influence the results are also discussed.

Results: Since the model performs much better for C. tarsalis than for C. pipiens, the risk
assessment is carried out using the output of C. tarsalis model. The result of the spatially-explicit
mosquito abundance model indicates that the Okanagan Valley, the Thompson Region, Greater
Vancouver, the Fraser Valley and southeastern Vancouver Island have the highest potential
abundance of the mosquitoes. After including human population data, Greater Vancouver, due to
its high population density, increases in significance relative to the other areas.

Conclusion: Creating a raster-based mosquito abundance map enabled us to quantitatively
evaluate WNv risk throughout BC and to identify the areas of greatest potential risk, prior to WNv
introduction. In producing the map important gaps in our knowledge related to mosquito ecology
in BC were identified, as well, it became evident that increased efforts in bird and mosquito
surveillance are required if more accurate models and maps are to be produced. Access to real
time climatic data is the key for developing a real time early warning system for forecasting vector
borne disease outbreaks, while including social factors is important when producing a detailed
assessment in urban areas.

Published: 16 May 2006

International Journal of Health Geographics 2006, 5:21 doi:10.1186/1476-072X-5-21

Received: 03 February 2006
Accepted: 16 May 2006

This article is available from: http://www.ij-healthgeographics.com/content/5/1/21

© 2006 Tachiiri et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 21
(page number not for citation purposes)

http://www.ij-healthgeographics.com/content/5/1/21
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16704737
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


International Journal of Health Geographics 2006, 5:21 http://www.ij-healthgeographics.com/content/5/1/21
Background
West Nile virus (WNv), a potentially debilitating and fatal
mosquito-borne disease first discovered in Uganda in
1937, has recently emerged as a health threat to the North
American population. After the initial disease outbreak in
New York City in 1999, WNv has spread widely and
quickly across North America to every contiguous Ameri-
can state and Canadian province, with the exceptions of
British Columbia (BC), Prince Edward Island and New-
foundland (Figure 1). To date, BC has not detected any
endemic WNv activity despite operating a comprehensive
surveillance program for dead corvids, mosquitoes and
human infections. Twenty human cases were identified in
BC in 2003, but all were attributed to out-of-province
travel [1]. BC is now, however, at the frontier of this dis-
ease since WNv has emerged in surrounding regions (Fig-
ure 1), including Alberta to the east and Washington,
Idaho and Montana to the south. The introduction of
WNv into BC appears to be inevitable, since migrating
birds from Central America and the southwestern United
States, which are now endemic areas for WNv, follow the
Pacific Flyway into and through central and coastal BC.
Once the virus is introduced, it has the potential to estab-
lish itself and spread rapidly, since mosquito species with

known competency for hosting and transmitting WNv are
present in the province.

The cycle of transmission for WNv consists of the vector
(mosquitoes), reservoir (birds) and incidental dead-end
hosts (humans and horses) [2]. Infected mosquitoes bite
birds and infect them with WNv. Or, alternatively, viremic
birds are bitten by naïve mosquitoes and these mosqui-
toes in turn are infected and pass the virus onto their off-
spring or other birds that they feed upon. This vector-
reservoir cycle can repeat itself several times during the
WNv season, resulting in amplified levels of virus in the
mosquito and bird populations. Mammals appear to be
less important in the transmission cycle [2] as horses,
humans and other vertebrates are considered incidental
dead-end hosts because viremia in these organisms are
not high enough to maintain transmission. Based on the
experiences of WNv outbreaks in other North American
jurisdictions, Culex mosquitoes pose a very high risk for
transmitting the virus to birds and humans [3].

In most jurisdictions in North America, dead corvids and
mosquito populations are monitored during the WNv
season, and act as an early warning system for human
infections. In BC, the monitoring program operates

The spread of the West Nile virus in North America and human cases in BC's surrounding provinces/statesFigure 1
The spread of the West Nile virus in North America and human cases in BC's surrounding provinces/states. 
(Source: [60],[61],[62])
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between the months of May and October and is coordi-
nated by the BC Centre for Disease Control (BCCDC).
Dead corvids and adult mosquitoes from across the prov-
ince are collected and tested for WNv. The geographic
location from where the specimens were submitted is
mapped in a Geographic Information System (GIS). Sur-
veillance data in the form of tables, maps and reports are
available on the BCCDC website [4].

Spatial risk assessment of WNv, based on mosquito and
bird distributions, can help identify areas in the province
that are at greatest risk for humans. These high risk areas
could, for example, receive higher allocation of govern-
ment funding to prepare for and respond to the arrival of
WNv and associated human illness. This collection of sur-
veillance data, however, only provides point location data
that is usually clustered around highly populated human
settlements and does not provide risk assessment for areas
that lack observations. Fortunately, GIS and geostatistical
analysis provide an effective solution to this problem by
enabling interpolation of mosquito and bird populations
in areas with no observations, based on measured data
from existing studies. In particular, spatially and tempo-
rally continuous datasets such as vegetation cover, tem-
perature and rainfall, all of which are important elements
of mosquito population dynamics, are commonly mod-
elled in this matter [5,6].

In order to assess the seasonal risk of the disease, health
agencies in some provinces in Canada are now producing
temporal or seasonal maps using temperature data [7,8]
to predict mosquito abundance. The current models only
consider a simple degree-day model having a single base
temperature value (over which a mosquito growth
progresses) and a simple degree-day accumulation algo-
rithm (using the condition under which one generation of
adult mosquitoes emerge, defined as the product of excess
temperature above the base and the number of such days,
or heat units) for the entire life of the mosquito. However,
it is obvious that such simple model is insufficient to rep-
licate the complex biology of mosquitoes [9], in particular
in areas such as BC that have a complex topography. Thus,
development of a more sophisticated model, with finer
spatial resolution, is necessary if we hope to establish an
effective, spatially extensive, early warning system of
potential WNv outbreak.

In this article we develop a model of mosquito population
dynamics and use this model to produce spatial risk
assessment maps of WNv prior to its arrival in BC. This is
achieved by combining our mosquito population dynam-
ics model with ancillary data within a GIS. In the maps,
forecasted high risk areas for WNv in BC are identified by
combining mosquito abundance data with high risk bird
abundance data and human population data, which will

provide information that can be used to improve the cur-
rent WNv early warning system. Factors not considered in
the current assessment but which can influence the results
are also discussed.

Our model is one component of an integrated approach
that aims to develop an understanding of the distribution
and spread of WNv. Shuai et al.'s recent work [10] on the
development of a real-time WNv monitoring system for
dead corvids in Canada represents another important ele-
ment of this integrated approach. It is obvious that both
technical (e.g., web GIS technology) and scientific (viro-
logical and ecological) advances are necessary in order to
develop a more reliable monitoring system for emerging
infectious diseases.

Results
Using published data on the relation between tempera-
ture and mosquito biology (presented in Table 1), we
developed a population dynamics model. This model is
then incorporated into a spatially-explicit risk assessment
model that enables us to map the potential WNv risk.

Risk assessment maps of WNv in BC using the mosquito
abundance model described below (Figure 2) were pro-
duced (Figure 3). In order to examine the validity of the
model results, the mosquito population dynamics model
output that corresponds to the locations of the BCCDC
mosquito traps, with the observation data overlain, is pre-
sented in Figure 4. By displaying all of the trap data in a
single figure the performance of the model, particularly
with respect to the seasonal change in mosquito abun-
dance, can be evaluated. For C. tarsalis (Figure 4a), our
model produces a good fit to the observation data, with
the exception of one data outlier. For C. pipiens, on the
other hand, our model over-predicts the mosquito num-
bers in comparison to observed numbers (note that differ-
ent axes are used for the model and observation numbers
in Figure 4b).

A trap-by-trap check of the model performance (Figure 5)
highlights the spatial validity of our model. For each spe-
cies, data from the two traps that recorded the greatest
number of mosquitoes caught in 2003, and another trap
from a different region of BC, was used for comparison.
The outlier was excluded from our determination of spe-
cific model parameters (i.e., determining the coefficient
value for the distance to wetland/lake). Because the traps
with the greatest number of mosquitoes are spatially con-
centrated (for C. tarsalis both are from the Okanagan Val-
ley, and for C. pipiens both are from Greater Vancouver),
another trap's data is included from the other main region
of concern in order to evaluate the model results in a dif-
ferent geographic region (i.e., Figure 5a (3), for C. tarsalis
data from a trap in Greater Vancouver is presented, and 5b
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Flowchart illustrating the mosquito abundance model developed in the studyFigure 2
Flowchart illustrating the mosquito abundance model developed in the study. * Condition to clear the stages: ddx ≥ 
DDi (i specifying stages; 1 egg, 2 lava, 3 pupa, 4 adult) where, ddx is the accumulated degree-days till day x; DDi is the degree-
days required to clear the stage i. ddx is calculated as follows:

where tx is the daily mean temperature of the day x; t0 is the lower threshold temperature for dd accumulation (DDi and ti for 
each stage and species are presented in Table 1). ** Dependent upon accumulation of sufficient DD plus adult drying and host 
seeking period. † Dependent upon accumulation of sufficient DD for ovary development (presented in Table 1). †† Calculated 
as: (no. of female mosquitoes) × (no. of avg. gonotrophic cycles) × (avg. no. of eggs per gonotrophic cycle)
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(3), for C. pipiens data from a trap in the Okanagan Valley
is presented). The C. pipiens model works well in Greater
Vancouver (Figure 5b (1) and (2)) but seriously overesti-
mates population abundances in the Okanagan Valley
(Figure 5b (3)), while the C. tarsalis model fits both the
Greater Vancouver and Okanagan Valley trap abundance
data (Figure 5a). These differing model results for the two
species highlight the difficulty in predicting the abun-
dance of C. pipiens. Some of this difficulty is due to the
lack of specific ecological knowledge of C. pipiens and the
need to use some parameters derived from C. tarsalis
when modelling C. pipiens. However, since C. pipiens are
typically described as urban mosquitoes commonly
found in catch basins and other man-made habitats with
stagnant, nutrient rich waters, this decrease in the per-
formance of the model which uses environmental factors
is not unexpected. In particular, forecasting C. pipiens

populations based on ambient air temperature is prob-
lematic since the sub-terrain catch basin habitats of C.
pipiens are considerably cooler than the above-ground
temperatures recorded during the WNv season (and there-
fore overprediction by our model is anticipated).

Since our model significantly overestimates the popula-
tion abundances for C. pipiens in the Okanagan Valley, the
following analysis is restricted to considering C. tarsalis
population dynamics only.

The total predicted annual abundance of C. tarsalis across
the province of BC (Figure 6), derived from the model
output, clearly shows the regional nature of their distribu-
tion. Since the ability of a vector to transmit WNv is
dependent on temperature, as identified by Dohm et al.
[11], we take that factor into account when creating Figure

Table 1: Parameters used in the model. (In this table, for degree-days, xx(°C)/YY(dd) where: YY degree-days with the base of xx°C are 
required to clear the stage, T: daily mean temperature (°C), D: distance from the nearest wetland/lake (m), J: Julian day, h: hours)

C. tarsalis C. pipiens

Stage and parameter Parameter value Source Parameter value Source

Start of calculation 3 day mean of T≥ 7.0 Estimated from [45] 3 day mean of T ≥ 7.0 estimated from [45]

degree-days 9.0°C/20dd Table 2 7.0°C/30dd Table 2
Egg Mortality 0.2%/day(5 ≤ T ≤ 30), 

(0.02(5-T) + 0.2)% 
(T<5) (0.02(T-30) + 
0.2)% (30<T)/day

[33] (modified) Same as tarsalis [33]

degree-days 7.0°C/170dd Table 2 9.0°C/150dd Table 2
Larva Mortality (0.5(T-20)2 + 25)%/

2stages of Larva and 
Pupa

Fig. 4B of [35] 
(modified)

0.4 (J ≤ 180), 
0.6(J>180) for 2stages 

of Larva and Pupa

[36]

degree-days 11°C/30dd Table 2 8.0°C/50dd Table 2
Pupa mortality (see above) Fig. 4B of [35] 

(modified)
(see above) [36]

mortality (0.24(T-25)2 + 5)%/
day

[33] (modified) Same as tarsalis [33] (modified)

Adult drying 3 days [23] Same as tarsalis ([23])
host seeking 1 day [23] Same as tarsalis ([23])

ovary development 5.0°C/77dd Table2([63]) 9.5°C/65dd Table2
Laid eggs/gonotrophic cycle 230 [64] (via [33]) 105 [47]
Average gonotrophic cycle 1.10 [46] 5.00 estimated from [47]

Weight by distance (D(m)) from wetland/lake 0.002924-
0.000792(D-52)/2138 

(if D ≤ 2190), 
0.002132-

0.001636(D-2190)/
484 (if 2190<D ≤ 

2674), max(0.000496-
0.000230(D-2674)/

2865, 0) (if D>2674)

Fig. 10a 0.3054 (if D ≤ 2190), 
0.3054-0.1003(D-

2190)/1860 (if 
2190<D ≤ 4050), 

max(0.2051-
0.1341(D-4050)/

1987,0) (if D>4050)

Fig. 10b

Mortality by predators and lack of food (total 
of immature stages)

89% (if J ≤ 182), 86%(if 
J ≤ 244), 73%(if J>244)

[42] 98% Adjusted by fitting

Ratio of oviposition (considering diapause) 1 (if J<150), 0.3 (if 150 
≤ J<180), 0.3-0.01(J-
180) (if 180<J ≤ 210), 

0 (if 210<J)

[43] (-412 + 
27.2*daylength(h)+2.9

9*T-8)%

[44]
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6.

The abundance of high risk birds within BC (identified in
an unpublished document by the BCCDC) (Figure 7) is
estimated by summing the counts of all high risk species
(see Additional file 1) from the USGS Breeding Bird Sur-
vey (BBS) data for BC. Multiplying the weighted predicted
mosquito abundances (Figure 6) by the abundances of

high risk birds (Figure 7) we obtain the total WNv risk
with respect to mosquito (C. tarsalis) and bird popula-
tions (Figure 8). This map, normalized by the maximum
value, presents the relative risk of a mosquito-bird cycle
infected by WNv. The Okanagan Valley and Thompson
Region (Kamloops) are identified as the highest WNv risk
areas in BC, followed by the Fraser Valley, Greater Van-

Flowchart illustrating the WNv risk assessment methodology used in the studyFigure 3
Flowchart illustrating the WNv risk assessment methodology used in the study.
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couver and southeastern Vancouver Island (see the
enlarged map in Figure 8).

Finally, multiplying the data presented in Figure 8 with
the human population density of people 60 years and
older (Census of Canada, 2001) in BC (Figure 9) shows
the population-weighted risk of WNv per unit area of
land, as contrasted with the data in Figure 8 that evaluates
the risk for an individual in each grid cell. Existing studies
[12,13] have revealed that older people have a greater risk
for infection and showing serious symptoms of the dis-
ease. Thus, in creating our final population-at-risk map

(Figure 9), an age threshold was applied to the population
data prior to producing the population density map. High
risk areas in Figure 8 also appear to be of similar high risk
in Figure 9, however, Greater Vancouver, due to its high
human population density, has an increased relative sig-
nificance in Figure 9.

Discussion
The greatest limitation encountered with respect to
improving our model's performance is a lack of basic bio-
logical information on mosquitoes, particularly for C. pip-
iens, within BC. In this study almost all of the model
parameters are obtained from studies on mosquitoes out-
side of BC (e.g., California, Ontario). Detailed informa-
tion on the biology of BC's mosquitoes, and the specific
environmental conditions within which they occur (e.g.,
monitoring temperatures within catch basins), would
improve model accuracy.

Additionally, the effect of rainfall, which was not included
in our study due to the complex findings of other studies,
should be examined and considered in future models if
clear relations between rainfall and mosquito population
dynamics can be identified. The complex findings of pre-
vious studies include the observation that there is a
decrease of predators – such as dragonflies – with a subse-
quent increase in mosquito populations in the year fol-
lowing a significant drought [14], the observation that
local concentrations of birds and mosquitoes in limited
refuges during droughts can significantly increase the
number of birds that are viremic [15], and the complex
effects of the drying frequency of wetland ecosystems on
mosquito populations, their predators and competitors
[16]. Furthermore, since C. pipiens is an urban species that
often breeds underground in catch basins, better under-
standing of this species' population dynamics is the key
for monitoring WNv illness in urban settings.

Moreover, mosquito ecology and behavioural attributes
not considered in our model could be added if more reli-
able experimental data becomes available. This would
include factors such as autogeny (egg development with-
out blood breeding) and mortality during overwintering
behaviour. The initial conditions of the current model
could be modified and refined with additional knowl-
edge.

Greater numbers of mosquito observations, obtained
through more trapping within British Columbia – partic-
ularly in the high risk areas identified in this study – could
contribute to improved model performance because
observational data is important for validating the model's
performance and for modifying parameters, as we did in
this study. It also should be noted that there are several
types of mosquito traps and the differences associated

A comparison of the model outputs and the observed mos-quito numbersFigure 4
A comparison of the model outputs and the observed 
mosquito numbers. (a) C. tarsalis and (b) C. pipiens. Data 
for all traps are mapped together. In the model calculations, 
the initial egg number is set at 100.
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with each trap type may influence the observation results.
Vegetation cover close to a trap [17] and the moon phase
[18] also influence the trapping results. Therefore, the
type, density and detailed location of the mosquito traps
should be carefully considered when developing a moni-
toring program in order to obtain comparable results
throughout the province.

A real time monitoring system for WNv is needed in order
to quantify the temporal potential risk of WNv in BC. The
specific hurdles for developing real time monitoring are
related to the availability of climatic and bird data. Daily
temperature data is required in developing a mosquito
risk map on a real-time basis. At the time of our model
development, Environment Canada only provided data
for 184 weather stations for 2005, while data from 387
and 363 stations – which can be considered as the poten-
tial total active stations – are available for 2003 and 2004.
More than half of the stations are not updated on a real
time basis, and some immediately updated station data
are not quality-controlled (i.e., the values are revised

later). The root mean-square error (RMSE) of using a lim-
ited number of real time stations' data versus using all of
the stations' data is evaluated to be 0.80°C for the year,
while it is 0.73°C when the temperature is ≥ 5°C, which
is the effective temperature for mosquitoes. This error may
induce some minor inaccuracy in predicting mosquito
abundance. A large uncertainty is associated with the lack
of temperature data for the typical habitat of C. pipiens
(e.g., catch basins).

Limitations caused by bird and human population data
are also problems one should not ignore. Observational
data on migratory birds may enable us to predict the tim-
ing of bird migration more accurately, which would be
helpful for monitoring the risk of WNv. The nature of
Census Canada's population data creates some uncer-
tainty, particularly in sparely populated rural areas cov-
ered with large spatial units, however, this is not a serious
problem in this study because the high risk areas in BC are
consistent with highly populated areas that are covered
with fine population survey units.

A trap-by-trap confirmation of the model performanceFigure 5
A trap-by-trap confirmation of the model performance. (a) C. tarsalis and (b) C. pipiens. The data for the two stations 
with largest numbers of mosquitoes observed is presented, along with data from a station in the other main region of concern. 
For C. pipiens, for which b (1) and b (2) traps are enough warm to support mosquitoes in the beginning of January, the initial 
conditions of the model result in 30 mosquitoes appearing near Julian day 1.
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Social factors, not considered in the current assessment,
could be very important for more detailed assessments in
urban areas. Ruiz et al. [19] report that in addition to the
natural factors such as vegetation or geology, the age of
housing, the percentage of population that is Caucasian,
and the median household income per unit area have a
positive relation with WNv cases, while housing density
has a negative relation. Ruiz et al. [19] also observed that
an older person working in the garden during the evening
is a good example of a high risk person. An effective public
education strategy can decrease their risk of acquiring
WNv [20]. Peak mosquito biting activity commences

shortly after sunset, and usually peaks during the succeed-
ing 1–3 hours, and lasts until shortly after sunrise [21].
Therefore, people should reduce their activities near wet
or heavily vegetated areas around this period, and take
personal protective measures such as wearing light col-
oured long sleeve clothing and applying DEET (mosquito
repellent) to avoid mosquito bites. The distribution of
road networks can also influence the incidence of WNv.
Reisen et al. [22] consider this factor as one of the possible
infection routes to California in 2003. Importation of
mosquitoes on container trucks or private vehicles from
Alberta and the United States into BC could potentially

Annual total of weighed daily mosquito numbers per gird cell (C. tarsalis only)Figure 6
Annual total of weighed daily mosquito numbers per gird cell (C. tarsalis only). Weight: 1 for daily mean tempera-
ture (T) below 16°C, 2 for 16°C ≤ T<20°C, 3 for 20°C ≤ T<24°C, 4 for 24°C ≤ T<28°C, 5 for T ≥ 28°C (Weight is deter-
mined for each day and for each grid cell; see text for a discussion of the methodology used to determine the weights)

Total weighted number of 
mosquitoes (for C. tarsalis)
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occur. Social factors could be easily included in a more
detailed GIS-based model.

Finally, the implementation of an integrated pest manage-
ment plan, which should be targeted to high risk areas,
can greatly reduce mosquito numbers and reduce the risk
of WNv. While some studies (e.g., [23]) attempt to esti-
mate the effect of these activities, developing a sophisti-
cated model enables us to estimate the potential
effectiveness of those activities before they are carried out.

The broad areas identified in our study as the highest risk
areas are not obviously different from the results pro-

duced using simpler models (e.g., combination of the
presence of the mosquito species capable of WNV trans-
mission, habitat and population). However, population-
dynamics based models can provide not only biological
rationale to the spatio-temporal change in mosquito
abundance, but can also provide more substantive bene-
fits. For example, such a model can present relative risk,
with fine spatial resolution, in areas with no mosquito
traps or with no dead corvid observations, where simpler
models do not work as well. Identifying areas of greatest
risk using biologically-relevant methods will assist the
concerned agencies in establishing new observation
points. Moreover, we can predict changes in WNv risk

Total abundance of high risk bird species in breeding seasonFigure 7
Total abundance of high risk bird species in breeding season. The map shows the average number of individual birds 
considered to be high risk species by the BCCDC (see the additional file for species considered in the map).

Number of high
risk birds per grid cell 
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Total risk of forming a mosquito-bird cycleFigure 8
Total risk of forming a mosquito-bird cycle. All of BC (upper) and a more detailed look at the high risk areas (lower) 
(Normalized product of Figures 6 and 7 divided by the maximum value)

Relative risk 
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Vancouver
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Okanagan
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Risk of human infectionFigure 9
Risk of human infection. All of BC (upper) and a more detailed look at the high risk areas (lower) (Normalized product of 
Figure 8 and human population (≥ 60 years old) density divided by the maximum value)

Relative risk 
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under different conditions, such as an abnormally hot or
cool year, the effect of global warming, the effect of dam
construction or reclamation of wetlands, and the differing
effects of insecticides (e.g., larvacides versus adulticides)
on potential outbreaks. While all models start with uncer-
tainty in many parameters, as we collect more data we can
validate and reduce the uncertainty associated with the
model's parameters. Such improvements will be carried
out in the future.

Conclusion
Spatial risk assessment of the potential for WNv in BC was
carried out by developing a sophisticated mosquito abun-
dance model and by combining its output with ancillary
data through the use of GIS and geostatistics. First we
modeled C. tarsalis and C. pipiens, but due to the large dis-
crepancy between our model's results and the observed C.
pipiens numbers, C. pipiens was removed from risk assess-
ment. The results show that in terms of mosquito, bird
and human populations, the geographic areas at highest
risk for WNv in BC are the Okanagan Valley and the
Thompson Region (Kamloops), Greater Vancouver, the
Fraser Valley, and southeastern Vancouver Island. The
resources associated with a WNv early warning system
such as mosquito traps and specialist in detecting the virus
and in collecting dead corvids, should be concentrated in
these areas. Collecting additional information such as that
obtained through basic studies on mosquito ecology in
BC, as well as continuing efforts in bird and mosquito sur-
veillance, are required for the early detection of WNv and
for improving the model, particularly for C. pipiens. Access
to real time climatic data is also the key for developing a
real time early warning system for vector borne diseases,
while social factors are important when developing a
detailed assessment in urban areas.

Methods
Study area and data used
The study area is the province of British Columbia,
although northern latitudes and high elevation areas of
the province currently do not host mosquito species capa-
ble of transmitting WNv [24]. Since the geographic range
of mosquitoes may extend northward with warmer cli-
mate, should global warming progress, these regions are
also mapped in order to provide rough estimates of WNv
risk in future years. In BC, there are 46 mosquito species,
17 of which are considered capable of transmitting the
virus [25,26]. Among those, Culex tarsalis and C. pipiens
are considered the most important vectors [26]. Accord-
ingly, discussion in this paper is focused and limited to
only these two mosquito species.

Data used in this study include climatic data from Envi-
ronment Canada [27], mosquito observation data from
the BCCDC, the GTOPO 30 digital elevation model

(DEM) of western North America obtained from the
United States Geological Survey [28], breeding bird popu-
lation data from the USGS [29], and wetland and lake
data from the provincial Terrain Resource Information
Management Program [30]. Daily maximum and mini-
mum temperature averages from 1971–2000 (only sta-
tions that had at least 15 years of records were used in our
analyses), and daily temperatures from 2003, are the most
important data source used in the analysis. In the model
calculations, maximum and minimum temperatures
within each day are first interpolated and then the average
daily mean temperature is calculated. Daily rainfall data
in 2003 are also used for exploring the effect of precipita-
tion. The USGS GTOPO 30 DEM was used to create a 2 ×
2 km resolution DEM for the entire province. The North
American Breeding Bird Survey (BBS) Summary and Anal-
ysis data was used to obtain average bird abundances over
the study area. The original data represents the average
number of individual birds, over the interval 1994 –
2003, of representative North American species in the
breeding season, primarily June, by skilled birders along
roadsides (BBS routes). Maps showing averaged abun-
dance by species, created by the USGS using Inverse Dis-
tance Weighting from the route data, were used in the
study. Wetland and lake data is extracted from the BC
Watershed Atlas [31]. Population data, of people aged 60
or greater, was obtained from the Census of Canada 2001.
We used the most detailed available data. That is, where
Dissemination Area (DA) age-specific data is available
(mainly in larger urban centres such as Vancouver, Victo-
ria and Kamloops) it is used. Where such fine-scaled age-
specific data is not available, Census Subdivision (CSD)
data is used in order to determine the age distribution (the
number of people ≥ 60 years old in the DA is calculated as
a product of DA's total population and the ratio of people
≥ 60 years old derived from the CSD). In a few cases where
neither DA nor CSD data are available, Census Division
(CD) data is used in a similar fashion. In total, 7431 DAs,
360 CSDs and 146 CDs were used to identify the ratio of
people 60 years of age and older throughout the province.
All of the environmental data was gridded to match the
DEM (2 × 2 km cell size), and the British Columbia Albers
standard projection was used for all maps.

The distance to the sea is calculated by buffering inland
from the coast. The 'sea coast' is identified as the area for
which the majority of the features within a circle of 20 km
diameter is water (the length of the diameter was deter-
mined through validation), in order to overcome the
impact that the many narrow straits and inlets along the
coast of BC have on that distance calculation if just dis-
tance from the coast was used. In calculating the distance
to the nearest wetland/lake, since it has a shorter range in
comparison to distance to the sea, we first use 100 m ×
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100 m grid cells when calculating the coefficients and
then convert them, by averaging, to 2 km × 2 km grids.

Model development
Overview
We developed a population dynamics model of mosquito
abundance, linked to environmental factors, whose out-
put is used to produce a risk assessment of WNv. This
approach is preferred over a statistical model (e.g., a
regression model using human cases and possible
explaining factors), since, in the case of WNv, the vector-
reservoir infection cycle is clear, and to assign too much
attention to actual human cases may be misleading since
high risk areas may be under-estimated if the human pop-
ulation is low or transient (e.g., vacation areas). Further-
more, BC's variable topography and resultant complex
temperature variability would ensure that any simple
experimental model would not adequately model mos-
quito distribution and subsequent viral amplification.
Finally, since BC has had no human cases that can be
attributed to exposure within the province so far, basing a
model on human cases is not possible.

The history of mosquito population dynamics models
dates back to the 1970s [9,23,32-35]. Most of these mod-
els incorporate temperature-dependent growth rates and
mortality taken from existing experimental studies as pop-
ulation control factors. Although many studies consider
the effect of mosquito density as a controlling factor of
mortality, particularly in the egg stage, our proposed
model does not include a density-dependent factor as this
is difficult to parameterize in the natural environment.
Instead, since various conditions can influence the result-
ing values, and after careful consideration, a number of
experimental parameters related to mosquito ecology,
obtained from other studies and discussed in the follow-
ing sections, were utilized in this study. For example,
Madder et al. [36] mentioned that the difference between
their results and Tekle [37] could be due to the difference
in the quality and quantity of food, different rearing den-
sities, fluctuations and inaccuracy of temperature controls
in the incubators, or an actual difference in genotypes.
Also, the vertical transmission (transmission of virus from
mother to egg) rate of WNv in C. tarsalis and C. pipiens, as
examined by Dohm et al. [38] and Goddard et al. [39],
ranges between 0 ‰ and 6.9 ‰, and averages around 2–
3 ‰. Consequently, we inferred that vertical transmission
is not a major route of virus transmission. Instead, we
believed that the abundance of adult mosquitoes, espe-
cially those which have had multiple gonotrophic (repro-
ductive) cycles, is the primary determinant of the risk of
illness through viral amplification in the bird-mosquito
cycle.

A flowchart of our model is presented in Figure 2. Con-
trary to other mosquito population models, which gener-
ally provide estimates for one or two isolated populations,
our model generates a spatially continuous map-based
output for the entire study area. As an initial condition,
100 adult mosquitoes are set for each grid cell (a 2 × 2 km
square). The calculation begins with a host-seeking staged
adult at the time when the ambient temperature becomes
warm enough to terminate mosquito hibernation (dia-
pause). Daily mean temperatures from January 1 are
input, and daily growth and death rates of mosquitoes are
calculated for each cell.

Developing and verifying the mosquito abundance model
parameters, using the trap data, was carried out within
Microsoft Excel using Visual Basic for Application (VBA),
while the subsequent raster-based GIS calculations for the
model were conducted using VBA for ArcGIS. Pre-process-
ing of all the GIS data, including resampling and interpo-
lation, and map-based calculations, including creating
risk assessment map using model output, was executed
using ArcGIS 9.0. All VBA programs were developed by the
authors with the exception of a script, downloaded from
the ESRI Support Center [40], to read the value of raster
data at the locations of point data.

Controlling factors of population dynamics
Mosquitoes have four life stages: egg, larva, pupa and
adult. With the exception of extreme conditions, all stages
of mosquito maturation occur more rapidly with warmer
temperatures. Mosquitoes are unable to regulate their
body temperature and, thus, are dependent on the tem-
perature of their surroundings for warmth and growth.
The concept of growing degree-days for mosquito popula-
tion forecasting involves the amount of accumulated heat
required for mosquitoes to complete their development
from one stage in their life cycle to another. This measure
of accumulated heat for development is known as physio-
logical time [41]. Growing degree-days are essentially heat
units based on the product of excess temperature (in
degrees) beyond the base value and its length (in days).
The conditions that are required to complete each life
stage of C. tarsalis and C. pipiens, obtained from existing
studies, are summarized in Table 2.

Studies on mortality show that larva, pupa and adult mor-
tality is similarly temperature-dependent. For example,
the estimated mortality curve provided by Eisenberg et al.
[35], a summary of existing studies, gives a minimum
mortality rate of 0.35 at 20°C. Generally, each life stage
has an optimal temperature at which mortality is mini-
mized, and mortality increases as the ambient tempera-
ture departs from the optimal temperature. One exception
is the egg stage, wherein mortality is influenced more by
density than by temperature [35]. In nature, however, the
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predominant factor for mosquito mortality is predation.
In a study from California by Reisen et al. [42], it was
observed that predators are the greatest cause of mosquito
mortality: 60–85% of immature C. tarsalis mortality was
due to predation, while abiotic factors and lack of food
resulted in only around 20% mortality. In our model,
mortality of C. tarsalis due to predation and lack of food
is estimated based on the results of Reisen et al. [42]. This
is 89%, 86% and 73% from January until June, during
July/August and during September/October, respectively.
For C. pipiens, a fixed mortality value of 98%, derived by
calculating a best-fitting line to the BCCDC observations,
was used since there were no existing studies on mortality
caused by predators and lack of food for this species.

Another important factor that influences mosquito abun-
dance is the seasonal change in oviposition (egg laying)
behavior that ultimately influences abundance. Mosqui-
toes have a biological mechanism that increases their pro-
creative power in the early summer. Bennington et al. [43]
found that the percentage of engorged and gravid C. tarsa-
lis females drops rapidly in May, and then stabilizes at
around 25% throughout the summer before eventually
decreasing to zero at the end of summer (they are fat with
stored energy at this point preparing to overwinter). This
leads to greater emergence during the summer months.

Futhermore, Madder et al. [44] found that temperature,
density and day length influence the percentage of adult

Table 2: Base and constant values used for each life stage of C. tarsalis and C. pipiens derived from existing studies. Base (°C) is the 
minimum temperature at which mosquitoes in each stage grow, and Constant (dd) is the required amount of degree-days (product of 
excess temperature above the Base and such days). *: Anautogenous form, **: Autogenous form

C. tarsalis
Stage Base(°C) Constant(dd) R2 Remarks Location Source

Egg 5.9 37.2 0.98 lab California [65]
9.0 20.9 0.87 fluctuating California [65]

Larva 7.9 162.6 0.96 lab California [65]
6.2 173.0 0.96 fluctuating California [65]

-40.1 555.6 0.87 fluctuating California [65]
12.7 110.4 0.98 lab California [66]

Pupa 11.6 29.3 0.99 lab California [65]
189.4 -311.5 0.02 fluctuating California [65]
-76.3 211.9 0.95 fluctuating California [65]
11.7 28.9 1.00 lab California [66]

Ovarian 
development

4.9 76.9 0.96 lab California [63]

C. pipiens
Stage Base(°C) Constant(dd) R2 Remarks Location Source

Egg 7.4 30.8 0.96 water Ontario [36]
3.7 35.8 0.90 water, fluctuating* England [67]
6.9 29.1 0.92 water, 

fluctuating**
England [67]

Larva 9.0 107.6 0.85 lab California [66]
4.7 119.2 0.43 lab* England [67]
1.7 171.5 0.38 lab** England [67]
9.5 160.0 0.89 Russia? [68]

Pupa 8.1 34.2 0.85 lab California [66]
8.3 55.9 0.58 lab* England [67]
7.1 57.8 0.61 lab** England [67]

Ovarian 
development

9.6 57.8 0.92 field Ontario [36]

10.0 70.9 0.92 lab Ontario [36]
9.1 78.7 0.93 lab Baltimore [37]
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C. pipiens females in diapause (a period of suspended or
dormant development, characterized by inactivity and
decreased metabolism). Thus, temperature, density and
day length also influence mosquito activity.

The date at which the growing degree-days calculations
start is also important for the model. Bennington et al.
[45] reported that the first female C. tarsalis in 1954 was
observed on Apr. 6 after emerging from hibernation when
the soil temperature at a depth of 1–2 m was around 7°C.
Due to the absence of soil temperature data, we assumed
that a three day average of average daily temperature
above 7.0°C is sufficient to break hibernation and initiate
the calculation.

An adult female can have multiple gonotrophic cycles.
Burdick and Kardos [46] observed the numbers of female
C. tarsalis, after overwintering, that experienced oviposi-
tion. At most four cycles were observed-no mosquitoes
survived for a fifth oviposition, and the average number of
gonotrophic cycles was 1.10, which is the value used in
our model. Tamarina [47] observed an average of 4.08
gonotrophic cycles with 105 eggs per raft for C. pipiens
(observed until one-half of the sample population died).
In our model, which considers the oviposition of survi-
vors, 5.00 is used as a reasonable number of gonotrophic
cycles for C. pipiens. Also, all eggs (calculated as a product
of the average number of gonotrophic cycles and average
eggs per raft) from a female adult are laid as soon as the
condition for the first oviposition is fulfilled. Daily mor-
tality is not used in the model explicitly since the concept
of gonotrophic cycle numbers includes the mortality of
adults. However, in determining the total number of
active adult mosquitoes, a temperature-dependent daily
mortality variable for adults is applied.

All of the parameters used in our model are summarized
in Table 1. Note, however, that some of the parameters
required to model C. pipiens do not exist in the literature,
so values derived from C. tarsalis studies are substituted.
In the following analysis, the daily mean temperature is
used in the calculation of degree-days. Also note that in
some studies, the temperatures reported were the temper-
ature of the water -in our model we assumed that the aver-
age air temperature was an adequate surrogate.

Method of interpolating temperature
In this study, the assumption for spatial change in temper-
ature is expressed using the equation that Burrough and
McDonnell [48] present for a random variable Z:

Z(x) = m(x) + ε'(x) + ε"  (1)

where m(x) is a deterministic function describing the
structural component, ε'(x) is the term denoting locally

variable but spatially dependent residuals from m(x), and
ε" is residual, spatially independent Gaussian noise hav-
ing zero mean. That is, m(x) is a stationary (static) part
given by some basic topographic factors, and ε'(x) is a
dynamic and incidental (unless a complicated numerical
large-scale climate simulator is used) part induced by the
movement of daily high/low pressures or warm/cool air
masses.

To interpolate the daily mean temperature, we modified
Odeh et al.'s [49] combined regression and kriging
method by using Inversed Distance Weighting (IDW)
instead of kriging as the geostatistic method. An evalua-
tion of the residuals determined that IDW performed bet-
ter than kriging for the purpose of this study, and
regression-kriging produced better interpolation results
than ordinary kriging [49,50], co-kriging [50] and thin
plate splines [50].

Jarvis and Stuart [51], in a regression analysis of tempera-
ture distribution in England and Wales, used 34 factors
and identified elevation, latitude and coastal effect as the
most significant contributing factors to maximum and
minimum temperature. Among these, elevation was the
most important factor, having a negative relation with
temperature. As pointed out by Ninyerola et al. [52], using
the cosine of latitude is more reasonable than latitude
itself when modelling temperature. As for the coastal
effect, we determined, by plotting the residuals of the
regression equation using elevation and cosine of latitude
against the distance to the sea, that the following function
produced the smallest residuals:

DSEA = d/200 (for d < 200)

 1  (for d ≥ 200)  (2)

Where, DSEA is the coastal effect (0 ≤ DSEA ≤ 1), d = dis-
tance from the sea (km).

The regression component (m(x) in eq.1) is calculated
based on the long-term (1971–2000) averaged climate
data and the geostatistical component (ε'(x) in eq. (1)) is
derived from the difference between the data in the year of
concern (2003 in this study) and the regression compo-
nent. Climate data from neighbouring weather stations in
Alberta, Yukon Territory and the Northwest Territories
were incorporated in our model in order to remove edge
effects.

In this study, IDW interpolation is carried out by using
ArcGIS (automated by coding of VBA for ArcGIS) with 2
as power and 100 as the number of surrounding stations
to be considered in the interpolation.
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Water dependent factors
An overlay of the BCCDC mosquito collection data with
the distribution of wetlands and lakes revealed a negative
relation between the distance to the nearest wetland or
lake and mosquito abundance. This observation is con-
sistent with mosquito biology since mosquitoes require
water to lay their eggs, and the first three stages of the mos-
quito life cycle are aquatic. Additionally, the flight range
of mosquitoes is relatively short (unless there is strong
wind) so adult mosquitoes tend not to migrate very far
from their breeding areas. Bailey et al. [53] revealed that a
large percentage of C. tarsalis in Sacrament Valley of Cali-
fornia traveled 2–3 miles (approximately 3–5 km) down-
wind in one evening and 7 miles (11 km) or more in two
evenings, and concluded that it would be realistic to esti-
mate 20–25 miles (32–40 km) as the maximum dispersal
distance of individual C. tarsalis mosquitoes in this valley,
while C. pipiens would be limited to a distance of no far-
ther than 1 mile (1.6 km) in an evening [54]. The effect of
distance to the nearest wetland or lake in relation to the
number of mosquitoes is presented in Figure 10. The neg-
ative relationship is clearly evident for C. tarsalis, while the
C. pipiens observations exhibit a peak around 2000 m
(which we could not explain). The data outlier in the C.
tarsalis figure was excluded from our model.

A negative relation between trapped mosquito numbers
and rainfall recorded at the nearest climatic station is evi-
dent in Figure 11. This effect is somewhat counterintuitive
to our general understanding of mosquitoes preferring
wet conditions, but several studies support this observa-
tion. Shaman et al. [55] observed that the abundance of C.
pipiens was negatively correlated with local modeled sur-
face wetness 10 days prior to observation, while other spe-
cies in their study had a positive relation with the same
index. They concluded that this effect was because of the
preference by C. pipiens for breeding in polluted,
eutrophic waters associated with dry conditions. The com-
plex relationship between the abundance of C. tarsalis and
water-related conditions was examined by Wegbreit and
Reisen [56]. Their study revealed that there is no clear rela-
tionship between mosquito abundance and rainfall, but
there is a strong relation with snow depth, snow water
content and river runoff. Based on our observations,
where large mosquito sampling numbers are concentrated
near zero rainfall events, we conclude that more research
is needed prior to establishing such a relation. Therefore,
a parameter related to rainfall was not included in our
model.

Bird abundance
The BCCDC (unpublished) has evaluated the risk of bird
species in BC that may introduce WNv into the province
via migration. Twenty seven (27) species are classified as
high risk species (Additional file 1). Recent studies have

revealed that global warming may cause early migration
for some bird species. Marra et al. [57] conclude that for
every 1°C increase in spring temperature the timing of
migration occurs on average one day earlier. Additionally,
Cotton [58] reveals that the timing of migration is
dependent on the temperatures at the overwintering
ground and breeding site. On the other hand, Both and
Visser [59] reported that for species relying on endog-
enous rhythms, the timing of migration is not affected by
climatic change, although the breeding date is affected.

Since we do not have enough information on the temper-
ature-dependency of migration for each species, our
model uses the long term average abundance of migratory
birds, provided by the USGS, as a factor that increases
WNv risk.

Validation and risk assessment using model output
Validation
We first validated our model by comparing its output to
the observed mosquito trap abundances (Figure 4). Our
model replicated the observed summertime peak abun-
dances, which indicates that our models incorporated
mosquito population dynamics successfully. Next, in
order to validate the spatially-explicit population dynam-
ics of our models, we performed a trap-by-trap assessment
(Figure 5). In Figure 5, for each of C. tarsalis and C. pipiens,
two traps with greatest number of mosquitoes are first
selected for validation, and then, in order to examine
potential effects of spatial variation, one trap from the
other significant region of BC is included (Figure 5a(3)
and 5b(3)).

Sensitivity analysis
In order to explore the stability of the model output, sen-
sitivity analysis is carried out. All of the results of the anal-
yses, using the data from the two traps with the highest
numbers of mosquitoes (i.e., the same traps as presented
in Figures 5a (1)(2) and 5b (1)(2)), are depicted in Table
3. For C. tarsalis, as all of the biological parameters were
derived from the published literature, the most uncertain
parameter was the soil temperature at which mosquitoes
emerge from winter hibernation. Since soil temperature
data is not available, air temperature was used as a surro-
gate. Changing the condition at which diapause is
assumed to terminate results in insignificant change in the
model's output. For C. pipiens, on the other hand, egg and
adult mortality as well as the starting condition were all
derived from C. tarsalis studies and therefore should be
checked.

Although small changes in the starting condition and egg
mortality result in no significant change, it is apparent
that altering adult mortality can result in considerable
change. Changing the center of the mortality curve by 1C°
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results in a 15–20 % difference in total annual mosquito
abundance. Based on this observation, further investiga-
tion in adult mortality of C. pipiens is strongly encouraged.

Creating risk assessment maps
The methodology presented in Figure 3 is used to create
the WNv risk assessment maps presented in Figures 6 to 9.
Figure 6 was derived using the following logic. Tempera-
ture is known to affect the WNv infection rate [11]. In Fig-

Relation between scaling factor (observation/model) and distance to the nearest wetland/lakeFigure 10
Relation between scaling factor (observation/model) and distance to the nearest wetland/lake. (a) C. tarsalis, (b) 
C. pipiens Broken lines show relation used in the model. The outlier specified in Figure 4 is not presented.
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ure 1 of Dohm et al. [11], the infection rate at four
temperatures (18, 20, 26, 30°C) was observed as approx-
imately 30 % for 30 days, 40 %/20 days, 80 %/20 days
and 100 %/12 days, respectively. The infection rate X(%)
is described as X(%) = ea(T)t, where t is time of expose and

a(T) is a function of ambient temperature T (°C). If it is
assumed, for simplification, that a(T) is a linear function,
a(T) is determined as 0.0085T-0.1011 (R2 = 0.88). Substi-
tuting 16, 20, 24, 28, 32°C into that equation, the ratios
of a(T) at 20, 24, 28, 32°C to that at 16C° are approxi-

Table 3: Sensitivity analysis of the model. Data from the traps presented in Figure 5 are used in these analyses. For the starting 
condition: a. 7°C for 3 day average, b. 6°C for 3 days, c. 8°C for 3 days and d. 7°C for 2 days. For daily egg mortality (T indicates the 
mean temperature (°C)): 1. 0.2%/day (5≤T≤30), (0.02(5-T)+0.2)% (T<5), (0.02(T-30)+0.2)% (T >30), 2. 0.2%/day (5≤T≤20), (0.02(5-
T)+0.2)% (T<5), (0.02(T-20)+0.2)% (T>20), 3. 0.2%/day (15≤T0≤3), (0.02(15-T)+0.2)% (T<5), (0.02(T-30)+0.2)% (T>30). Totals A, B, C 
are the annual total mosquito abundance calculated by using an adult daily mortality of: (0.24(T-25)2+5)% for TotalA (this is used in 
this study), (0.24(T-24)2+5)% for TotalB, (0.24(T-26)2+5)% for TotalC.

C. tarsalis

Trap of Fig. 
5(a)1

Start Max Date of max Total

Final model a 17.55 Jul.25 326.8

Model1 b 17.55 Jul.25 326.8
Model2 c 17.55 Jul.25 326.8
Model3 d 17.48 Jul.25 325.5

Trap of Fig. 5(a)2

Final model a 18.80 Jul.22 396.3

Model1 b 18.80 Jul.22 396.3
Model2 c 18.80 Jul.22 396.3
Model3 d 18.80 Jul.22 396.3

C. pipiens

Start Egg Mortality Max Date of Max TotalA TotalB TotalC

Trap of Fig. 5(b)1
Final model a 1 53.00 Aug.18 868.0 1047.0 719.9

Model1 a 2 53.00 Aug.18 868.0 1047.0 719.9
Model2 a 3 52.90 Aug.18 866.4 1045.0 718.6
Model3 b 1 53.00 Aug.18 868.0 1047.0 719.9
Model4 b 2 53.00 Aug.18 868.0 1047.0 719.9
Model5 b 3 52.90 Aug.18 866.4 1045.0 718.6
Model6 c 1 53.00 Aug.18 868.0 1047.0 719.9
Model7 c 2 53.00 Aug.18 868.0 1047.0 719.9
Model8 c 3 52.90 Aug.18 866.4 1045.0 718.6

Trap of Fig. 5(b)2

Final model a 1 53.04 Aug.12 1009.4 1186.8 851.1

Model1 a 2 53.03 Aug.12 1009.2 1186.6 850.9
Model2 a 3 52.68 Aug.12 1002.4 1178.7 845.2
Model3 b 1 53.04 Aug.12 1009.4 1186.8 851.1
Model4 b 2 53.03 Aug.12 1009.2 1186.6 850.9
Model5 b 3 52.68 Aug.12 1002.4 1178.7 845.2
Model6 c 1 53.04 Aug.12 1009.4 1186.8 851.1
Model7 c 2 53.03 Aug.12 1009.2 1186.6 850.9
Model8 c 3 52.68 Aug.12 1002.4 1178.7 845.2
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mately estimated as 2, 3, 4, 5, which are used as the
weights in deriving Figure 6 (e.g., if the average daily tem-
perature changes from 16°C to 20°C, the rate of increase
in the infection rate is doubled).

Figure 7 shows the total abundance of high risk birds.

By multiplying Figure 6 with Figure 7, the risk of forming
a mosquito-bird cycle is determined (Figure 8). By divid-
ing the product by the maximum value contained within
the map, the relative risk in comparison to the most risky
grid cell is evaluated.

The relative risk of human infection is calculated as the
product of Figure 8 and the population density of people
≥ 60 years old. This risk is also expressed as a relative one
by dividing all the values by the maximum value.
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