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Abstract

Background: Arteriosclerosis and emphysema develop in individuals with Schimke immuno-osseous dysplasia
(SIOD), a multisystem disorder caused by biallelic mutations in SMARCAL1 (SWI/SNF-related, matrix-associated,
actin-dependent regulator of chromatin, subfamily a-like 1). However, the mechanism by which the vascular and
pulmonary disease arises in SIOD remains unknown.

Methods: We reviewed the records of 65 patients with SMARCAL1 mutations. Molecular and immunohistochemical
analyses were conducted on autopsy tissue from 4 SIOD patients.

Results: Thirty-two of 63 patients had signs of arteriosclerosis and 3 of 51 had signs of emphysema. The
arteriosclerosis was characterized by intimal and medial hyperplasia, smooth muscle cell hyperplasia and
fragmented and disorganized elastin fibers, and the pulmonary disease was characterized by panlobular
enlargement of air spaces. Consistent with a cell autonomous disorder, SMARCAL1 was expressed in arterial and
lung tissue, and both the aorta and lung of SIOD patients had reduced expression of elastin and alterations in the
expression of regulators of elastin gene expression.

Conclusions: This first comprehensive study of the vascular and pulmonary complications of SIOD shows that these
commonly cause morbidity and mortality and might arise from impaired elastogenesis. Additionally, the effect of
SMARCAL1 deficiency on elastin expression provides a model for understanding other features of SIOD.
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Background
Schimke immuno-osseous dysplasia (SIOD, OMIM
242900) is an autosomal recessive disorder asso ciated
with arteriosclerosis [1,2]. It is characterized by prominent
skeletal dysplasia, renal failure, T-cell immunodeficiency,
facial dysmorphism, and hyperpigmented macules [3-7].
Other features include osteoporosis, joint degeneration,
hypothyroidism, abnormal dentition, bone marrow failure,
thin hair, corneal opacities, atherosclerosis, cerebrovas-
cular events (CVEs), and migraine-like headaches [2,6-10].
Severely affected patients usually die before 15 years of age
from renal failure, infection, bone marrow failure, lung
disease, or CVEs [7].
SIOD is caused by loss of function mutations in the

gene encoding for the chromatin remodeling enzyme
SWI/SNF-related, matrix-associated, actin-dependent
regulator of chromatin, subfamily a-like 1 (SMARCAL1)
[11]. SMARCAL1 functions as an annealing DNA heli-
case at single to double strand transitions in DNA [12]
and as a DNA stress response protein [13,14]. It also
interacts with replication protein A, participates in the
resolution of stalled DNA replication forks, and modu-
lates transcription [14-18]. Despite advances in our
understanding of the SMARCAL1 enzyme, the mechan-
ism by which SMARCAL1 deficiency leads to SIOD
remains undefined.
As renal transplantation and dialysis have prolonged

the longevity of SIOD patients, cerebral ischemia from
arteriosclerosis has increasingly contributed to mor-
bidity and mortality [7,19]. Although treatment with
anticoagulant or hemorheological medications can tran-
siently decrease the frequency and severity of CVEs
and transient ischemic attacks (TIAs), the vascular dis-
ease ultimately progresses [7] and is not associated
with detectable alterations in nitric oxide production
or mitochondrial dysfunction [20,21]. Focal atheros-
clerotic plaques, generalized hyperplasia of the tunica
media, and splitting and fraying of the internal elastic
layer characterize the arterial pathology [1,2].
Potential contributors to the arteriosclerosis include

hypertension, hyperlipidemia, renal disease, and immune
dysfunction [3,7,22,23]. However, the arterial pathology
observed by Clewing et al. is most similar to that
reported for osteopontin deficiency or for impaired elas-
togenesis [1,24-26]. Osteopontin is a cytokine that is
induced by the WNT signaling cascade [27], a cellular
pathway that participates in the regulation of vascular
smooth muscle cell proliferation [28]. Impaired elasto-
genesis arises either from mutations of ELN or from
impaired function or expression of enzymes that process
or bind elastin [29]. Mice heterozygous for Eln gene
deletions show many features in common with SIOD
patients, including systemic hypertension, pulmonary
hypertension, aortic valve disease and frequent inguinal

hernias [7,30,31]. Further highlighting the possibility of
impaired elastogenesis, the postmortem lungs of two
SIOD patients showed enlarged air spaces or emphyse-
matous changes, a common feature in disorders of elas-
togenesis [7,30,31].
Given these observations, we hypothesized that osteo-

pontin deficiency and/or impaired elastogenesis were the
primary causes of the vascular and pulmonary disease
associated with SIOD. To test these hypotheses and to
determine the prevalence of vascular and pulmonary
disease among SIOD patients, we reviewed the records
of SIOD patients with identified SMARCAL1 mutations,
delineated the arterial and pulmonary pathology and
profiled gene expression in postmortem artery and lung.
We identify reduced elastin expression and synthesis as a
possible basis of the arteriosclerosis and pulmonary
emphysema of SIOD patients.

Methods
Patients
Patients referred to this study signed informed consent
documents approved by the Institutional Review Board
of Baylor College of Medicine (Houston, TX, USA) or
the University of British Columbia (Vancouver, BC,
Canada). Clinical data for 65 SIOD patients were
obtained from questionnaires completed by the attending
physician and from medical records and summaries pro-
vided by that physician. Autopsy tissues were obtained
according to the protocol approved by the University of
British Columbia. The SMARCAL1 mutations of SIOD
patients are listed in Table 1.

Case reports
Patient SD120
The propositus was a 5.4-year old boy with Schimke
immuno-osseous dysplasia (Additional file 1). He
was born at 35 weeks gestation to healthy non-
consanguineous parents by Cesarean section for intra-
uterine growth retardation and oligohydramnios. At 1
year of age, he underwent surgery to repair an inguinal
hernia. At 3.2 years of age, he had surgery for bilateral
hip dysplasia. Beginning in his third year, he developed
recurrent migraine-like headaches with aura, vomiting
and hemiplegia. By 4 years of age, he manifested recur-
rent TIAs, although he had normal brain magnetic res-
onance imaging and angiography as well as normal
electroencephalogram studies. At 4.5 years of age, he
developed nephrotic syndrome that progressed to end-
stage renal disease requiring dialysis. At 5.4 years, he was
admitted to hospital for fever, anemia, hypoxia, and re-
spiratory distress. His respiratory status rapidly worsened
despite antibiotics and mechanical ventilation. He died
from respiratory failure without identification of its
cause. Postmortem studies showed alveolar damage,
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Table 1 Summary of pulmonary and vascular findings in SIOD patients with SMARCAL1 mutations

Pedigree
No.

SMARCAL1 mutations Sex Pulmonary findings Vascular findings Age
at

death

Cause of death

Age
at

onset

Lung dysfunction
or pathology

Age
at

onset

CVA TIA Moya
moya

SD4a c.[1930C>T];[410delA] F NR - NR NR 8 Renal failure

SD4b c.[1930C>T];[410delA] M NR - NR NR 8 Renal failure

SD8 c.[1190delT];[?]A F NR - NR NR 5.7 Pneumonia

SD16 c.[1933C>T];[1643T>A] M 34 Mild panlobular
emphysema with

dyspnea, pulmonary
hypertension,
restrictive lung

disease

- - -

SD18a c.[1756C>T];[1756C>T] M NR NR - NR 43 Cryptococcus
meningitis

SD18c c.[1756C>T];[1756C>T] F - - - -

SD22 c.[2459G>A];[2459G>A] M NR 8 - + - 14.6 CMV infection

SD23 c.[2542G>T];[2542G>T] M NR 4.1 + + - 10.3 Unknown

SD24 NT_005403.17: g.[67482574_67497178del]
+[67482574_67497178del]

F - 7.5 + + NR 9 CVE

SD25 c.[100C>T];[49C>T] F - 5 + + NR 10.1 CVE

SD26 c.[2542G>T];[1190delT] M NR Pulmonary edema 5.3 + + - 8 Renal and bone
marrow failure

SD27 c.[1940A>C];[1940A>C] F - - - - 25.6 Infectious
pulmonary disease

SD28 c.[1696A>T;1698G>C;1702delG];
[1696A>T;1698G>C;1702delG]

M 12 Chronic cough,
dyspnea, pulmonary

hypertension

NR - NR 12 Pulmonary
hypertension

SD29 c.[1934delG];[862+1G>T] M 3.7 Pulmonary edema,
restrictive lung

disease, pulmonary
fibrosis

< 3 + + NR 4 Infectious
pulmonary diseaseB

SD30 c.[1132G>T];[1132G>T] F NR 5.7 + - + 10 HSV pneumonitis

SD31 NT_005403.17: g.[67482574_67497178del]
+[67482574_67497178del]

F NR 11 + + + 14 Lymphoproliferative
disease (secondary)

SD33a c.[1146_1147delAA;1147+1_2delGT];
[1097-2A>G]

F - - - NR 2.8 Bone marrow failure

SD33b c.[1146_1147delAA;1147+1_2delGT];
[1097-2A>G]

M - < 1 + - NR 3.7 CVE

SD35 c.[1736C>T];[2321C>A] M NR Pulmonary fibrosis - - - 8 Renal failure

SD38 c.[1096+1G>A];[1096+1G>A] M 2 Asthma NR NR + - 10.8 Complications of
blood stem cell

transplant

SD39 c.[2114C>T];[1402G>C] M NR 11 + + NR 15 CVE

SD44 c.[2321C>A];[1191delG] M - 9 + + NR 11.9 Digestive bleeding

SD47 c.[2459G>A];[?]A M - 7 + + -

SD48 c.[1939A>C];[1939A>C] F 6.8 Pulmonary
hypertension

4 + + + 6.8 EBV pneumonia

SD49 c.[2321C>A];[1920_1921insG] M 4.8 Pulmonary edema - - - 4.8 Unknown

SD50 c.[2542G>T];[2542G>T] F 3 Restrictive lung
disease

4.5 + + NR 8 Peritonitis and
sepsis post

transverse colon
perforation
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Table 1 Summary of pulmonary and vascular findings in SIOD patients with SMARCAL1 mutations (Continued)

SD51 c.[2542G>T];[2459G>A] F - - - -

SD53 c.[2291G>A];[2543G>T] M NR - - NR

SD57 c.[955C>T];[955C>T] F < 10 Asthma, wheezing,
basilar atelectasia

8 + + - 28 Pancreatitis

SD60 c.[2542G>T];[2542G>T] M NR Pulmonary edema,
pulmonary

hypertension,
emphysematous
changes upon

autopsy

8 + + NR 13.7 CVE

SD61 c.[1146_1147delAA;1147+1_2delGT];
[1146_1147delAA;1147 + 1_2delGT]

M - - - NR 5 Lymphoproliferative
disease (primary)

SD65a c.[2542G>T];[836T>C] M - - - -

SD65b c.[2542G>T];[836T>C] M 23 Diffusion and
perfusion lung

disorder

14 + + -

SD66 c.[1933C>T];[1933C>T] M NR Pulmonary edema 7 + + + 13 Congestive heart
failure

SD68 c.[1940A>C];[2462T>G] F - 6 + + - 7.1 CVE

SD70 c.[340_341insAGTCCAC];[836T>C] F - 6 + + - 18 Recurrent ileus
pathology

SD71 c[1000C>T];[836T>C] M - 6 + + - 9 Unknown

SD74 c.[1736C>T];[?]A M - - - -

SD78 c.[2264T>G];[1439C>T] F - NR - NR 10 Pneumonia

SD79 c.[2459G>A];[?]A F - - - - 10 Complications
of BMT

SD84 c.[2104T>G];[1248_1249insC] M NR Pulmonary
hypertension,

emphysematous
changes upon

autopsy

10 - + + 23 Pulmonary
hypertension with

heart failure

SD86 c.[2263_2282delATCGATGGCTCCACCTCATC];
[1129G>C]

F - - - - 5.7 Complications
following BMT

SD96 c.[1427G>A];[1427G>A] M 6 Recurrent lung
infections

- - - 6 InfectionC

SD99 c.[1402G>C];[1402G>C] F 5.5 Pulmonary edema - - NR 5.5 Pulmonary edema
and left heart failure

SD101 c.[2542G>T];[2542G>T] M NR 3 - + -

SD102 c.[2542G>T];[2542G>T] M NR NR NR NR 8 Renal failure

SD106 c.[1682G>A];[1682G>A] M 4 Chronic coughing
and wheezing

5.5 - + NR 8 Non-Hodgkin
Lymphoma

SD107 c.[2542G>T];[2542G>T] F 3 Restrictive lung
disease

NR - NR 6 Thrombosis

SD108a c.[1798C>T];[1798C>T] M - - - -

SD108b c.[1798C>T];[1798C>T] M - - - NR

SD111 c.[1129G>C];[1592T>C] M 13 Pulmonary
hypertension,
chronic cough,
restrictive lung

disease

15 + + - 17.5 Respiratory failure

SD112a c.[1934G>A];[2542G>T] F - - - -

SD112b c.[1934G>A];[2542G>T] F - - - -

SD114 c.[1898T>C];[1898T>C] M - 4 + - + 9.5 Unknown
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alveolitis, bronchitis, and dilated air spaces as well as ar-
teriosclerosis, atherosclerosis, and cardiac left ventricular
hypertrophy.

Patients SD60 and SD84
SD60 was a 13.7-year old boy and SD84 was a 23-year
old man. Both have been described previously [1,2].

Patient SD16
The propositus is a 36-year old man with mild SIOD
(Additional file 1); he was described by Gilchrist et al. at
16 years of age [32]. Since then, he has had bilateral hip
and aortic valve replacement and respiratory insuffi-
ciency requiring oxygen supplementation. He has no
history of smoking or exposure to cigarette smoke. His
spirometry and diffusion studies show signs of both re-
strictive and obstructive pulmonary disease (Additional
file 2). The former is consistent with his skeletal
dysplasia and the latter is explained by the mild pan
lobular emphysema identified by computed tomography
(Figure 1A, B). The severity of his respiratory distress
has been disproportionate to his lung pathology, and is
explained by Type I pulmonary arterial hypertension
detected on right heart catheterization.

RNA isolation and reverse transcription
For cultured cells, RNA was extracted from 1 X 107 cells
using the RNeasy Mini Kit (Qiagen, Mississauga, ON,

Canada). For tissues, RNA was extracted from flash frozen
tissue pulverized with a Bessman tissue pulverizer and
lysed with TRIzol reagent (Invitrogen, Burlington, ON,
Canada) according to the manufacturer’s specifications.
Subsequently, the RNeasy Mini Kit (Qiagen, Mississauga,
ON, Canada) was used to purify the RNA. Residual gen-
omic DNA was removed by DNase I digestion.
Control aorta RNA pooled from 4 unaffected indivi-

duals ranging in age from 27–45 years was purchased
from Clontech (636546, Lot no. 9052725A, Mountain
View, CA, USA). Control lung RNA pooled from 3 un-
affected individuals ranging in age from 32–61 years was
purchased from Clontech (636643, Lot no. 8101369A,
Mountain View, CA, USA).
RNA from formalin-fixed paraffin-embedded umbilical

cord was isolated using the Ambion RecoverAll Total
Nucleic Acid Isolation Kit (AM1975, Life Technologies,
Burlington, ON, Canada) according to the manufac-
turer’s specifications.
Reverse transcription was performed with the qScriptTM

cDNA Synthesis Kit (Quanta Biosciences, Gaithersburg,
MD, USA) or the RT2 First Strand Kit (SABiosciences,
Mississauga, ON, Canada) using 500 ng of RNA per reac-
tion according to the manufacturer’s specifications.

PCR
Following reverse transcription, 1.5 μl of cDNA served
as template for each reaction and was amplified with the

Table 1 Summary of pulmonary and vascular findings in SIOD patients with SMARCAL1 mutations (Continued)

SD115 c.[1437_1438insG];[1437_1438insG] F < 0.6 Mild bronchiectasis - - - 1 Pneumonia with
respiratory failure

SD119 c.[2449C>T];[2542G>T] F NR NR - NR

SD120 c.[2291G>A];[2542G>T] M NR Restrictive lung
disease,

emphysematous
changes

3 - + - 5.5 Respiratory failure

SD121 c.[1382G>A];[2542G>T] F - 3.3 + - - 4.8 CVE

SD123 c.[49C>T];[49C>T] F - 4 - + -

SD124 c.[1920_1921insG];[1920_1921insG] M - - NR -

SD127 c.[1736C>T];[1736C>T] F 9 Reactive airway
disease

7 + + +

SD131 c.[1026C>A];[2264T>G] M - NR + - - 4.6 Cerebral
hemorrhage

SD133a c.[863-2A>G;2343_2347_delGCTGT];
[=;2343_2347_delGCTGT]

F - - - - 3 Pulmonary
embolism
(secondary)

SD133b c.[863-2A>G;2343_2347_delGCTGT];
[=;2343_2347_delGCTGT]

F Terminated
pregnancy

SD138 c.[2542G>T];[2542G>T] M - NA NA NA NA

Abbreviation: +, feature present; -, feature not present; BMT, bone marrow transplant; CVE, cerebrovascular event; CMV, cytomegalovirus; EBV, Epstein-Barr virus; F,
female; HSV, herpes simplex virus; M, male; NA, not applicable; NR, not reported; TIA, transient ischemic attack.
A[?] represents alleles with noncoding SMARCAL1 mutations as described by Clewing et al. [60].
BNo bacteriologic or viral proof.
CInfection of peritoneal dialysis fluid.
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HotStarTaq Master Mix Kit (Qiagen, Toronto, ON,
Canada). The following conditions were used for amplifi-
cation: 1 cycle of 95°C for 15 min, followed by 30 cycles
of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min, and a
final extension at 72°C for 10 min. PCR was performed
using the primers listed in Additional file 3.

Gene expression array
The Atherosclerosis (PAHS-038) RT2 Profiler™ PCR
Array from SABiosciences (Mississauga, ON, Canada)
was used to assess differences in gene expression be-
tween control and SIOD aortic mRNA according to the
manufacturer’s instructions.

Quantitative PCR
SsoFast EvaGreen Supermix (Bio-rad Laboratories,
Mississauga, ON, Canada) or RT2 Real-Time™ SYBR
Green/Rox PCR master mix (SABiosciences, Mississauga,
ON, Canada) was used with the ABI 7500 Fast Real-
Time PCR System for quantitative PCR. The primer
sequences are listed in Additional file 3.

ELN mutation analysis
Genomic DNA was extracted from the aorta of SD120
using the DNeasy Tissue Kit (Qiagen, Toronto, ON,
Canada) according to the manufacturer’s specifications.
The 34 exons of ELN were amplified with the HotStar-
Taq Plus Master Mix Kit (Qiagen, Toronto, ON,
Canada). The following conditions were used for amplifi-
cation: 1 cycle of 95°C for 5 min, followed by 35 cycles
of 94°C for 30 s, 55°C or 60°C for 30 s, 72°C for 45 s,
and a final extension at 72°C for 10 min. PCR was per-
formed using the primers listed in Additional file 3. Un-
incorporated primers and nucleotides were removed
using ExoSAP-IT reagent (USB, Cleveland, OH, USA).
Sanger capillary sequencing was used to sequence the

PCR products (Macrogen, Seoul, Korea), and the
sequences were aligned and analyzed using Sequencher
v.4.10.1 (Gene Codes, Ann Arbor, MI, USA). Mutation

interpretation analysis was conducted using Alamut 2.0
(Interactive Biosoftware, San Diego, CA, USA).

Cell culture
Aortic smooth muscle cells (AoSMCs, CC-2571, Lonza,
Walkersville, MD, USA) were grown in smooth muscle
basal medium (SmBM) supplemented with 5% fetal bo-
vine serum (FBS), epidermal growth factor (EGF), basic
fibroblast growth factor (FGF-B), insulin, gentamicin,
and amphotericin B (SmGM-2 BulletKit, CC-3182,
Lonza, Walkersville, MD, USA).
Human iliac artery endothelial cells (HIAECs, CC-

2545, Lonza, Walkersville, MD, USA) were grown in
endothelial basal medium (EBM-2) supplemented with
5% FBS, EGF, FGF-B, vascular endothelial growth factor
(VEGF), R3 insulin-like growth factor 1 (R3-IGF-1),
hydrocortisone, ascorbic acid, gentamicin, and ampho-
tericin B (EGM-2-MV BulletKit, CC-3202, Lonza, Walk-
ersville, MD, USA).
Aortic adventitial fibroblasts (AoAFs, CC-7014, Lonza,

Walkersville, MD, USA) were grown in stromal cell basal
medium (SCBM) supplemented with 5% FBS, FGF-B, in-
sulin, gentamicin, and amphotericin B (SCGM BulletKit,
CC-3205, Lonza, Walkersville, MD, USA).
Normal human lung fibroblasts (NHLFs, CC-2512,

Lonza, Walkersville, MD, USA) were grown in fibroblast
basal medium (FBM) supplemented with 2% FBS, FGF-
B, insulin, gentamicin, and amphotericin B (FGM-2 Bul-
letKit, CC-3132, Lonza, Walkersville, MD, USA).

Immunofluorescence
Immunostaining of cultured cells was performed as pre-
viously described [33]. 5 x 105 cells were grown over-
night on a coverslip in a 6-well plate. With the exception
of the aortic smooth muscle cells (AoSMCs), all cells
were fixed with 4% paraformaldehyde (PFA) for 15 min
at room temperature and permeabilized with 0.5% Triton
X-100 for 15 min at room temperature. AoSMCs were
fixed with 4% PFA and 0.15% picric acid for 20 min at
room temperature, and permeabilized with 0.1% Triton

Figure 1 Emphysematous lung changes in an SIOD patient. (A, B) Consecutive axial computerized tomography images of the chest of patient
SD16 at age 34 years. The images were captured 1 mm apart. Note the lung blebs (arrows).
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X-100, 1% bovine serum albumin (BSA), and 10% normal
horse serum in 1X phosphate buffered saline (PBS). All
cells were blocked overnight with Blocker Casein in PBS
(Pierce, Rockford, IL, USA) containing 10% normal horse
serum at 4°C. The cells were then incubated with anti-
SMARCAL1 (1:200) [33], anti-α-smooth muscle actin
(1:20, 1A4, Dako, Mississauga, ON, Canada), anti-VE-
cadherin (1:100, 33E1, Leica, Richmond Hill, ON,
Canada), anti-prolyl 4-hydroxylase (1:50, 5B5, Abcam,
Cambridge, MA, USA), or anti-α-tubulin (1:400, DM 1A,
Sigma-Aldrich, Oakville, ON, Canada) diluted in block-
ing buffer at 4°C for 24 h. Cells then were gently washed
4 times with PBS and incubated with Alexa Fluor-
conjugated secondary antibodies Alexa 488 and Alexa
555 (1:1000, Molecular Probes, Burlington, ON, Canada)
for 1 h at room temperature. Cells next were washed 4
times with PBS and mounted in Vectashield containing
4’,6-diamidino-2-phenylindole (DAPI, Vector Laborator-
ies, Burlington, ON, Canada). Images were acquired
using a 100×/1.30 oil Plan-NEOFLUAR objective lens, a
Zeiss Axiovert 200 inverted microscope, a Zeiss Axio-
camMR camera, and the Zeiss Axiovision imaging
system.

Immunoblot analysis
Immunoblot analysis on cell lysates was performed as
previously described [33]. Cell lysates were fractionated
by 12% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to a poly-
vinylidene fluoride (PVDF) membrane. The membrane
was blocked overnight at 4°C, using gentle agitation, in
PBS containing 0.2% I-Block (Applied Biosystems,
Foster City, CA, USA) and 0.1% Tween 20 overnight.
Anti-SMARCAL1 (1:2000) [33] and anti-glyceraldehyde
3-phosphate dehydrogenase (GAPDH, 1:2000, 6C5,
Advanced ImmunoChemical Inc., Long Beach, CA, USA)
were used as primary antibodies. Alkaline phosphatase-
conjugated secondary antibodies (1:10000, Bio-rad
Laboratories, Mississauga, ON, Canada) were used to de-
tect the primary antibodies. The bound antibody was
detected by chemiluminescence using CDP-Star (Applied
Biosystems, Streetsville, ON, Canada) according to the
manufacturer’s specifications. GAPDH was detected as a
loading control.
Immunoblot analysis on human tissue was performed

as previously described [33]. Anti-elastin binding protein
(EBP, 1:200, a kind gift from Dr. Amelia Morrone, Uni-
versity of Florence, Florence, Italy) [34,35] and anti-
GAPDH were used as primary antibodies. EBP expres-
sion in the aortas of two SIOD patients was compared
to that of a control aorta protein medley pooled from
49 unaffected individuals ranging in age from 15–65
years and purchased from Clontech (635310, Lot no.
5110079, Mountain View, CA, USA). EBP expression

was normalized to expression of GAPDH for each sam-
ple. Densitometry of three independent replicates was
conducted using the Kodak 1D Image Analysis Software
version 3.6.

Tissue immunohistochemistry and staining
Formalin-fixed, paraffin-embedded sections were cut at 5
microns. Following deparaffinization and rehydration,
heat induced epitope retrieval was conducted with so-
dium citrate buffer (10 mM sodium citrate, 0.05% Tween
20, pH 6) or tris-ethylene diamine tetraacetic acid
(EDTA) buffer (10 mM Tris base, 1 mM EDTA, 0.05%
Tween 20, pH 9). For immunohistochemical detection of
elastin, proteolytic induced epitope retrieval was con-
ducted with 0.4% pepsin at 37°C for 15 min. Endogenous
peroxidases were inactivated by preincubating the sec-
tions with 0.3% H2O2 in methanol. Non-specific protein
binding was blocked by preincubation at 4°C with block-
ing buffer (10% horse serum in TBS-T (10 mM Tris–
HCl, 150 mM NaCl, 0.01% Tween 20, pH 7.4)) for 24 h.
Sections were then incubated with anti-SMARCAL1
(1:200) [33], anti-CD3 (1:50, MRQ-39, Cell Marque,
Rocklin, CA, USA), anti-CD20 (1:50, L26, Cell Marque,
Rocklin, CA, USA), anti-CD68 (1:250, KP1, Dako,
Mississauga, ON, Canada), anti-α-smooth muscle actin
(1:500, 1A4, Dako, Mississauga, ON, Canada), or anti-
elastin (1:50, BA-4, Abcam, Cambridge, MA, USA)
diluted in blocking buffer at 4°C for 24 h. Sections were
then washed 5 times with TBS-T and incubated with
horseradish peroxidase (HRP)-conjugated secondary
antibodies (EnVision+ System, Dako, Mississauga, ON,
Canada) for 30 min at room temperature. Sections were
then washed 3 times with TBS-T and 3,3’-diaminobenzi-
dine (DAB, EnVision+ System, Dako, Mississauga, ON,
Canada) was subsequently used as an HRP substrate.
Sections were counterstained in Mayer’s Hematoxylin
(Sigma, Oakville, ON, Canada).
Histochemical stains on tissue sections included a

modified Verhoeff van Geison elastic stain (HT25A,
Sigma, Oakville, ON, Canada) for elastic fibers and a
periodic acid-Schiff stain (395B, Sigma, Oakville, ON,
Canada) for neutral glycosaminoglycans. Images were
acquired using a 5x/0.15 Plan-NEOFLUAR, 10x/0.45
Plan-APOCHROMAT, 20x/0.75 Plan-APOCHROMAT,
63x/1.4 oil Plan-APOCHROMAT, or 100x/1.30 oil Plan-
NEOFLUAR objective lens on a Zeiss Axiovert 200
inverted microscope, a Zeiss AxiocamHR camera, and
the Zeiss Axiovision imaging system.

Fastin elastin assay
The elastin content of arterial tissue was quantified using
the Fastin Elastin Assay Kit (F2000, Bicolor Life Science
Assays, United Kingdom). Tissue samples were flash
frozen and pulverized with a Bessman tissue pulverizer,
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weighed and digested with 0.25 M oxalic acid at 95°C for
six 1 h time periods. Elastin concentration in pooled
supernatants was calculated from the elastin standard
curve and the total elastin per wet weight of each sample
was determined according to the manufacturer’s
specifications.

Arterial thickness analysis
Analysis of the aortic intimal and medial thickness
was carried out using the Zeiss Axiovision imaging sys-
tem and software to measure the width of the tunica in-
tima and the tunica media. Four random images of each
sample were taken and 5 random measures were taken
for both the tunica intima and tunica media for each
image. Measures of the tunica intima were taken
from the luminal edge of the endothelium to the internal
elastic lamina perpendicular to the internal elastic lam-
ina; measures of the tunica media were taken from
the internal elastic lamina to the boundary between the
tunica media and the tunica adventitia perpendicular
to the internal elastic lamina. Ratios were calculated
comparing the widths of the tunica intima and tunica
media of SIOD patient aortas to that of age-matched
control aortas.

Echocardiogram measurements
A transthoracic echocardiogram was obtained by a Phi-
lips iE33 echocardiography machine using an S8 phased
array ultrasound transducer probe with the patient in the
supine and left lateral position. M-mode, 2D, color Dop-
pler, pulse wave Doppler and continuous wave Doppler
were obtained. Standard views including long axis view,
short axis view, four chambers, subcostal and supraster-
nal notch views were obtained.
The following measurements of the aorta in systole

were obtained in accordance to the American Society of
Echocardiogram guidelines in real time and confirmed
postmortem [36]: the aortic valve, the aortic root at
the sinus of Valsalva, the sinotubular junction and the
ascending aorta. Body surface area and Z scores were
calculated offline using the Haycock and Halifax formula,
respectively [37,38].

Pulmonary function testing
Patient SD16 performed complete pulmonary function
tests that met the American Thoracic Society (ATS) cri-
teria for acceptability [39]. This included spirometery,
lung volumes measured via plethsysmography, and diffu-
sion capacity measured via nitrogen washout.

Statistical analysis
Quantitative data are presented as the mean ± 1 standard
deviation calculated from a minimum of 3 independent
replicates. Data were analyzed by the paired 2-tailed

Student’s t-test or the one-way analysis of variance
(ANOVA) followed by the Tukey post hoc test where ap-
propriate. A p-value of less than 0.05 was considered sta-
tistically significant.

Results
Pulmonary and vascular disease is common in SIOD
Among SIOD patients with SMARCAL1 mutations, 22
of 51 (43.1%) patients had lung disease (Table 1). Ob-
structive lung disease was present in 7 (13.7%) patients,
including 3 (5.9%) with asthma or reactive airway dis-
ease, 1 (2.0%) with bronchiectasis, and 3 (5.9%) with
emphysematous changes (Table 1).
Regarding the vascular disease, 32 of 63 (50.8%)

patients had clinical symptoms of cerebral ischemia and
6 of 51 (11.8%) patients had documented pulmonary
hypertension. Twenty-five of 58 (43.1%) patients had
CVEs and 27 of 59 (45.8%) patients had TIAs (Table 1).
For 7 patients, the onset of cerebral ischemia preceded
the development of renal disease or hypertension, and
among patients who received a renal transplant, cerebral
ischemia worsened despite renal transplantation (data
not shown).
Of the 65 patients with SMARCAL1 mutations, 47

have died. Six (12.8%) died from pulmonary complica-
tions, and 7 (14.9%) died from vascular disease (Table 1).

Histopathology of the SIOD aorta shows fragmented
elastin fibers and hyperplasia of the tunica intima and media
To define better the histopathology of SIOD blood ves-
sels, we analyzed postmortem arterial tissue from three
individuals with SIOD (SD60, SD84 and SD120). Ver-
hoeff van Gieson staining showed fragmented elastin
fibers compared to age-matched controls (Figure 2 and
Additional file 4). The aorta, common iliac, and pulmon-
ary arteries of SD60, SD84 and SD120 had marked in-
timal and medial hyperplasia accompanied by an
increased number of elastic lamellae compared to age-
matched controls (Figure 2 and Additional file 4). The
aortic tunica intima of SD60 and SD120 were 2.6-fold
(p-value = 3.5 × 10-13) and 1.4-fold (p-value = 2.1 × 10-3)
thicker than age-matched controls, respectively; the tu-
nica media of SD60 and SD120 were 1.3-fold (p-values =
5.6 × 10-21 and 7.2 × 10-15, respectively) thicker than age-
matched controls. By echocardiogram, SD120 had
increased diameter of the sinotubular junction compared
to normal using the Halifax formula, although measures
at other levels of the aortic root were within the normal
range (Additional file 5). Immunostaining for α-smooth
muscle actin showed an increased number of positive
cells suggesting smooth muscle cell hyperplasia in the
aortic intima of SD60 and SD120 (Additional file 6).
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Inflammation is not increased in the SIOD aorta
Since SIOD patients have an immune disorder and the
inflammation of atherosclerosis causes smooth muscle
cell hyperplasia [40,41], we also looked for evidence of
arterial inflammation. Using CD68 as a macrophage mar-
ker, CD3 as a T-cell marker, and CD20 as a B-cell marker,
immunostaining did not detect an inflammatory infiltrate
within the arterial walls (Additional file 7) except for the
CD68+ macrophages within the atherosclerotic lesions of
SD84 (Additional file 7).

Histopathology of the SIOD umbilical cord shows a
fragmented internal elastic lamina
As longstanding hypertension, renal failure and hyper-
lipidemia of individuals SD60, SD84 and SD120 could
be a cause of the arterial disease and are not present
in individuals with SIOD at birth, we tested this hy-
pothesis by studying the umbilical artery of a 15-week
gestation fetus (SD133b) with biallelic SMARCAL1
mutations (Table 1). Compared to age-matched con-
trols, the fetal umbilical arteries of SD133b had inter-
rupted circumferential expression of tropoelastin and
elastin suggesting an intrinsic problem with elastogen-
esis (Figure 3). Moreover, analysis of ELN mRNA
expression in the umbilical cord of SD133b and two

age-matched controls showed that the umbilical cord
of both controls had 1.75- to 2.95-fold higher ELN
mRNA expression compared to that of SD133b (Add-
itional file 8).

SMARCAL1 is expressed in the vascular smooth muscle,
endothelial, and adventitial fibroblast cells of the arterial
wall
The above findings suggest a local or cell autonomous
basis for the arteriosclerosis in SIOD, and consistent with
this mechanism, arteriosclerosis does not recur in the
transplanted kidneys of SIOD patients [1,2]. As a first re-
quirement for a cell autonomous mechanism, SMAR-
CAL1 must be expressed within the affected tissues, and
indeed, SMARCAL1 was expressed in the adventitial
fibroblasts, smooth muscle cells, and endothelium of the
normal human aorta, common iliac and pulmonary arter-
ies (Figure 4A-C). It was also expressed in the nuclei of
cultured aortic smooth muscle cells (AoSMCs), iliac ar-
tery endothelial cells (HIAECs), and aortic adventitial
fibroblasts (AoAFs) (Figure 4D-K and Additional file 9).
Given these findings, we hypothesized that the cell au-
tonomous mechanisms of osteopontin deficiency or
impaired elastogenesis could give rise to arteriosclerosis.

Figure 2 Photomicrographs of Verhoeff van Gieson stained aortas from SIOD patients and age-matched controls. Compared to
age-matched controls, note the decreased elastin fiber staining, the fragmentation and splitting of the elastin fibers, the marked hyperplasia of the
tunica intima and the tunica media in the aorta from three individuals with SIOD. Arteries are oriented with the tunica adventitia on the left and
the tunica intima on the right; the age of death is in parentheses. Scale bars: 50 μm.

Morimoto et al. Orphanet Journal of Rare Diseases 2012, 7:70 Page 9 of 17
http://www.ojrd.com/content/7/1/70



Osteopontin expression is not decreased in the SIOD aorta
Osteopontin is a direct target of the WNT pathway
and deficient WNT signaling can lead to osteopontin defi-
ciency [27]. Therefore, since the histopathology of aortas
from Opn−/−;Ldlr−/− mice resembles that of SIOD patients
[26], we measured levels of SPP1 mRNA, which encodes
osteopontin. Contrary to our hypothesis, SPP1 mRNA
levels were increased by 2.6-fold in the aorta of SD120
compared to controls (Figure 5A and Additional file 10).

Elastin binding protein is not decreased in the SIOD aorta
Based on the preceding, we hypothesized that the arterio-
sclerosis primarily arose from a defect of elastogenesis

and was accentuated by hypertension, hyperlipidemia, and
renal failure. One mechanism for impaired elastin fiber
assembly is a reduction in the protective chaperone elastin
binding protein (EBP) [42,43]. Elevated levels of glycosa-
minoglycans, which are found in the mucopolysacchari-
doses like Morquio syndrome, Costello syndrome and
Hurler’s disease, induce premature shedding of EBP and
lead to impaired elastin fiber assembly [44-46]. Although
later studies have not confirmed mucopolysacchariduria
as a consistent feature of SIOD [6], we tested EBP levels
since chondroitin-6-sulphaturia was initially described as
a feature of SIOD by Schimke et al. [5]. Immunoblotting
showed that EBP levels in the aortic lysate from SD60 and

Figure 3 Elastin expression analysis of the umbilical cord from SIOD and unaffected fetuses at 15-weeks gestation. Note that the
immunohistochemical analysis shows marked discontinuity and reduced expression of elastin in the internal elastic lamina in SD133b compared
to that of 2 age-matched controls. This difference in expression of elastin precedes the development of hypertension, hypercholesterolemia, and
renal disease. Abbreviations: A, artery; V, vein. Scale bars: 50 μm.
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SD120 were comparable to those of controls (Additional
file 11), and PAS staining did not show evidence of the
increased deposition of neutral glycosaminoglycans that is
characteristic of mucopolysaccharidoses [46,47] (Additional
file 11).

Elastin mRNA and protein are markedly reduced in the
SIOD aorta
To test whether the elastin fiber pathology directly arises
from altered expression of ELN mRNA, we profiled its
expression using the Atherosclerosis RT2 ProfilerTM PCR

Figure 4 SMARCAL1 mRNA and protein are expressed in arterial and pulmonary tissue. (A-C) Photomicrographs of immunohistochemical
detection of SMARCAL1 in the aorta, common iliac and pulmonary arteries. (D) Photograph of an immunoblot showing expression of SMARCAL1
in aortic smooth muscle cells (AoSMCs), human iliac artery endothelial cells (HIAECs) and aortic adventitial fibroblasts (AoAFs). (E) Photograph of
an agarose gel of RT-PCR products showing expression of SMARCAL1 mRNA and cell-specific markers in AoSMCs, HIAECs, and AoAFs. Note that
smooth muscle actin (ACTA2) is a marker of myofibroblasts and smooth muscle cells; VE-cadherin (CDH5) is a marker of endothelial cells; and
prolyl 4-hydroxylase (P4HA3) is expressed in fibroblasts as well as multiple other cell types [59]. (F-H) Photomicrographs showing
immunofluorescent localization of SMARCAL1 (red) and α-tubulin (green) in cultured AoSMCs, HIAECs, and AoAFs. (I-K) Photomicrographs
showing immunofluorescent localization of SMARCAL1 (red) and the cell-specific markers smooth muscle actin (I), VE-cadherin (J), and prolyl
4-hydroxylase (K) in AoSMCs, HIAECs, and AoAFs (green), respectively. (L) Photomicrograph of immunohistochemical detection of SMARCAL1 in
the lung. (M) Photograph of an immunoblot showing SMARCAL1 expression in normal human lung fibroblasts (NHLFs). (N) Photograph of an
agarose gel of RT-PCR products showing expression of SMARCAL1 mRNA and cell-specific markers in NHLFs. GAPDH was used as a control. (O)
Photomicrographs showing immunofluorescent localization of SMARCAL1 (red) and α-tubulin (green) in cultured NHLFs. (P) Photomicrographs
showing immunofluorescent localization of SMARCAL1 (red) and prolyl 4-hydroxylase (green) and in NHLFs. Scale bars: (A-C, L) 50 μm, 25 μm for
inset; (F-K, O, P) 10 μm.
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Array. ELN mRNA levels were 121-fold reduced in the
aorta of SD120 (p-value = 0.0033; Figure 5A and Add-
itional file 10), and total elastin protein, including soluble
and insoluble elastin, was reduced by 63.7% in the aortic
tissue lysate of SD120 (Figure 5B).

SMARCAL1 is expressed in lung myofibroblasts and ELN
expression is markedly reduced in SIOD lung
Given that impaired elastogenesis may serve as a poten-
tial primary and cell autonomous cause of the arterio-
sclerosis in SIOD, we hypothesized that it might also be
a predisposing factor for the emphysematous changes or
enlarged air spaces observed in the lungs of SIOD
patients. SMARCAL1 was expressed in pneumocytes
and lung myofibroblast cells and in the nuclei of cultured
normal human lung myofibroblasts (NHLFs) (Figure 4L-
P and Additional file 9). Consistent with observations in
the aorta, ELN mRNA was decreased 156-fold in the
lung of SD120 compared to that of unaffected controls
(p-value = 0.0023, Figure 5C).

ELN gene mutations are not the cause of the reduced
elastogenesis in SIOD
To determine whether the decreased ELN mRNA in
SD120 arises from mutations in ELN, we sequenced the
ELN gene in the aorta of patient SD120. Among the 34
exons of the ELN gene, none were found to have patho-
genic mutations. A heterozygous non-synonymous
change was found in exon 20 (c.1264G>A, p.Gly422Ser).
However, the nucleotide and amino acid of interest are

weakly conserved; Align-GVGD and SIFT algorithms
predict this variant unlikely to be pathogenic, and this
variant has been reported as a single nucleotide poly-
morphism (SNP, rs2071307) in dbSNP XML build 135
with an average heterozygosity of 0.41. A homozygous
intronic change was found in intron 20 (c.1315+17C>T),
however this change was not predicted to alter splicing
and has been reported as a SNP (rs2856728) with an
average heterozygosity of 0.38.

Expression of ELN transcription factors is significantly
altered in SIOD aorta and lung
We hypothesized that SMARCAL1 deficiency altered the
expression of ELN either by direct effects on the ELN
promoter or by alteration of ELN transcription factor ex-
pression. Compared to controls, the expression of ELN
repressors MYBL2, JUN, and TNF was increased 9.9-,
4.2- and 3.0-fold, respectively, in the aorta of SD120
(Figure 6A and Additional file 12). Also, in the lung, the
expression of all tested ELN activators was decreased
1.3- to 5.0-fold and the expression of the negative regula-
tor FOSL1 was increased 3.4-fold (Figure 6B and Add-
itional file 12).

Discussion
We have shown that SIOD patients have clinical and
histopathological features of impaired vascular and pul-
monary elastogenesis. This pathology correlates with
decreased ELN gene expression and altered expression of
ELN transcriptional regulators.

Figure 5 Elastin expression is significantly decreased in the aorta and lung of an SIOD patient. (A) Volcano plot comparing expression of
atherosclerosis-related genes in the aorta of SD120 to control aorta. Note the markedly reduced expression of elastin (ELN). Solid grey lines: 4-fold
change; solid black line: no change; dotted line: p = 0.01. Grey dots depict genes with decreased expression and black dots depict those with
increased expression. (B) Relative elastin protein in the aortic wall of SD120 compared to control. Total elastin protein was measured with the
Fastin Elastin Assay. Error bars represent one standard deviation. (C) Plot showing the level of ELN mRNA in SD120 and control lung tissue
measured by qRT-PCR. The mRNA levels were standardized to GAPDH mRNA levels and plotted relative to the control. Note the markedly
decreased ELN expression. Error bars represent one standard deviation. ** = p < 0.01.
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Considering the biochemical role of SMARCAL1 [12],
we hypothesized that the altered expression of ELN arises
from direct and indirect effects of SMARCAL1 deficiency
on the ELN gene. SMARCAL1 deficiency could directly
affect ELN gene expression by altering the local DNA
structure of the ELN gene. As an annealing helicase [12],
SMARCAL1 might maintain the local DNA structure of
transcribed regions and thereby regulate gene expression
by modulating transcription factor binding [48]. Alterna-
tively, SMARCAL1 deficiency could indirectly alter ELN
gene expression by modulating the expression of up-
stream transcriptional regulators of the ELN gene.

Consistent with the latter, we observed altered expression
of negative and/or positive regulators of ELN transcrip-
tion within the aorta and lung of patient SD120.
The histopathology of the arteries from SIOD patients

revealed increased elastic lamellae, increased aortic wall
thickness, and fragmented elastin fibers in SIOD. Since
SIOD is a multisystem disease characterized by immune
deficiency, hypertension, hyperlipidemia, and renal dis-
ease [7], we explored cell non-autonomous mechanisms
for the basis of the vascular disease. However, as sug-
gested by the lack of recurrence of vascular disease in
transplanted kidneys [1,2], we observed onset of vascular

Figure 6 Expression of known ELN transcriptional activators and repressors in patient tissues. (A, B) Plots showing the relative mRNA
levels of known ELN transcriptional activators and repressors in SD120 aorta tissue (A) and in SD120 lung tissue (B) compared to controls. The
mRNA levels of three independent replicates were standardized to GAPDH mRNA levels and plotted relative to the control. Error bars represent
one standard deviation. Abbreviations: NS, not significant; * = p< 0.05, ** = p < 0.01.

Morimoto et al. Orphanet Journal of Rare Diseases 2012, 7:70 Page 13 of 17
http://www.ojrd.com/content/7/1/70



ischemia prior to the onset of hypertension and renal
failure in some SIOD patients, no detectable inflamma-
tory infiltrate in the aortic wall, and altered distribution
of tropoelastin and elastin in a 15-week gestation SIOD
fetus. We concluded therefore that a local or cell autono-
mous mechanism was the most likely cause of the
arteriosclerosis.
Such potential mechanisms included osteopontin defi-

ciency, EBP deficiency and impaired elastogenesis. Con-
trary to the first two hypotheses, the expression of
osteopontin mRNA was increased and EBP levels were
unaltered in SIOD arteries. Consistent with the third hy-
pothesis, however, we found significantly decreased elas-
tin expression in the aortic tissue of two SIOD patients,
which was not a consequence of pathogenic mutations
in the ELN gene. Based on these findings, we conclude
that a primary defect in elastogenesis is a parsimonious
mechanism of the vascular and pulmonary disease
observed in SIOD.
Elastogenesis is critical for arterial and lung develop-

ment and maintenance [49,50]. Besides being required
for the proper development of the arterial wall, elastin
fibers maintain the tensile and elastic integrity of blood
vessel walls and regulate the proliferation, migration, and
maturation of vascular smooth muscle cells [51,52]. In
the lung, elastin fibers are also required for proper devel-
opment and for elastic recoil [53,54]. Haploinsufficiency
for ELN causes arterial stenosis and hypertension in
supravalvular aortic stenosis and Williams-Beuren syn-
drome (WBS) as well as mild respiratory symptoms in
WBS [55-57]. Elastin deficiency also causes vascular dis-
ease, bronchiectasis, and emphysema in cutis laxa, a
more severe defect of elastogenesis [24]. Similarly, mice
heterozygous for deletion of the Eln gene have systemic
and pulmonary hypertension, aortic valve disease, and
frequent inguinal hernias [30,31]; all of which are
observed with increased frequency in SIOD patients [7].
The increase in the number of elastic lamellae and the
increased thickness of the tunica media observed in
WBS and of mice heterozygous for deletion of the Eln
gene were also seen in the SIOD arteries [52,58]. Of
note, consistent with the later onset of arterial and lung
disease in SIOD, the pathology in the SIOD tissue is
milder than that typically observed for WBS; none-
theless, these pathological correlations suggest that
impaired elastogenesis is a mechanism warranting fur-
ther investigation as the cause of the arteriosclerosis and
emphysematous pulmonary changes of SIOD.

Conclusions
Vascular and pulmonary disease are common causes of
morbidity and mortality in SIOD, and consequently,
individuals with SIOD should be evaluated and moni-
tored for the development of vascular and pulmonary

disease. Regarding the molecular basis of this pathology,
we find that SMARCAL1 deficiency is associated with
altered expression of ELN transcriptional regulators,
severely decreased expression of elastin mRNA and pro-
tein and impaired elastogenesis. These observations sug-
gest a mechanism by which SMARCAL1 deficiency
affects the pathogenesis of SIOD and await confirmation
in additional patients.

Additional files

Additional file 1: Table S1: Summary of the patients’ clinical signs and
symptoms.

Additional file 2: Table S2: Lung function parameters for SD16.

Additional file 3: Table S3: Oligonucleotide primers used in this study.

Additional file 4: Figure S1: Histopathology of the common iliac and
pulmonary arteries of two SIOD patients. Verhoeff van Geison staining of
these arteries reveals fragmented and reduced elastin fibers. Arteries are
oriented with the tunica adventitia on the left and the tunica intima on
the right; the age of death is in parentheses. Scale bars: 50 μm

Additional file 5: Table S4: Summary of echocardiogram data for
SD120.

Additional file 6: Figure S2: Immunohistochemical detection of
smooth muscle actin in the aortic tissue of three SIOD patients. Smooth
muscle actin is a marker of smooth muscle cells. Smooth muscle cell
hyperplasia was observed in the aortas of SD120 and SD60. Arteries are
oriented with the tunica adventitia on the left and the tunica intima on
the right; the age of death is in parentheses. Scale bars: 50 μm.

Additional file 7: Figure S3: Immunohistochemical detection of
CD3+, CD20+, and CD68+ cells in aortic tissue of three SIOD patients. CD3,
CD20, and CD68 are markers of T cells, B cells, and macrophages,
respectively. Inflammatory infiltrates were not observed in the three
patients with the exception of macrophages within an atherosclerotic
plaque of the aorta of patient SD84. Arteries are oriented with the tunica
adventitia on the left and the tunica intima on the right; the age of death
is in parentheses. Lymph node tissue sections were used as a positive
control. Scale bars: 50 μm.

Additional file 8: Figure S4: ELN mRNA expression analysis of the
umbilical cord from SIOD and unaffected fetuses at 15-weeks gestation.
Plot showing relative ELN mRNA expression of the umbilical cord of two
age-matched controls compared to that of SD133b by qRT-PCR. The
mRNA levels of three independent replicates were standardized to
GAPDH mRNA levels and plotted relative to the ELN mRNA expression of
the umbilical cord of SD133b. Error bars represent one standard
deviation. ** = p < 0.01.

Additional file 9: Figure S5: SMARCAL1 is expressed in the vascular
smooth muscle (AoSMC), endothelial (HIAEC), and adventitial fibroblast
(AoAF) cells of the arterial wall, and in the myofibroblast (NHLF) cells of
the lung. (A-H) Photomicrographs showing immunofluorescent
localization of SMARCAL1 (red) and α-tubulin (green) in cultured AoSMCs
(A), HIAECs (C), AoAFs (E), and NHLFs (G), and photomicrographs showing
immunofluorescent localization of SMARCAL1 (red) and the cell-specific
markers (green) smooth muscle actin, VE-cadherin, and prolyl 4-
hydroxylase in AoSMCs (B), HIAECs (D), AoAFs (F), and NHLFs (H). Scale
bars: 10 μm.

Additional file 10: Table S5: Gene expression changes of
atherosclerosis-related genes in SMARCAL1-deficient aorta determined by
the Atherosclerosis RT2 ProfilerTM PCR Array relative to control aorta.

Additional file 11: Figure S6: Molecular and histopathological analysis
of elastin binding protein expression and periodic acid-Schiff staining of
SMARCAL1-deficient aorta. (A) Photograph of an immunoblot showing
unaltered elastin binding protein (EBP) expression in aortic lysates of
SD120 and SD60 compared to a pooled lysate of 49 unaffected
individuals; GAPDH was used as a loading control. (B) Periodic acid-Schiff
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(PAS) staining of the aorta of two patients did not show altered PAS
staining compared to age-matched controls. Arteries are oriented with
the tunica adventitia on the left and the tunica intima on the right; the
age of death is in parentheses. Scale bars: 50 μm.

Additional file 12: Table S6: Gene expression analysis of transcriptional
activators and repressors of ELN in SMARCAL1-deficient aorta and lung
determined by qRT-PCR relative to control aorta and lung.
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