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Abstract
Synaptogenesis is a highly controlled process, involving a vast array of players which include cell
adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins
associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner
on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts.
This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs
but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial
aspect of synapse formation is whether a nascent synapse will develop into an excitatory or
inhibitory contact. The tight control of a balance between the types of synapses formed regulates
the overall neuronal excitability, and is thus critical for normal brain function and plasticity.
However, little is known about how this balance is achieved. This review discusses recent findings
which provide clues to how neurons may control excitatory and inhibitory synapse formation, with
focus on the involvement of the neuroligin family and PSD-95 in this process.

In the brain, excitatory and inhibitory synaptic transmis-
sion is mainly mediated by two neurotransmitters: gluta-
mate which is released at excitatory glutamatergic synaptic
contacts, and γ-amino butyric acid (GABA) which is
released at inhibitory GABAergic synapses. Neural infor-
mation processing is believed to be mediated by integra-
tion of excitatory and inhibitory synaptic inputs [1-3].
Therefore, precise controls must exist to maintain an
appropriate number of one type of synaptic input relative
to the other. This process is thought to be governed by
homeostatic feedback mechanisms, however factors
involved remain elusive [4,5]. Impressive work carried out
in recent years has begun to address the roles of molecules
involved in synapse formation. A theme that has emerged
from these studies is that glutamatergic and GABAergic
synapses consist of complex, yet distinct networks of pro-

teins on the postsynaptic side. The major challenge in this
field now is to understand how this molecular machinery
is involved in synapse formation and specificity.

What controls excitatory synapse development?
The discovery of a protein complex that regulates postsy-
naptic glutamate receptor clustering and the formation of
dendritic spines has revealed some of the mechanisms
involved in excitatory synapse development. Two main
groups of key regulators of excitatory synapse formation
have been identified, namely postsynaptic scaffolding
proteins and cell adhesion molecules (CAMs). In the first
group, several proteins including members of the PSD-95
family, shank, and homer have been shown to promote
excitatory synapse maturation (reviewed in [6]). Much
work has focused on postsynaptic density protein-95
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(PSD-95), one of the most abundant proteins in the PSD
[6]. PSD-95 clustering at synapses occurs early in develop-
ment, prior to other postsynaptic proteins [7], and discs
large, a Drosophila homolog of PSD-95, is required for nor-
mal neuromuscular junction development in larva [8]. In
addition, PSD-95 enhances AMPA-type glutamate recep-
tor clustering and activity through interaction with star-
gazin [9,10]. The second group, CAMs, have long been
implicated in the formation of cell-cell contact, however
the roles of CAMs in the initiation and stabilization of
excitatory synaptic contacts have only recently been dis-
covered [11]. CAMs interact transsynaptically through
homophilic interactions, such as in the case of SynCAM 1
and protocadherins, or through heterophilic binding,
such as with neuroligin and its binding partner, β-neu-
rexin. It remains unresolved whether different sets of
CAMs cooperate to modulate synaptic stability and
specificity.

New players in inhibitory synapse formation
Although much progress has been made with respect to
factors involved in the formation of excitatory synapses,
molecules that control inhibitory synapse formation have
remained largely unknown. Gephyrin, a scaffolding pro-
tein enriched at inhibitory synapses, is one of a small
number of proteins that modulate GABA receptor cluster-
ing [12]. Also, the neural CAMs L1, dystroglycan and L-
CAM have been indirectly implicated in the establishment
of inhibitory synapse formation, however further work is
needed to clarify their involvement in this process [13-
15].

New findings from Prange et al. (2004) shed some light
on the involvement of members of the neuroligin (NLG)
family of adhesion molecules in inhibitory synapse for-
mation [16]. Unexpectedly, overexpression of NLG1
induced not only excitatory synapses but also robustly
increased the number and size of inhibitory presynaptic
terminals. The effect on inhibitory synapses was not
restricted to NLG1, as NLG2 and NLG3 were capable of
inducing similar effects on both excitatory and inhibitory
presynaptic terminals (an example of the effects of NLG2
can be seen in Fig. 1A) [17]. Similar results were recently
reported by Chih et al. (2005) [18]. If this is physiologi-
cally relevant, one would expect members of the NLG
family to be localized at both excitatory and inhibitory
synapses. Indeed, work done by Brose and co-workers was
the first to resolve part of this mystery, reporting that
NLG2 is concentrated at inhibitory synapses [19]. Later
studies reported similar observations on the enrichment
of NLG2 at inhibitory synapses [17,18,20]. This is in con-
trast to NLG1, which is enriched at excitatory synapses
[21].

Neuroligins, β-neurexin, and PSD-95 modulate excitatory and inhibitory synapse formationFigure 1
Neuroligins, β-neurexin, and PSD-95 modulate excitatory 
and inhibitory synapse formation. An example of the effects 
of a member of the neuroligin (NLG) family, NLG2 (green), 
on synapse formation. (A) Expression of NLG2 in hippocam-
pal neurons increases the number of excitatory (VGLUT-
positive; red) and inhibitory (VGAT-positive; blue) presynap-
tic contacts. (B) Interfering with β-neurexin and NLG2 cou-
pling blocks NLG2 (green)-mediated effects on inhibitory 
synapse formation. Treatment with a soluble form of β-neu-
rexin decreases the number of sites positive for VGAT 
(blue). (C) NLG2 (red) is normally localized at inhibitory syn-
aptic contacts (VGAT-positive; blue; upper panel). Overex-
pression of PSD-95 shifts NLG2 from inhibitory to excitatory 
(PSD-95-positive; green) synapses (colocalization of NLG2 
and PSD-95 appears in orange; lower panel).
Page 2 of 6
(page number not for citation purposes)



Molecular Pain 2005, 1:12 http://www.molecularpain.com/content/1/1/12
How do neuroligins mediate excitatory and 
inhibitory synapse formation?
NLG1 was originally identified as a binding partner of the
presynaptic cell adhesion molecule, β-neurexin, which is
known to be coupled to a presynaptic protein complex
[22-24]. Thus, coupling of NLGs to β-neurexin may acti-
vate an array of molecular responses leading to the struc-
tural reorganization of the presynaptic compartment. In
support of this, a soluble form of β-neurexin blocks the
formation of presynaptic terminals induced by heterolo-
gously expressed NLG1 [25]. Another important finding
by Graf et al. (2004) showed that β-neurexin expressed in
non-neuronal cells or coupled to beads is sufficient to
induce the differentiation of inhibitory postsynaptic sites
[20]. These results are further supported by experiments in
hippocampal neurons which showed that inhibitory syn-
apses induced by NLG1 and NLG2 can be blocked by sol-
uble β-neurexin [17]. An example of the effects of soluble
β-neurexin on NLG2-mediated inhibitory synapse forma-
tion is shown in Fig. 1B. Together, this provides a novel
mechanism for inhibitory synapse formation mediated
through NLG-β-neurexin coupling. However, it remains
unclear how the interaction between NLGs and β-neu-
rexin regulate synapse specificity since, β-neurexin can
mediate the formation of both excitatory and inhibitory
synapses.

Controlling the balance between excitatory and 
inhibitory synapses
A critical finding depicted from recent work by Prange et
al. (2004) shows that association of NLGs with scaffold-
ing proteins may control the balance between excitatory
and inhibitory synapses [16]. PSD-95 is known to bind
NLG1 and recruit it to synapses via its PSD-95/Dlg/ZO-1
homology (PDZ) domain [22,26,27]. As described above,
expression of NLG1 alone induces the formation of both
excitatory and inhibitory synapses. However, when coex-
pressed with PSD-95, NLG1 effects were restricted to exci-
tatory synapses. Another intriguing finding is that
overexpression of PSD-95 redistributes endogenous
NLG2 from inhibitory to excitatory synapses (Fig. 1C)
[17]. Presumably this occurs through association with the
C-terminal PDZ-binding motif in NLG2. This correlates
with the observation that PSD-95 overexpression
enhances formation of excitatory synapses with a corre-
sponding decrease in inhibitory synapse formation [16].
Such effects resulted in an overall increase in the excitatory
to inhibitory (E/I) synapse ratio. A recent study by Chih et
al. (2005) further supports the notion that NLGs are
involved in regulating the E/I ratio [18]. Knockdown of
NLGs, either individually or collectively, results in a sub-
stantial decrease in inhibitory synaptic transmission, with
relatively little effect on transmission at excitatory syn-
apses, thus altering the E/I synaptic balance.

The changes observed upon manipulation of the levels of
PSD-95 and NLGs provide new clues to the mechanisms
involved in controlling the E/I ratio. Thus, a new model
emerges; factors that regulate expression and stoichiome-
try between cell adhesion molecules and scaffolding pro-
teins may be central to the formation of excitatory and
inhibitory synapses and the control of E/I ratio (Fig. 2). In
this model, all members of the NLG family can induce
both excitatory and inhibitory synapses. However, PSD-
95, and possibly other postsynaptic scaffolding proteins
regulate targeting and/or retention of specific NLGs to a
particular synaptic site, controlling which synapse type is
induced by which NLG family member. This may there-
fore create a situation in which scaffolding proteins coop-
erate or compete with one another for directing individual
members of the NLG family to a specific synapse type.

Implications in neurodevelopmental 
abnormalities
Several physiological and pathological paradigms alter
the levels of PSD-95. For example, PSD-95 association
with the PSD is dynamic and is regulated by synaptic
activity and palmitate cycling on PSD-95 [28]. Synaptic
activity also upregulates PSD-95 expression through a
neuregulin mediated pathway [29]. In contrast, adminis-
tration of cocaine, a drug known to cause hyperexcitabil-
ity, results in down regulation of PSD-95 in the striatum,
a region mainly composed of inhibitory neurons [30].
Moreover, mutation of FMRP, a gene associated with frag-
ile X mental retardation, results in a loss of regulation of
PSD-95 expression [31]. The following question arises:
Are alterations in the levels of certain postsynaptic scaf-
folding proteins or cell adhesion molecules sufficient to
manipulate the E/I synapse ratio? One would expect that
paradigms that interfere with proper assembly or expres-
sion of proteins that control E/I ratio may have drastic
effects on synaptic balance if these changes occur during a
period of active synapse formation.

A change in the E/I synapse balance has been proposed to
be affected in many neurodevelopmental psychiatric dis-
orders, including autism and some forms of mental retar-
dation [32]. In particular, it is thought that autism is
associated with enhanced E/I neurotransmission due to
either increased excitation or reduced inhibition, and that
this enhanced excitability leads to disruption of memory
formation and abnormal social behaviour associated with
this disorder. A potential defect in E/I ratio in autism and
related disorders is emphasized by the recent discovery
that frame shift mutations in the NLG3 and NLG4 genes,
which result in early protein truncation and misfolding,
are associated with autism [33-36]. In addition, chromo-
somal rearrangements in regions that harbor the NLG1,
NLG2 and PSD-95 genes have also been implicated in
autism [37-39]. The potential involvement of NLG genes
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Relative levels of scaffolding proteins and cell adhesion molecules control the balance between excitatory and inhibitory synapsesFigure 2
Relative levels of scaffolding proteins and cell adhesion molecules control the balance between excitatory and inhibitory syn-
apses. NLGs and PSD-95 are used here as an example to demonstrate this concept. Under normal conditions, NLG1 is 
enriched at excitatory contacts whereas NLG2 is concentrated at inhibitory synapses. PSD-95 retains the majority of NLG1 at 
excitatory synaptic sites, whereas NLG2 localization is primarily controlled through interaction with an unknown scaffolding 
protein specific to inhibitory synapses. An increase in the levels of PSD-95 results in a shift of NLG2 molecules from inhibitory 
to excitatory synapses, presumably through PDZ-mediated binding to PSD-95. The resulting effect is an overall increase in the 
number of excitatory relative to inhibitory synapses, and thus an enhanced excitatory to inhibitory (E/I) synaptic ratio (for sim-
plicity, changes in synapse number are indicated by changes in the size of the illustrated presynaptic terminals). An altered E/I 
ratio may result in defects in brain circuitry associated with behavioral and cognitive abnormalities such as those linked to psy-
chiatric, pain response, and learning and memory disorders.
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as well as PSD-95 in autism therefore provides a possible
molecular basis for this imbalance in E/I ratio, which
manifests itself as abnormalities in patients affected with
neurodevelopmental psychiatric disorders. Despite these
exciting observations however, recent genetic screens sug-
gest that mutations in NLGs are fairly rare in autism
[40,41]. Therefore, it is more likely that neurodevelop-
mental psychiatric disorders may result from abnormal
expression of a diverse set of genes with functions related
to those of NLGs and PSD-95. In the adult brain, forma-
tion of new synaptic contacts is far less common, and thus
CAMs and scaffolding proteins may be involved in con-
trolling synaptic activity rather than synapse number.
Alterations in the amounts of these proteins may therefore
result in weakening or strengthening of either excitatory
or inhibitory synaptic activity and in turn modulate the E/
I balance.

Conclusion
New findings provide evidence for a potential mechanism
that controls the development of excitatory and inhibitory
synapses, which at least partially involves synaptic cell
adhesion and scaffolding molecules, among which are the
NLG family of proteins and PSD-95. The levels of certain
postsynaptic molecules relative to others appears to con-
trol the balance between different synapse types, and thus
generation of a specific E/I ratio. This has important
implications in neurodevelopmental disorders. To further
understand how the E/I synaptic balance is established
and maintained, it will be essential to address other
issues. For instance, is synaptic activity involved in this
process? If so, processes ranging from learning and mem-
ory to nociceptive transmission in the spinal cord, both of
which are linked to neuronal activity, may be tied to con-
trol of E/I balance. To what extent does cross-talk between
the pre- and postsynaptic sides play a role? At what devel-
opmental stage is this balance first established, and when
does its stabilization occur? Despite these questions
which remain unanswered so far, a staggering amount of
progress has been made in this field in recent years.
Surely, the excitement generated from this progress will
lead to a more complete understanding of control of syn-
aptic balance in the years to come.

List of abbreviations
PSD-95, postsynaptic density protein-95; PDZ, PSD-95/
Dlg/ZO-1 homology; NLG, neuroligin; GABA, γ-amino
butyric acid; CAM, cell adhesion molecule; VGLUT, vesic-
ular glutamate transporter; VGAT, vesicular GABA
transporter.
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