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Abstract

Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of
genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not
only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first
ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and
thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale
comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and
describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of
taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution

beyond the ferns themselves.

across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research
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Introduction

Ferns (Monilophyta) are an ancient lineage of land plants
that comprise a significant component of the Earth’s terres-
trial flora. They are the second largest group of vascular
plants, with more than 10,000 species [1], and play a major
role in shaping community assembly and ecological pro-
cesses in many biomes. For example, ferns shape ecosys-
tem regeneration, persistence, and biomass production in
eastern North American temperate forests [2-4]; play key-
stone roles in tropical rainforest canopies [5,6], heathlands
[7], after landslides [8], and on islands [9]; and include sev-
eral invasive species with significant economic impact
[10-12]. Phylogenetically, ferns are sister to the seed plant
clade (Spermatophyta) that includes the ecologically dom-
inant flowering plants. Thus, the phylogenetic position of
ferns makes them pivotal in the evolutionary history of
land plants (Embryophyta), and essential for a comprehen-
sive understanding of the origin and diversification of

* Correspondence: emilysessa@ufl.edu

1Department of Biology, Box 118525, University of Florida, Gainesville, FL
32611, USA

2Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32611,
USA

Full list of author information is available at the end of the article

( BiolMed Central

numerous traits found in seed plant crops and model spe-
cies, such as rice and Arabidopsis [13,14].

Review

In a broad sense, ferns include four main clades: psilotoids
(whisk ferns) + ophioglossoids, equisetoids (horsetails),
marattioids, and leptosporangiates (Figure 1). The leptos-
porangiate ferns are the most species-rich clade by far,
with over 9,000 species [15,16] that include the majority
of fern species found in temperate and tropical regions.
Ferns and seed plants diverged from a common ancestor
around 380 million years ago (mya) (the oldest fern fossils
date to ca. 350 mya [17]), and the most recent common
ancestor (MRCA) of the leptosporangiate ferns arose ca.
280 mya [17,18]. Several fern lineages diverged from one
another prior to the divergence of the angiosperm and
gymnosperm sister clades (Figure 1).

Despite the ubiquity of ferns and their ecological and
evolutionary importance, genomic resources for the
group remain sparse. Ferns are the only major clade of
vascular land plants for which a complete nuclear gen-
ome has not yet been sequenced. This gap is particularly
acute in light of recent efforts to sequence the transcrip-
tomes of all major lineages of green plants [23,24]. The
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Figure 1 Phylogeny of major groups of land plants. Based on [13,15,19,20]. Approximate numbers of species and available genome sequences are
given, and approximate times of major divergences are indicated. Ferns as a whole include lineages that diverged from one another prior to the
divergence of the major seed plant clades. The most recent common ancestor of all leptosporangiates arose approximately 280 mya [17,18]. The
ancestors of Ceratopteris and Azolla diverged from each other ca. 200 mya, well before the divergence of monocots and eudicots. Dates obtained from
TimeTree [21,22].

assembly, analysis, and interpretation of these transcrip-
tomes would benefit enormously from the availability of
well-annotated fern genomes. Recent innovations in se-
quencing technologies and the resulting torrent of whole-

genome sequencing projects have fueled a renaissance
in comparative genetic and genomic analyses, and each
genome sequenced yields new insights into plant evolu-
tion. For example, the recently-sequenced genome of
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Amborella trichopoda [25]—the sister taxon to all other
angiosperms—has revealed much about the conserva-
tion of synteny across flowering plants and about gen-
ome organization, as well as gene content in the ancestral
angiosperm. It has also facilitated inference of ancient
genome doubling events in angiosperms. Ferns, with their
large genomes, high chromosome numbers, independent
gametophyte phase, and mix of heterosporous and homo-
sporous taxa, offer unparalleled opportunities for ground-
breaking comparative genetic and genomic analyses across
land plants as a whole.

Ferns provide a stark contrast to other lineages of land
plants in several key biological features. For example, an-
giosperms and gymnosperms are both dominated by a
diploid, spore-bearing (sporophyte) stage of the life cycle.
Their haploid sexual stage, the gametophyte, is extremely
reduced (microscopic in angiosperms) and completely
dependent on the sporophyte for nutrition. On the other
hand, in bryophytes (mosses, liverworts and hornworts), it
is the sporophyte that is dependent at maturity on the
dominant, macroscopic and photosynthetic gametophyte.
Ferns and lycophytes are the only land plants where, for
most taxa, both gametophytes and sporophytes are inde-
pendent, free-living organisms that can each be long-lived.
Unlike seed plants, which are exclusively heterosporous,
ferns include both heterosporous and homosporous spe-
cies. The latter group includes the majority of extant fern
diversity, in which only one spore type is produced that
develops into a gametophyte that is either bisexual, or
whose sex is determined by non-genetic aspects of develop-
ment (e.g, pheromones from surrounding gametophytes).
The evolution from homospory to heterospory—in which a
megaspore develops into a female gametophyte that in-
cludes one or more egg cells, and a microspore develops
into a male gametophyte that includes sperm—is among
the most important transitions in the evolution of plants,
with profound effects on plant reproduction and the life
cycle [26]. Nevertheless, the nuclear genome of a homospo-
rous vascular plant has yet to be sequenced.

Cytological studies throughout the twentieth century re-
vealed that ferns, especially homosporous species (which
include up to 99% of extant ferns [1]), have significantly
higher chromosome numbers than other plants [27-30].
Homosporous ferns average n = 57.05 chromosomes, com-
pared to n = 15.99 for flowering plants [31], and the highest
chromosome number known for any multicellular organ-
ism (2n = 1440) is that of the homosporous fern Ophioglos-
sum reticulatum [32]. However, heterosporous ferns
possess an average of only 7 =13.62 chromosomes, very
close to the average of flowering plants—another hetero-
sporous lineage. To date, no explanatory hypothesis for this
cross-lineage discrepancy in chromosome numbers vs.
spore type has survived rigorous testing [33]. Along with
their high chromosome numbers, many homosporous
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ferns have extremely large genomes [34-39], and homo-
sporous ferns are the only land plants to show a strong
positive correlation between chromosome number and
genome size [40].

Because of their high chromosome numbers [41,42],
homosporous ferns were initially assumed to have expe-
rienced many rounds of ancient whole-genome duplica-
tion (polyploidy) [31], events that have likely influenced
the structures of all land plant genomes. In addition, two
decades of experiments have consistently shown that ho-
mosporous ferns possessing the putative base chromosome
numbers of their genus—even if those numbers are high
compared to those of angiosperms—behave genetically as
diploids (e.g., [43-52]). Ferns also lack chromosome-level
evidence of extensive ancient polyploidy, such as syntenic
chromosomal blocks [53,54]. This combination of high
chromosome numbers and lack of evidence for extensive
polyploidy in homosporous ferns has been referred to as
the “polyploidy paradox” [55]. Whole-genome data are es-
sential for resolving this paradox and also for understand-
ing basic aspects of genome organization and different
pathways for genome streamlining and diploidization—
acting post-polyploidization—that may operate in ferns vs.
angiosperms.

Paleopolyploidy events have been inferred in the his-
tories of all angiosperm lineages studied to date (e.g.,
[56]) and are implicated in the ancestral angiosperm and
ancestral seed plant genomes [25,57]. Thus, even con-
temporary flowering plant taxa with relatively small ge-
nomes, such as the model species Arabidopsis thaliana
(n=5, 125 Mb [58]), often belong to lineages that have
experienced multiple rounds of polyploidy. Arabidopsis
is thought to have experienced five such events, includ-
ing the ancestral seed plant and angiosperm duplications
[57,59]. Various groups have evidently responded to
these events in different ways, and data from ferns are
the key to understanding these differences. Using these
data, we can ask, for example: how do the various gen-
omic components (e.g., repetitive elements) differ across
land plant lineages, and how do their fates differ follow-
ing polyploidy? What mechanisms are responsible for
the universally smaller numbers of chromosomes in het-
erosporous vs. homosporous lineages, and how do these
relate to the transitions among mating systems across land
plants? What genomic changes underlie trends in gameto-
phyte reduction and the shift from haploid-dominant to
diploid-dominant life cycles across land plants? Do the
free-living, haploid gametophytes of ferns experience strong
purifying selection? Ferns are the crucial missing clade for
understanding all of these evolutionary paradoxes. Most
importantly, the addition of ferns to the set of sequenced
land plant genomes will also facilitate reconstruction of the
ancestral euphyllophyte (ferns plus seed plants; Euphyllo-
phyta) and vascular plant (Tracheophyta) genomes, and will
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inform efforts to reconstruct the ancestral seed plant gen-
ome by providing an outgroup that is more suitable for
comparative analyses than are the currently available lyco-
phyte [60] and moss [61] genomes. Improved understand-
ing of genomic changes during the evolution of seed plants
will provide a new perspective for examining key evolution-
ary innovations in that clade, such as the seed itself.

To capture and characterize the genetic, genomic, and
ecological diversity of ferns, we recommend two candi-
dates for genome sequencing: Azolla (Azollaceae: Salvi-
niales) and Ceratopteris (Pteridaceae: Polypodiales). Both
have been promoted as model ferns for genome sequen-
cing [14,40,62,63] and together, Azolla and Ceratopteris
are a powerful combination. They cumulatively represent
more than 400 million years of independent evolution
(MRCA 200 mya [16]), and embody the key genomic and
life-history characteristics of interest for fern genome
sequencing.

Azolla is a heterosporous, free-floating water fern with
a compact, 750 Mb (1C) genome and #n =22 chromo-
somes [38,64]. It has long been valued in Southeast Asia
as a green fertilizer due to its symbiotic relationship with
Nostoc azollae, a cyanobacterium that lives in cavities
enclosed by the leaf tissue of Azolla [65] and renders it
capable of nitrogen fixation [66]. Azolla also has promise
as a biofuel and bioremediator in carbon sequestration
efforts [63]. In addition, Azolla has been implicated as
the cause of a massive shift in Earth’s climate approxi-
mately 50 mya [67], when atmospheric carbon dioxide
levels were apparently halved by Azolla-driven carbon
sequestration [68-70]. A genome sequence for Azolla
will allow us to explore its relationship with its symbi-
onts and may facilitate efforts to harness its nitrogen-
fixing ability on a scale large enough to provide an
inexpensive source of nitrogen-rich fertilizer [71].

Recently, the BGI (formerly Beijing Genomics Insti-
tute) agreed to complete the first fern genome sequen-
cing project, for Azolla, in collaboration with principal
investigator K.M. Pryer and colleagues (see [72,73]). Sup-
plemental funds were also raised through crowdfunding
[74,75], and the Pls are currently gathering material for the
project. This planned sequencing of Azolla will provide ini-
tial and much-needed genomic resources for ferns, but
given the deep divergence times, variation in life-history
characteristics, and diversity within this clade, one fern
genome is simply not enough to address the full range of
outstanding genomic questions in ferns and across land
plants.

Ceratopteris provides an ideal contrast to Azolla. It is ho-
mosporous, and its genome is 11.26Gb (1C; DB Marchant,
unpublished), an order of magnitude larger than that of
Azolla. This size is more typical of genome sizes found in
leptosporangiate ferns and is closer to the size scale of coni-
fer genomes than to Azolla. Ceratopteris is the “Arabidopsis
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of the fern world™ it can be readily transformed with re-
combinant DNA [76,77] and has a fast life cycle, features
that have made it an ideal genetic model system for study-
ing sex expression and mating systems [78-81], spore
and gametophyte development [82-87], and even plant
responses to gravity during space flight [88]. In addition, a
rapidly developing strain of Ceratopteris has been used ex-
tensively as an educational model system in undergradu-
ate and K-12 biology instruction worldwide [89,90].

The earliest candidates for genome sequencing in plants
tended to be those with small and simple genomes that
could be assembled with relative ease. As the trend to-
wards whole-genome sequencing intensifies, an increasing
number of taxa with large or complex genomes will be of
interest for complete nuclear genome sequencing. It is
likely that most large fern genomes will not assemble eas-
ily using current techniques, making them important test
cases for improved sequencing strategies, mapping, and
especially assembly approaches, such as those recently de-
veloped for sequencing of the 22Gb (1C) loblolly pine
[91,92] and 20Gb (1C) Norway spruce [93] genomes [94].
Ceratopteris will provide such an opportunity, and genetic
resources for this species already exist to facilitate the as-
sembly process. These include a genetic linkage map and
mapping population comprising ~500 doubled haploid
lines (DHLs) [53], which will allow efficient de novo se-
quencing and high-quality assembly, leveraging, for ex-
ample, the recombinant population genome construction
approach of Hahn et al. [95]. Azolla will provide a novel
opportunity to sequence a plant nuclear genome that has
co-evolved for more than 70 million years along with the
genomes of its obligate, vertically-inherited symbiotic
microbiome. The genome of one such symbiont has been
sequenced [66], but additional components of the fern
microbiome are not well characterized.

Conclusions

Ferns are a phylogenetically pivotal and evolutionarily
critical group of plants, yet they remain a group for
which we lack extensive nuclear genomic resources. This
is an astonishing reality, given the progress that has been
made to date elsewhere across the tree of life. Transcrip-
tome sequencing efforts such as the 1,000 Plants Project
[23] have vastly expanded the gene sequence resources
available for plants, but genes alone are insufficient to
answer the most pressing questions in fern and land
plant genome evolution. Ferns are crucial for under-
standing many aspects of plant development, physiology,
metabolism, and evolution, and they hold the answers to
key questions that have puzzled evolutionary and com-
parative biologists for more than a century. Between
these two ferns—Ceratopteris and Azolla—evolution has
operated for 400 million years, providing tremendous
opportunity for differences to accumulate, both between
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these genomes and between ferns and other extant
plants. Simultaneous sequencing of Azolla and Ceratop-
teris will close the phylogenetic gap in available plant ge-
nomes, and more importantly, will complete the critical
framework necessary for rigorous comparative studies of
genome structure and function across land plants.
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