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Abstract

Introduction Osteoarthritis (OA) is a debilitating disease with
poorly defined aetiology. Multiple signals are involved in
directing the formation of cartilage during development and the
vitamin A derivatives, the retinoids, figure prominently in
embryonic cartilage formation. In the present study, we
examined the expression of a retinoid-regulated gene in murine
models of OA.

Methods Mild and moderate forms of an OA-like degenerative
disease were created in the mouse stifle joint by meniscotibial
transection (MTX) and partial meniscectomy (PMX),
respectively. Joint histopathology was scored using an
Osteoarthritis Research Society International (OARSI) system
and gene expression (Col71a1, Col10a1, Sox9 and Crabp2) in
individual joints was determined using TagMan quantitative PCR
on RNA from microdissected articular knee cartilage.

Results For MTX, there was a significant increase in the joint
score at 10 weeks (n = 4, p < 0.001) in comparison to sham

surgeries. PMX surgery was slightly more severe and produced
significant changes in joint score at six (n = 4, p < 0.01), eight
(n =4, p<0.001) and 10 (n = 4, p < 0.001) weeks. The
expression of Col/7a1 was increased in both surgical models at
two, four and six weeks post-surgery. In contrast, Co/70a1 and
Sox9 for the most part showed no significant difference in
expression from two to six weeks post-surgery. Crabp2
expression is induced upon activation of the retinoid signalling
pathway. At two weeks after surgery in the MTX and PMX
animals, Crabp2 expression was increased about 18-fold and
about 10-fold over the sham control, respectively. By 10 weeks,
Crabp2 expression was increased about three-fold (n = 7, not
significant) in the MTX animals and about five-fold (n =7, p <
0.05) in the PMX animals in comparison to the contralateral
control joint.

Conclusions Together, these findings suggest that the retinoid
signalling pathway is activated early in the osteoarthritic process
and is sustained during the course of the disease.

Introduction

Osteoarthritis (OA) is a degenerative joint disease (DJD) that
impacts multiple joint tissues (i.e. subchondral bone, syn-
ovium), but is typically associated with a deterioration of artic-
ular cartilage. Although numerous factors have been
suggested to be important contributors to the development
and progression of this disease, very few, with the possible
exception of FRZB or GDF5, have been confirmed to have
causal roles [1]. OA is considered in many instances to result
from years of wear and tear on the joint. In this scenario, as

with many other structures and organs within the body, the
cartilage is considered to wear out as a result of ageing. There-
fore, OA usually develops over a protracted period, which can
be accelerated in certain individuals because of an underlying
genetic predisposition or various environmental factors.

In the past few years, genetic links to OA have been estab-
lished, and the first mutations in the collagen type Il gene
involved in the disease described [2,3]. More recently, other
genes associated with the WNT and GDF signalling pathways

ACAN: aggrecan; ACL: anterior cruciate ligament; ANOVA: analysis of variance; DMM: destabilisation of the medial meniscus; DJD: degenerative
joint disease; ECM: extracellular matrix; MCL: medial collateral ligament; MTX: meniscotibial transection; OA: osteoarthritis; PMX: partial meniscoec-
tomy; RT-qPCR: reverse transcription quantitative polymerase chain reaction.
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have been implicated in OA susceptibility [4-6]. With regard to
environmental factors, the biggest contributor is most likely to
be physical activity/trauma and underlying medical conditions
that place a greater mechanical burden on articular cartilage.
The net result of these various factors is the loss of the integrity
of the cartilaginous extracellular matrix (ECM), leading to a
decrease in mechanical strength. This increases the suscepti-
bility of the articular cartilage to further damage, and because
of its limited ability to repair itself the disease worsens. In OA,
the structural integrity of the matrix is irreversibly lost, leading
to joint dysfunction [7].

One class of molecules that is important in development and
homeostasis are the metabolites of vitamin A, the retinoids
[8,9]. In the developing mammalian limb, retinoic acid has long
been known to affect cells of mesenchymal and chondrogenic
origin [10-13]. The addition of retinoic acid to high-density cul-
tures of limb bud mesenchymal cells (which form cartilage
nodules in vitro) has been shown to decrease the number and
size of cartilage nodules formed. More interestingly, treatment
of mature chondrocytes with retinoic acid causes them to
assume an immature phenotype [14-17]. This is accompanied
by a decrease in Col2a1 expression [14] and an increase in
metalloproteinase expression [18] that leads to degradation of
the ECM. In this regard, retinoic acid treatment of cartilage is
commonly used to study cartilage degeneration [19,20]. /n
vivo, intra-articular injection of retinoic acid leads to chondro-
cyte dedifferentiation and DJD [21]. More recently, antago-
nists of the retinoic acid receptors have been tested in a
rheumatoid arthritis model in mice and rats and found to
improve histological scores, and this was associated with
decreased expression of Mmp13 [22].

The changes in aggrecan metabolism seen in OA are similar
to those produced by treatment of cartilage with retinoic acid.
Bovine cartilage explant cultures treated with retinoic acid
exhibit increased degradation of proteoglycans [23]. In rat
osteosarcoma cells and primary bovine chondrocytes, treat-
ment with retinoic acid produces cleavage of aggrecan
(ACAN) at the E373-A374 peptide bond that is also cleaved
in OA [24]. The retinoic acid-mediated degradation of ACAN
is inhibited by metalloprotease inhibitors, but not by inhibitors
of cathepsin B [23]. Others have shown that the addition of
retinoic acid to chondrocytes stimulates maturation and hyper-
trophy consistent with the effects observed in vivo [25,26]. A
switch from type Il expression to type X and a decrease in
ACAN expression accompanied by an increase in catabolism
of collagen type Il and ACAN was observed. In this regard,
retinoic acid has been shown to enhance chondrocyte hyper-
trophy both in vitro and in vivo, where retinoic acid was
observed to promote premature closure of the growth plate
[27,28].

To examine the status of the retinoic acid signalling pathway in

OA, we have used two murine DJD models and quantified the
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expression of a retinoic acid-regulated gene, including Crabp2
in the articular cartilage. In a recent study, Crabp2 was found
to be elevated in DJD in a rat model of OA [29,30]. We found
Crapb2 to be significantly increased in early OA, indicating
that the retinoic acid pathway may play a role in OA patho-

physiology.

Materials and methods

Surgery

Surgeries were performed on 10-week-old male C57BL/
B6NCr1 mice (Charles River Laboratories, St. Constant, Que-
bec, Canada). After a one-week period of acclimation after
arrival, mice were sorted into random groups using a lottery
system. For each experimental time point a minimum of five
mice were evaluated. Mice were induced with 4% isoflurane
and 1 L/minute oxygen. Once mice were anaesthetised they
were transferred to a mask and maintained on 2% isoflurane
and 0.8 L/minute oxygen. The surgical area was shaved and a
three-part preparation was applied containing hibitane soap
(Ayerst, Montreal, Quebec, Canada), isopropyl alcohol and
betadine solution (Purdue Pharma, Pickering, Ontario, Can-
ada).

During surgery, the body temperature of the animals was main-
tained by placing them on a warm circulating water pad.
Standard sterile techniques were used throughout the sur-
gery. A small sterile drape was fitted over each mouse to
expose only the area of interest, the medial side of the left
knee. The surgery began with a small skin incision starting
from the distal femur and extending to the proximal tibia on the
medial side of the knee. The subcutaneous tissue was dis-
sected throughout the length of the skin incision. The deep
fascia that connects the parapatellar fascia to the biceps fem-
oris was separated exposing the medial side of the joint includ-
ing the medial collateral ligament (MCL) and the joint capsule.
In the partial meniscectomy (PMX) surgical paradigm both the
MCL and the joint capsule were incised to reveal the medial
meniscus. The medial meniscus was gently held and retracted
in a way that allowed for identification and transection of the
meniscotibial ligament (Figure 1). The medial meniscus can
subsequently be observed to be 'free' at its dorsal border. The
joint capsule incision was continued medially progressing to
the caudomedial edge of the tibial plateau. Gentle traction on
the medial meniscus allowed the meniscus to be isolated and
transected (Figure 1).

In the meniscotibial transection (MTX) surgical paradigm there
was no medial dissection of the joint capsule or transection of
the MCL. In this regard, the MTX model is similar to the desta-
bilisation of the medial meniscus (DMM) model recently
described by Glasson and colleagues [31]. Once the proce-
dure was completed the deep fascia was closed using an
interrupted suturing pattern with 5-0 vicryl (Ethicon Inc.,
Markham, Ontario, Canada). The subcutaneous tissue and
skin were also closed together in a continuous subcuticular



Figure 1
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Overview of the surgical procedures used to generate meniscotibial
transection (MTX) and partial meniscoectomy (PMX) models. (a) Sche-
matic representation of the joint (Adapted from Kamekura and col-
leagues [34]). (b) An incision through the skin and subcutaneous
tissue exposes the stifle joint. Prominent features include the medial
collateral ligament (MCL), the patellar ligament and the tibial tuberosity.
(c) The joint capsule has been cut on the medial side of the joint and
the patella has been reflected laterally. This exposes the internal struc-
tures of the joint. Prominent features include the medial femoral
chondyle (MFC), the medial meniscus (MM), the meniscotibial ligament
(MTL) and the anterior cruciate ligament (ACL). (d) The MTL has been
cut to release the MM. (e) The partial meniscectomy has been com-
pleted and the cut edge of the MM can be seen. Note that in order to
visualise the cut edge of the meniscus, for pictorial purposes, the ante-
rior cruciate ligament (ACL) has been transected. LM, lateral meniscus.

pattern using 5-0 vicryl. Any loose skin edges were apposed
with sterile surgical glue. On completion of the surgery the
inhalation anaesthesia was turned off and to control pain and
infection, the mice were injected subcutaneously with
buprenorphine (Schering-Plough, Hertfordshire, UK) and amp-
icillin (Novopharm, Toronto, Ontario, Canada) in normal physi-
ological saline. The sham operation involved a similar incision
to the left knee without compromising the joint capsule. All ani-
mal experiments were sanctioned by The University of West-
ern Ontario's Animal Care Committee and conducted in full
compliance with the Canadian Council on Animal Care.

Joint histology

At the time of processing, mice were euthanased by carbon
dioxide inhalation and both stifle joints were harvested and
fixed in 4% paraformaldehyde. After a minimum of 48 hours fix-
ation the joints were decalcified for 96 hours in 26% formic
acid (TBD-2, Thermo Inc., Pittsburgh, PA, USA). Once decal-
cified the knees were paraffin embedded and serially sec-
tioned in a sagital plane starting on the medial edge of the
joint. Slides were stained with safranin-O and the medial side
of tibial plateaus were subsequently scored according to Pritz-
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ker and colleagues from a minimum of three slides [32]. The
section with the highest score was recorded. Briefly, this scor-
ing system, ranging from 1 to 24, involves the product of the
horizontal extent of the OA by the vertical severity of any
lesions present.

RNA isolation and quantitative PCR

At predetermined endpoints the mice were euthanased and
the knees were carefully dissected to expose the cartilage sur-
face of both tibial plateau and the femoral chondyles. Under an
operating microscope, using a pair of micro-rongeurs, the
articular cartilage was gently scraped away from the underly-
ing subchondral bone and transferred into Qiazol (Qiagen,
Mississauga, Ontario, Canada). The cartilage was subse-
quently homogenised in a microcentrifuge tube using a dis-
posable plastic pestle and stored at -80°C. RNA was isolated
from the samples according to the manufacturer's guidelines
and for real-time quantitative PCR (RT-gPCR) the RNA was
reverse-transcribed using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA).
Gene expression was quantitated using qPCR on an ABI
7500 Fast system with either custom TagMan MGB probe or
primer sets (Col7a1, Sox9) or off the shelf TagMan Gene
Expression Assays (Applied Biosystems, Foster City, CA,
USA). Relative expression was determined using the relative
quantitation method with a standard curve and gene expres-
sion was normalised to 18S abundance.

Statistical analyses

For multiple comparisons, significance was determined using
analysis of variance (ANOVA) with Bonferroni's or Tukey's
post-hoc tests as indicated. With the exception of the analysis
of Crabp2 in the 10-week-old mice, all tests in the gene
expression studies were made between the operated left knee
and the contralateral unoperated right knee and a sham. For
comparison between operated and the contralateral knee in
the 10-week-old mice significance was determined using two-
tailed t-test. Significance is represented as follows: * p < 0.05;
**p<0.01;** p<0.001.

Results and discussion

In an earlier study of a rat surgically induced model of DD,
Appleton and colleagues reported that Crabp2 expression as
determined from microarray analysis was elevated in the OA
joint four weeks post-surgery [30]. Crabp2 is regulated by
retinoic acid and is often induced upon activation of this path-
way [33]. We were interested in confirming these findings and
determining the kinetics of Crabp2 induction during OA. Fur-
ther, we desired to develop and validate murine cartilage-spar-
ing models of OA to facilitate the use of genetically modified
lines and enable molecular analysis of gene expression in the
articular cartilage. For these purposes, surgeries were tailored
to produce less joint instability with the intent of producing a
more slowly progressing disease than the standard anterior
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cruciate ligament (ACL) models as has been recently
described for the DMM and other models [31,34].

MTX and PMX surgeries were performed and joint histology
was scored at various times up to 10 weeks post surgery. In
the MTX group there was a significant increase in the joint
score by 10 weeks (n =7, p < 0.001), although increases at
two and six weeks were not significant (Figure 2). In the
recently reported DMM model, significant joint deterioration
was observed at four weeks, and the differences between this
model and the related MTX model may be a consequence of
the different mouse strains used (129/SvEv versus the
C57BL/6NCr1 strain utilised herein) and/or the different scor-
ing methodologies employed [31]. Consistent with the more
aggressive nature of the surgery, the PMX mice displayed a
significant increase in joint score by six weeks after surgery (n
=7, p <0.01); at 10 weeks these animals had a joint score of
8.4 (n = 5) out of a possible total of 24 (Figure 2). The early
histopathological findings are focal, superficial to deep fibrilla-
tion sometimes associated with variable degrees of matrix
depletion in these early stages. In the more aggressive PMX
surgical paradigm the lesions become more diffuse and are
more likely to have vertical fissures through the midzone with
less common delamination of the superficial layer (Figure 3).
Together, these results demonstrate that the PMX and MTX
surgeries give rise to moderate and mild forms of DJD that are
associated with a slowly progressing joint disease.

To quantify gene expression in single knee joints we devel-
oped efficient RNA isolation methods that yielded about 100
to 150 ng of total RNA from individual stifle joints sufficient for
analysis of five to seven genes (20 ng of RNA per gene). Pre-
vious studies have shown that Co/7a? and Co/710a1? are both

elevated in OA [35-38]. We also examined the expression of
Sox9, a transcription factor important in chondrocyte differen-
tiation and matrix production [39]. With the exception of the
four-week time point, the expression of Co/7a’ was found to
be elevated more than three-fold at all times in the MTX/PMX
joint in comparison to the sham control (Figure 4). In contrast,
there were only slight changes in the expression of Co/70a1
or Sox9 during the first six weeks after surgery (Figure 4), with
a significant (n = 5, p < 0.05) two-fold increase in Col70at
being observed in six-week PMX samples in comparison to the
sham control (Figure 4). Interestingly, examination of Crabp2
expression revealed a large increase in expression at two
weeks after surgery in both MTX and PMX of about 18-fold
and 10-fold, respectively (n = 5; MTX, p < 0.05; PMX, p <
0.01; Figure 5a). This magnitude of induction declined over
time; however, by six weeks in the PMX mice there was about
a three-fold increase in Crabp2 expression in PMX knees in
comparison to the sham or contralateral knee (n =5, p <0.05;
Figure 5a), whereas at 10 weeks, there was still about a five-
fold increase in Crabp2 expression in PMX knees in compari-
son to the contralateral control (n = 7, p < 0.05; Figure 5b).
Together these results show that PMX and MTX surgeries lead
to a slowly progressing arthrosis in mice and that Crabp2 rep-
resents an early and sustained marker of DJD.

Crabp2 expression is regulated by retinoic acid and its
increase in expression is consistent with activation of this path-
way. CRABP2 has been shown to function both to suppress
retinoic acid receptor activity by sequestering ligands and also
as a vehicle to deliver ligands to the retinoic acid receptors,
thereby enhancing ligand-mediated retinoic acid receptor tran-
scriptional activity [40-45]. More recent reports favour the lat-
ter function, indicating that increased expression of Crabp2

Figure 2
Meniscotibial Transection (MTX) Partial Meniscectomy (PMX)
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Meniscotibial transection (MTX) and partial meniscoectomy (PMX) surgeries lead to degenerative changes in the joint as evaluated by joint scoring.
Joints were scored based on the Osteoarthritis Research Society International (OARS]I) system. The PMX surgery was associated with a higher his-
tological score than that of the MTX surgery. The sham surgeries at week 10 had a 0 score. ** p < 0.01; *** p < 0.001.
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Figure 3
Time (weeks)
Surgery 2 6 10 10 week controls
MTX
PMX

1 mm

Meniscotibial transection (MTX) and partial meniscoectomy (PMX) surgeries lead to degenerative joint disease in mouse knees. Histological sec-
tions were collected at the indicated time points and stained with safranin O. Note in both the six-week and 10-week PMX and 10-week MTX sur-
gery groups the loss of proteoglycan staining (arrowhead) in the superficial layers and in the 10-week PMX there is delamination of the superficial

layer (arrow). WT, wild-type.

enhances retinoic acid receptor transcriptional activity
[41,42,44]. Further, Crabp2 null animals present with minor
limb defects including an extra post-axial digit that (based on
more recent reports) would suggest decreased retinoid sig-
nalling in the absence of CRABP2 [9,46,47]. In aggregate,
increased expression of Crabp2 is generally linked to activa-
tion of the retinoid pathway either directly, because expression
of Crabp2 is regulated by retinoic acid, or indirectly, because
increased CRABP2 would increase retinoic acid receptor
transcriptional activity. Inappropriate activation of the retinoic
acid signalling pathway is expected to enhance cartilage deg-
radation and/or chondrocyte dedifferentiation, both of which
are observed in the osteoarthritic process.

As mentioned above, retinoic acid has been commonly used
to promote degeneration in cartilage explants, and this has
been associated with increased activity of various aggreca-
nases. Knockout animals of the gene encoding the aggreca-
nase ADAMTS5 are protected to a great extent from OA in
joint instability models, indicating that this enzyme may play a
major role in cartilage catabolism, at least in mouse models of
OA [48-50]. Interestingly, in explants derived from double
mutants of Adamts5 and another major aggrecanase
Adamts4, addition of retinoic acid was still found to promote
release of aggrecan through cleavage in the CS-2 domain
[51]. Retinoic acid has been shown to increase Adamts5 and
Mmp13 expression [19,22], and these new findings by Roger-

son and colleagues [51] suggest that retinoic acid may also be
promoting cartilage degradation through additional and as yet
undefined aggrecanase(s). Further, in collagen-induced arthri-
tis in the mouse and streptococcal cell wall-induced arthritis in
rats, small molecule antagonists of the retinoic acid receptors
were found to ameliorate pain and decrease cartilage loss
[22].

In addition to Crabp2, other components of the retinoid signal-
ling pathway were found to be significantly elevated in the
joints of the aforementioned rat OA joint instability model,
including genes encoding proteins involved in retinoic acid
synthesis (Aldh1a3) and retinol transport and delivery (Lrat
and retinol dehydrogenase) and a putative retinoic acid target
gene (Stra3) [30]. Together, these findings along with our
observations of elevated Crabp2 expression in mouse models
of DJD suggest that retinoic acid may play a fundamental and
perhaps unappreciated role in the osteoarthritic process.

As Crabp2 is robustly expressed in early OA, it may represent
a marker for detection of early OA. Further, polymorphisms in
FRZB and GDF5 have been linked to OA, and similar to the
retinoid signalling pathway, they all play a role in endochondral
ossification and modulation of their activity may impact main-
tenance of the articular chondrocyte [1]. In this regard, as has
been previously suggested, antagonists of the retinoic acid
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Figure 4

Meniscotibial Transection (MTX)

Partial Meniscectomy (PMX)
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Analysis of Col1a1, Col10a7 and Sox9 expression in knee cartilage from meniscotibial transection (MTX), partial meniscoectomy (PMX) and sham
surgeries. Genes analysed are shown on the left and significance was determined by analysis of variance (ANOVA) with Tukey's post-hoc tests for
multiple comparisons. In comparison to Sox9 and Col/10a1, Col1a1 is significantly increased at multiple time points in the different surgeries. Gene
expression was normalised to an 18S internal control and the normalised expression (arbitrary units) for each gene is shown for the contralateral
unoperated right knee, a sham control (left) knee (n = 5) and the operated left knee. Significance to the contralateral and sham controls is indicated
on the top and bottom, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001; ns = not significant.

signalling pathway may prove useful for maintaining the
chondrocyte phenotype [8].

Conclusion

The joint instability models presented herein in contrast to
more aggressive models involving for instance ACL transec-
tion, present with OA-like pathology but still appreciable artic-
ular cartilage 10 weeks after surgery, thereby enabling the use
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of molecular approaches to quantify gene expression changes
in early OA [34].

The expression of the retinoic acid-regulated gene Crabp2 is
significantly elevated in early DJD, and may be a useful marker
to follow early changes in cartilage in response to joint insta-
bility or in OA. Manipulation of the retinoic acid signalling path-
way may prove useful in modifying the clinical course of OA.
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Figure 5
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Crabp2 expression is increased in joint cartilage from meniscotibial transection (MTX) and partial meniscoectomy (PMX) operated knees. (a)
Crabp2 expression was analysed at two, four and six weeks post-surgery and its expression was significantly changed in MTX/PMX-operated knees
(n=>5 to 7) in comparison to either the contralateral knee or a sham control. Significance was determined by analysis of variance (ANOVA) with
Tukey's post-hoc tests for multiple comparisons. Gene expression was normalised to an 188S internal control and the normalised expression for each
gene is shown for the contralateral unoperated right knee, a sham control (left) knee and the operated left knee. Significance to the contralateral and
sham controls is indicated on the top and bottom, respectively. (b) The expression of Crabp2 is still elevated 10 weeks post-surgery. Significance in
gene expression at 10 weeks post-surgery was determined by two-tailed t-test analysis of the left (L, operated) versus right (R, contralateral control)
knee. No sham was included in the 10-week group. * p < 0.05; ** p < 0.01; ns = not significant.

Page 7 of 9

(page number not for citation purposes)



Arthritis Research & Therapy Vol 11 No 1

Welch et al.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

IW performed experiments, contributed to experimental
design, writing of the manuscript and data interpretation. MC
contributed to experimental design and carried out the experi-
ments. FM and TMU were involved in experimental design,
data interpretation and writing of the manuscript.

Acknowledgements

The authors would like to thank Tracy Hill for technical assistance. This
grant was supported by Canadian Arthritis Networks grants to FB and
TMU. FB holds a Canada Research Chair and TMU is an Investigator of
the Arthritis Society.

References

1.

Bos SD, Slagboom PE, Meulenbelt I: New insights into osteoar-
thritis: early developmental features of an ageing-related dis-
ease. Curr Opin Rheumatol 2008, 20:553-559.

Williams CJ, Jimenez SA: Heritable diseases of cartilage caused
by mutations in collagen genes. J Rheumatol Suppl 1995,
43:28-33.

Sahlman J, Pitkanen MT, Prockop DJ, Arita M, Li SW, Helminen HJ,
Langsjo TK, Puustjarvi K, Lammi MJ: A human COL2A1 gene with
an Arg519Cys mutation causes osteochondrodysplasia in
transgenic mice. Arthritis Rheum 2004, 50:3153-3160.
lkegawa S: New gene associations in osteoarthritis: what do
they provide, and where are we going? Curr Opin Rheumatol
2007, 19:429-434.

Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ,
Gonzalez A: Further evidence of the role of frizzled-related pro-
tein gene polymorphisms in osteoarthritis. Ann Rheum Dis
2007, 66:1052-1055.

Loughlin J: Polymorphism in signal transduction is a major
route through which osteoarthritis susceptibility is acting.
Curr Opin Rheumatol 2005, 17:629-633.

Aigner T, McKenna L: Molecular pathology and pathobiology of
osteoarthritic cartilage. Cell Mol Life Sci 2002, 59:5-18.
Hoffman LM, Weston AD, Underhill TM: Molecular mechanisms
regulating chondroblast differentiation. J Bone Joint Surg Am
2003, 85-A(Suppl 2):124-132.

Weston AD, Hoffman LM, Underhill TM: Revisiting the role of
retinoid signaling in skeletal development. Birth Defects Res C
Embryo Today 2003, 69:156-173.

Amos B, Lotan R: Retinoid-sensitive cells and cell lines. Meth-
ods Enzymol 1990, 190:217-225.

Lewis CA, Pratt RM, Pennypacker JP, Hassell JR: Inhibition of
limb chondrogenesis in vitro by vitamin A. Dev Biol 1978,
64:31-47.

Solursh M, Meier S: The selective inhibition of mucopolysac-
charide synthesis by vitamin A treatment of cultured chick
embryo chondrocytes. Calcif Tissue Res 1973, 13:131-142.
Zimmerman B, Tsambos D: Evaluation of the sensitive step of
inhibition of chondrogenesis by retinoids in limb mesenchy-
mal cells in vitro. Cell Differentiation 1985, 17:95-103.

Benya PD, Padilla SR: Modulation of the rabbit chondrocyte
phenotype by retinoic acid terminates type Il collagen synthe-
sis without inducing type | collagen: the modulated phenotype
differs from that produced by subculture. Dev Biol 1986,
118:296-305.

Takishita Y, Hiraiwa K, Nagayama M: Effect of retinoic acid on
proliferation and differentiation of cultured chondrocytes in
terminal differentiation. J Biochem 1990, 107:592-596.

Lee KK, Li FC, Yung WT, Kung JLS, Ng JN, Cheah KS: Influence
of digits, ectoderm, and retinoic acid on chondrogenesis by
mouse interdigital mesoderm in culture. Dev Dyn 1994,
201:297-309.

Horton WE, Yamada Y, Hassell JR: Retinoic acid rapidly reduces
cartilage matrix synthesis by altering gene transcription in
chondrocytes. Dev Biol 1987, 123:508-516.

Page 8 of 9

(page number not for citation purposes)

20.

21.

22.

28.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts
AB, Sporn MB: Inhibition of the chondrocyte phenotype by
retinoic acid involves upregulation of metalloproteinase genes
independent of TGF-b. J Cell Physiol 1994, 159:340-346.

East CJ, Stanton H, Golub SB, Rogerson FM, Fosang AJ:
ADAMTS-5 deficiency does not block aggrecanolysis at pre-
ferred cleavage sites in the chondroitin sulfate-rich region of
aggrecan. J Biol Chem 2007, 282:8632-8640.

Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL,
Flannery CR, Kanki K, Wang E, Peluso D, Yang Z, Majumdar MK,
Morris EA: Characterization of and osteoarthritis susceptibility
in ADAMTS-4-knockout mice. Arthritis  Rheum 2004,
50:2547-2558.

Lapadula G, Nico B, Cantatore FP, La Canna R, Roncali L, Pipitone
V: Early ultrastructural changes of articular cartilage and syn-
ovial membrane in experimental vitamin A-induced osteoar-
thritis. J Rheumatol 1995, 22:1913-1921.

Beehler BC, Hei YJ, Chen S, Lupisella JA, Ostrowski J, Starrett JE,
Tortolani D, Tramposch KM, Reczek PR: Inhibition of disease
progression by a novel retinoid antagonist in animal models of
arthritis. J Rheumatol 2003, 30:355-363.

Buttle DJ, Handley CJ, llic MZ, Saklatvala J, Murata M, Barrett AJ:
Inhibition of cartilage proteoglycan release by a specific inac-
tivator of cathepsin B and an inhibitor of matrix metalloprotei-
nases. Evidence for two converging pathways of chondrocyte-
mediated proteoglycan degradation. Arthritis Rheum 1993,
36:1709-1717.

Lark MW, Gordy JT, Weidner JR, Ayala J, Kimura JH, Williams HR,
Mumford RA, Flannery CR, Carlson SS, Iwata M, Sandy JD: Cell-
mediated catabolism of aggrecan. Evidence that cleavage at
the "aggrecanase" site (Glu373-Ala374) is a primary event in
proteolysis of the interglobular domain. J Bio/ Chem 1995,
270:2550-2556.

Iwamoto M, Golden EB, Adams SL, Noji S, Pacifici M: Respon-
siveness to retinoic acid changes during chondrocyte matura-
tion. Exp Cell Res 1993, 205:213-224.

Iwamoto M, Shapiro IM, Yagami K, Boskey AL, Leboy PS, Adams
SL, Pacifici M: Retinoic acid induces rapid mineralization and
expression of mineralization-related genes in chondrocytes.
Exp Cell Res 1993, 207:413-420.

De Luca F, Uyeda JA, Mericq V, Mancilla EE, Yanovski JA, Barnes
KM, Zile MH, Baron J: Retinoic acid is a potent regulator of
growth plate chondrogenesis. Endocrinology 2000,
141:346-353.

Koyama E, Golden EB, Kirsch T, Adams SL, Chandraratna RA,
Michaille JJ, Pacifici M: Retinoid signaling is required for
chondrocyte maturation and endochondral bone formation
during limb skeletogenesis. Dev Biol 1999, 208:375-391.
Appleton CT, McErlain DD, Henry JL, Holdsworth DW, Beier F:
Molecular and histological analysis of a new rat model of
experimental knee osteoarthritis. Ann N Y Acad Sci 2007,
1117:165-174.

Appleton CT, Pitelka V, Henry J, Beier F: Global analyses of gene
expression in early experimental osteoarthritis.  Arthritis
Rheum 2007, 56:1854-1868.

Glasson SS, Blanchet TJ, Morris EA: The surgical destabilization
of the medial meniscus (DMM) model of osteoarthritis in the
129/SvEv mouse. Osteoarthr Cartil 2007, 15:1061-1069.
Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell
PA, Salter D, Berg WB van den: Osteoarthritis cartilage histopa-
thology: grading and staging. Osteoarthr Cartil 2006, 14:13-29.
Durand B, Saunders M, Leroy P, Leid M, Chambon P: All-trans
and 9-cis retinoic acid induction of CRABPII transcription is
mediated by RAR-RXR heterodimers bound to DR1 and DR2
repeated motifs. Ce// 1992, 71:73-85.

Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada
T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H: Oste-
oarthritis development in novel experimental mouse models
induced by knee joint instability. Osteoarthr Cartil 2005,
13:632-641.

Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, Mark K
von der: Type X collagen expression in osteoarthritic and rheu-
matoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol
Pathol 1993, 63:205-211.

Girkontaite |, Frischholz S, Lammi P, Wagner K, Swoboda B,
Aigner T, Mark K Von der: Immunolocalization of type x colla-


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18698177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18698177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18698177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7752129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7752129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17762607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17762607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12721355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12721355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12955859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12955859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2087173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=566229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=566229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4271531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4271531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4271531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4042164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4042164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4042164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3770304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3770304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3770304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2358433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2358433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2358433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7894069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7894069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7894069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3653521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3653521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3653521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8163572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8163572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8163572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15334469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15334469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8991991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8991991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8991991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8250991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8250991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8250991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7852317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7852317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7852317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8387013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8387013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8387013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8344389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8344389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10614657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10614657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10191052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10191052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10191052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17530714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17530714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17470400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17470400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17470400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16242352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16242352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1327537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1327537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1327537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15896985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15896985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15896985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892223

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

gen in normal fetal and adult osteoarthritic cartilage with mon-
oclonal antibodies. Matrix Biol 1996, 15:231-238.

Nerlich AG, Wiest |, Mark K von der: Immunohistochemical anal-
ysis of interstitial collagens in cartilage of different stages of
osteoarthrosis. Virchows Arch B Cell Pathol Incl Mol Pathol
1993, 63:249-255.

Mark K von der, Frischholz S, Aigner T, Beier F, Belke J, Erdmann
S, Burkhardt H: Upregulation of type x collagen expression in
osteoarthritic cartilage. Acta Orthop Scand Supp/ 1995,
266:125-129.

Lefebvre V, Smits P: Transcriptional control of chondrocyte fate
and differentiation. Birth Defects Res C Embryo Today 2005,
75:200-212.

Boylan JF, Gudas LJ: Overexpression of the cellular retinoic
acid binding protein-I (CRABP-I) results in a reduction in dif-
ferentiation-specific gene expression in F9 teratocarcinoma
cells. J Cell Biol 1991, 112:965-979.

Schug TT, Berry DC, Shaw NS, Travis SN, Noy N: Opposing
effects of retinoic acid on cell growth result from alternate acti-
vation of two different nuclear receptors. Cell 2007,
129:723-733.

Sessler RJ, Noy N: A ligand-activated nuclear localization signal
in cellular retinoic acid binding protein-ll. Mo/ Cell 2005,
18:343-353.

Wu Z, Yang Y, Shaw N, Bhattacharya S, Yan L, West K, Roth K,
Noy N, Qin J, Crabb JW: Mapping the ligand binding pocket in
the cellular retinaldehyde binding protein. J Bio/l Chem 2003,
278:12390-12396.

Budhu AS, Noy N: Direct channeling of retinoic acid between
cellular retinoic acid-binding protein Il and retinoic acid recep-
tor sensitizes mammary carcinoma cells to retinoic acid-
induced growth arrest. Mo/ Cell Biol 2002, 22:2632-2641.
Noy N: Retinoid-binding proteins: mediators of retinoid action.
Biochem J 2000, 348:481-495.

Fawcett D, Pasceri P, Fraser R, Colbert M, Rossant J, Giguere V:
Postaxial polydactyly in forelimbs of CRABP-II mutant mice.
Development 1995, 121:671-679.

Hoffman LM, Garcha K, Karamboulas K, Cowan MF, Drysdale LM,
Horton WA, Underhill TM: BMP action in skeletogenesis
involves attenuation of retinoid signaling. J Cell Biol 20086,
174:101-113.

Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL,
Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA:
Deletion of active ADAMTS5 prevents cartilage degradation in
a murine model of osteoarthritis. Nature 2005, 434:644-648.
Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T,
Hopkins B, Morris EA, Glasson SS: Double-knockout of
ADAMTS-4 and ADAMTS-5 in mice results in physiologically
normal animals and prevents the progression of osteoarthritis.
Arthritis Rheum 2007, 56:3670-3674.

Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker
CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang
AJ: ADAMTSS is the major aggrecanase in mouse cartilage in
vivo and in vitro. Nature 2005, 434:648-652.

Rogerson FM, Stanton H, East CJ, Golub SB, Tutolo L, Farmer PJ,
Fosang AJ: Evidence of a novel aggrecan-degrading activity in
cartilage: Studies of mice deficient in both ADAMTS-4 and
ADAMTS-5. Arthritis Rheum 2008, 58:1664-1673.

Available online http://arthritis-research.com/content/11/1/R14

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8099462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8553841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8553841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1847931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1847931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1847931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12536149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11909957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11909957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11909957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7720575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7720575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17968948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17968948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18512787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18512787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18512787

	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Surgery
	Joint histology
	RNA isolation and quantitative PCR
	Statistical analyses

	Results and discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

