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Abstract 
 
Protease expression, activity, and inhibition play crucial roles in a multitude of biological 

processes; however, these three aspects of their function are difficult for any one bioanalytical 

probe to measure. To help address this challenge, we report a multifunctional concentric Förster 

resonance energy transfer (FRET) configuration that combines two modes of biorecognition 

using aptamers and peptide substrates co-assembled to a central semiconductor quantum dot 

(QD). The aptamer is sensitive to the concentration of protease and the peptide is sensitive to its 

hydrolytic activity. The role of the QD is to serve as a nanoscale scaffold and initial donor for 

energy transfer with both Cyanine 3 (Cy3) and Alexa Fluor 647 (A647) fluorescent dyes 

associated with the aptamer and peptide, respectively. Using thrombin as a model protease, we 

show that a ratiometric analysis of the emission from the QD, Cy3, and A647 permits 

discrimination between thrombin and thrombin-like activity, and distinguishes between active, 

reversibly inhibited, and irreversibly inhibited thrombin. Reliable quantitative results were 

obtained from a kinetic analysis of the changes in FRET. This concentric FRET format, which 

capitalizes on both the physical and optical properties of QDs, should be adaptable to other 

protease targets for which both peptide substrates and binding aptamers are known. It is thus 

expected to become valuable a tool for the real-time analysis of protease activity and regulation. 
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Introduction 
 

Proteases are enzymes that hydrolyze peptide bonds and play many crucial roles in biological 

systems. These enzymes are highly regulated, in part through expression as zymogens, cascaded 

activation, and via endogenous inhibitors, so that they can function without damaging tissues or 

interfering with other processes.1 Approximately 80% of the digestive enzymes produced in the 

pancreas are proteases such as trypsin and chymotrypsin.2 Proteases including thrombin and 

plasmin, among several others, are also key players in hemostasis and fibrinolysis.3 Matrix 

metalloproteinases help regulate processes such as cell migration, differentiation, proliferation, 

inflammation and immunity, as well as angiogenesis, metastasis, and other processes related to 

cancer progression.4,5 Caspase proteases are essential to apoptosis, too little of which is 

associated with cancer and autoimmune disorders, and too much of which is associated with 

immunodeficiency and degenerative conditions such as Alzheimer’s Disease.6 Many proteases 

are also potential drug targets; for example, secretase inhibitors have therapeutic potential in 

Alzheimer’s disease.7 The challenge in this regard is the scope of diverse roles that continue to 

be uncovered for many proteases, potentially making them both drug targets and antitargets 

simultaneously.4 Clearly, proteases are important biological analytes, and new methods and 

probes for their detection and analysis are of great interest. 

 

One of the challenges in the analysis of proteases is distinguishing between activity and 

concentration. The activity of enzymes is modulated by several post-translational mechanisms 

(e.g., inhibitors), such that their concentration is not necessarily proportional to their activity.8 

Immunoassays, which are the current clinical standard,9 are generally sensitive to protease 

concentration and are not a direct measure of activity. Although less common than the use of 

antibody probes, there are at least 14 known protease-binding aptamers,10 but these assays are 

also sensitive to concentration rather than activity. Conversely, probes that respond to activity 

are not strictly sensitive to concentration. Chromogenic and fluorogenic substrates are available 

for many proteases,11 as are FRET-based probes utilizing peptides that are either dual-labeled 

with fluorescent dyes12 or singly labeled with a fluorescent dye and conjugated to an optically 

active nanoparticle.13 In each of these cases, there is a change in an optical signal in response to a 

proteolytic reaction, but not to the protease directly. A third strategy is the use of reactive probes 
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that modify the active site of a protease with a tag that can be directly or indirectly labeled for 

quantitation.8 This approach provides a proxy measure for activity via the availability of active 

sites. Overall, none of the foregoing strategies measures both activity and concentration. 

 

Here, we report a design for a fluorescent bioanalytical probe that is simultaneously sensitive to 

both protease activity and concentration, with the ability to resolve one from the other. The 

design, shown in Figure 1, takes advantage of the physical and optical properties of 

semiconductor quantum dots (QDs) and uses thrombin as a model protease. Poly(ethylene 

glycol)-coated CdSeS/ZnS QDs with peak emission at 524 nm (QD524) are conjugated with 

multiple copies of an Alexa Fluor 647 (A647) dye-labeled peptide substrate for thrombin, as well 

as multiple copies of a thrombin-binding aptamer partially hybridized with a Cyanine 3 (Cy3) 

dye-labeled oligonucleotide. The peptide is a probe for thrombin activity; the aptamer is a probe 

for thrombin concentration. Resolvable signals for protease activity and concentration are 

generated through adaptation of a concentric Förster resonance energy transfer (cFRET) 

configuration that we recently developed.14 The QD524 serves as a highly efficient energy donor 

for the Cy3 and a less efficient energy donor for the A647, while the Cy3 also serves as a good 

energy donor for the A647.14 The relative emission from the QD524, Cy3, and A647 can be 

calibrated to permit determination of the number of each acceptor per QD. Changes in emission 

are associated with proteolytic cleavage of the A647 from the QD, and with displacement of the 

Cy3-labeled oligonucleotide when thrombin-binding aptamer binds to thrombin, each resulting 

in loss of FRET pathways. These signaling mechanisms have been reported individually,15,16 but 

neither in combination on a common nanoparticle scaffold nor with cFRET. Whereas our 

previous cFRET probe was designed to detect the activity of two different proteases, this new 

cFRET probe is multifunctional in that it simultaneously combines two modes of biorecognition 

for a single protease. Active thrombin can be distinguished from inactive thrombin with 

reversible or irreversible inhibition of its active site, and thrombin activity can be distinguished 

from thrombin-like activity associated with other proteases. This strategy is therefore very 

promising for the bioanalysis of proteases and is uniquely facilitated by the properties of QDs. 
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Figure 1. Schematic representation of a cFRET configuration, [HD1p/cHD1(Cy3)]12-QD524-[Sub(A647)]8, 

that can simultaneously detect thrombin (THR) activity and concentration through the use of HD1p 

aptamer and Sub(A647) peptide substrate probes on a common QD scaffold. (Refer to Table 1 for the 

aptamer and peptide sequences and abbreviations.) The configuration is designed such that active 

thrombin modulates all three FRET pathways, inactive thrombin (i.e., inhibited) modulates the QD-to-Cy3 

and Cy3-to-A647 FRET pathways, and thrombin-like activity by other proteases modulates the QD-to-

A647 and Cy3-to-A647 FRET pathways. 

 
 
Experimental Section 
 

Materials. Alloyed CdSeS/ZnS QDs (~6 nm diameter) with peak photoluminescence (PL) at 524 

nm (QD524) and 624 nm (QD624) (Cytodiagnostics, Burlington, ON, Canada) were made water 

soluble by coating with poly(ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG) 

ligands.17 Peptides (BioSynthesis Inc., Lewisville, TX, USA) were labeled with Alexa Fluor 647 

C2 maleimide (Life Technologies, Carlsbad, CA, USA).18 Modified oligonucleotides were from 

Integrated DNA Technologies (Coralville, IA, USA) and were HPLC purified by the 
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manufacturer. Peptide and oligonucleotide sequences are listed in Table 1. The thrombin-binding 

aptamer sequence was ligated with a polyhistidine-terminated peptide linker using disulfide 

exchange chemistry.19 Detailed procedures for the above reactions are available in the 

Supporting Information (SI). Bovine trypsin (TRP), lysozyme (LYZ), and Nα-Tosyl-L-lysine 

chloromethyl ketone hydrochloride (TLCK) were obtained from Sigma-Aldrich (Oakville, ON, 

Canada). Human α-thrombin (THR) was obtained from Haematologic Technologies (Essex 

Junction, VT, USA). Enzyme specifications can be found in the SI. All experiments were done in 

borate buffered saline (BBS; pH 8.5, 50 mM borate, 13.7 mM NaCl, 0.27 mM KCl, 3 mM 

MgCl2). 

 

Table 1. Peptide and oligonucleotide sequences. 

Peptide sequences (N- to C-terminal)a Abbreviation 

Ac-H6SP6GSDGNESGLVPR↓GSGC-A647 Sub(A647) 

Ac-CSGP5GSGH6-Am Cys-His6 

Oligonucleotide sequencesb Abbreviation 

5ʹ-CCA ACA ACA GTG-3ʹ-Cy3 cHD1(Cy3) 

HSC6H12-5ʹ-TTC ACT GTG GTT GGT GTG GTT GG-3ʹ HD1p 
a The protease recognition site is indicated in italics; the hydrolysis site is indicated by the 
downwards arrow; Ac, N-terminal acetylation; Am, C-terminal amidation. b The HD1 thrombin 
binding sequence is indicated in italics. The mismatched bases are underlined. 

 

PL measurements. PL emission spectra and intensities were measured using an Infinite M1000 

Pro plate reader (Tecan Ltd., Morrisville, NC, USA) with samples in nonbinding 96-well 

microtiter plate wells. The excitation wavelength was always 400 nm, which offered negligible 

direct excitation of Cy3 and A647. For calibration experiments, both full PL spectra and single 

wavelength intensities at 524 nm, 564 nm, and 668 nm were acquired (using two different 

measurement modes with the plate reader). For kinetic assays, PL intensities were measured at 

90 s intervals at 524 nm, 564 nm, and 668 nm for cFRET assays. 

 

Enzyme assays. With the cFRET configuration, thrombin assays were done by tracking the 

A647/QD and Cy3/QD PL ratios after mixing [HD1p/cHD1(Cy3)]12-QD524-[Sub(A647)]8 

conjugates with different concentrations of protease. To assay n samples, 10n pmol of 
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[HD1p/HD1c(Cy3)]12-QD524-[Sub(A647)]8 was prepared in 55n μL of BBS by mixing each 

component at the desired stoichiometry and allowing self-assembly to proceed for 4 h. A series 

of dilutions of thrombin (22 nM–11.4 µM, scaling by factors of two) was prepared in BBS and 

50 µL of each was transferred to a 96-well plate in parallel with a BBS control sample. Aliquots 

of [HD1p/cHD1(Cy3)]12-QD524-[Sub(A647)]8 (50 µL) were added and mixed with the THR 

solutions. The final concentrations of THR were half of those added to the wells, and the final 

concentration of QDs was 91 nM. PL measurements were initiated immediately after the mixing. 

Assays with trypsin and lysozyme were done similarly, excepting that the final enzyme 

concentrations were different (1.3 nM–5.0 µM for trypsin; 0.02, 0.20, 2.0 µM for lysozyme).  

 

Inhibition assays. For these assays, probes were prepared as described above. In the case of 

TLCK, thrombin (2 µL of 163 µM stock solution) was first diluted with BBS (200 µL) followed 

by the addition of TLCK in DMSO (10 μL, 50 mM). The mixture was let stand at room 

temperature for 2 h. This procedure was repeated three times. A series of TLCK-treated thrombin 

solutions with concentrations between 88 nM–1.4 µM (scaling by a factor of two) was then 

prepared from the stock solution. Assays were done as described above. In the case of argatroban, 

a series of dilutions between 4.0–64 µM was prepared in BBS. Thrombin dilutions were also 

prepared in BBS at concentrations between 1.0–8.0 µM. Argatroban solution (25 µL) and 

thrombin solution (25 µL) were mixed as different combinations of concentrations and added to 

the wells of a 96-well microtiter plate. Assays were done as described above.  

 

Data analysis. In the cFRET configuration, PL ratios were calculated from the PL intensities 

measured at 524 nm, 564 nm, and 668 nm. At these wavelengths, the emission from the QD524, 

Cy3, and A647 were largely resolved, albeit that small corrections for crosstalk were required 

according to Eqns. 1–3, where Ix is the intensity from emitter x, I(λ) is the intensity measured at 

wavelength λ, and xσλ is a correction factor for emission overlap, as defined in the SI (Eqns. S1–

S3). 

 IQD524 = I(524)  (1) 

ICy3 = I(564)− QD524σ 564IQD524  (2) 

IA647 = I(668)− QD524σ 668IQD − Cy3σ 668ICy3  (3) 

PL ratios, ρ, were then calculated according to Eqns. 4–5. 
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ρCy3 = ICy3 IQD524  (4) 

ρA647 = IA647 IQD524  (5) 

In assays, the PL ratios were normalized to the control sample (see Eqn. S4 for details) and then 

converted into the number of Cy3 and A647 acceptors per QD524, M and N respectively, from 

empirical calibration functions, ρCy3/QD524(M, N) and ρA647/QD524(M, N), Eqn. 6 and Eqn. 7, 

derived from three-dimensional plots of ρCy3 and ρA647 versus (M, N) (see SI, Fig. S3).  

ρCy3/QD524 = 2.57( ) 0.032M − 0.0005( ) −0.020N + 0.383( )  (6) 

ρA647/QD524 = 4.88( ) 0.023N + 0.006( ) 0.008M + 0.111( )  (7) 

 

Analytical parameters, k and Δ, were derived from (M, N) versus time data. Aptamer progress 

curves, M versus time, were fit with a monoexponential function, Eqn. 8, where A is an 

amplitude, t is time, m reflects the displacement kinetics, and M∞ is the apparent equilibrium 

value of M. When mt was sufficiently small (i.e., little or no response), Eqn. 8 reduced to a linear 

function for data fitting (see SI for justification). Progress curve fits were reduced to a single 

parameter, Δ, according to Eqn. 9, representing the relative change in the number of cHD1(Cy3) 

per QD. 

M (t) = Ae−mt +M∞  (8) 

Δ = A(A +M∞ )
−1  (9) 

Proteolysis data, N versus time, was fit with a biexponential function, Eqn. 10, where ki is an 

empirical rate of peptide hydrolysis with amplitude Ai, and N∞ is the residual value of N. These 

parameters were constrained so that N(0) was equal to the value calculated for the control 

sample. An average hydrolysis constant, k, was calculated using Eqn. 11. 

N(t) = A1e
−k1t + A2e

−k2t + N∞  (10) 

k =
−k1A1 − k2A2
A1 + A2

 
(11) 
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Results 

 

Probe design. The cFRET probe, [HD1p/cHD1(Cy3)]12-QD524-[Sub(A647)]8, incorporated 

several important elements into its physical design. The central QD524 donor was coated with 

DHLA-PEG ligands to impart robust colloidal stability. The DHLA moiety tightly binds to the 

ZnS shell of the CdSeS/ZnS core/shell QDs and the PEG moiety resists the non-specific 

adsorption of many biomolecules and pH- or ionic strength-induced aggregation.17 Indeed, we 

found that even low concentrations of human α-thrombin were able to aggregate QDs coated 

with DHLA or glutathione, whereas DHLA-PEG-coated QDs remained stable. The Sub(A647) 

peptide had an N-terminal polyhistidine peptide sequence to permit high-affinity, stoichiometric 

self-assembly to the ZnS shell of the QDs.20,21 The polyhistidine tag is able to penetrate the 

DHLA-PEG ligand coating and coordinate directly to the inorganic surface of the ZnS shell.20,21 

Similarly, the HD1p aptamer was appended with a polyhistidine peptide (Cys-His6; see Table 1) 

using disulfide exchange.19 Gel electrophoresis confirmed assembly of both peptide and aptamer 

to QDs (see Fig. S1). Sub(A647) contained the LVPRGS amino acid sequence, which is 

recognized and hydrolyzed by thrombin,22 resulting in changes in both QD524→A647 and 

Cy3→A647 FRET (the arrow indicates the direction of energy transfer). Thrombin has a 

preference for hydrolysis after arginine in the P1 position, with proline at P2 and either serine, 

threonine, or glycine at P1ʹ.23 The HD1p aptamer was hybridized with cHD1(Cy3), a partially 

complementary Cy3-labeled oligonucleotide, to yield changes in QD524→Cy3 and Cy3→A647 

FRET upon thrombin-binding. The cHD1(Cy3) sequence was shorter than HD1p, hybridizing to 

only part of the thrombin-binding HD1 sequence, as reported previously.16 However, we found 

that a mismatch had to be incorporated to facilitate displacement of cHD1(Cy3) by thrombin. 

Without a mismatch, the kinetics of displacement were very slow (> 4 h) at room temperature. 

 

Assays with active enzymes. The cFRET probe was first tested against thrombin. Given the 

probe design, thrombin was expected to hydrolyze the Sub(A647) peptide and displace the 

cHD1(Cy3) oligonucleotide from the QD524 when it was bound by HD1p aptamer. Figure 2A(i) 

shows changes in the Cy3/QD524 and A647/QD524 PL ratios, as a function of time, when the 

cFRET probe was exposed to increasing amounts of thrombin (11 nM–5.6 µM). Decreases in 

these ratios reflected the loss of the QD524→Cy3 and the QD524→A647 plus Cy3→A647 
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FRET pathways, respectively. Conversion of the PL ratio data to progress curves (i.e., the 

approximate number of Cy3 and A647 per QD as a function time) gave the expected trends, as 

shown in Figure 2A(ii). This conversion was done using calibration curves that correlated PL 

ratios with the numbers of cHD1(Cy3) and Sub(A647) per QD (see Fig. S3). With increasing 

concentrations of thrombin, the rate of hydrolysis of Sub(A647) peptide increased and the 

equilibrium number of HD1p/cHD1(Cy3) aptamer hybrids per QD decreased. Note that the 

interaction of thrombin with HD1p is a reversible binding reaction that can reach equilibrium, 

whereas the hydrolysis of Sub(A647) by thrombin is an irreversible reaction. At higher 

concentrations of thrombin, the progress curves for the hydrolysis of Sub(A647) clearly 

converged to the same end point, consistent with expectations. The data shows that analyses can 

be completed within 20–60 min. 
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Figure 2. (A) Response of the cFRET probe to different concentrations of thrombin (THR): (i) changes in 

the Cy3/QD524 and A647/QD524 PL ratios as a function of time; and (ii) calculated progress curves for 

the binding of thrombin by HD1p aptamer with displacement of cHD1(Cy3), and hydrolysis of Sub(A647) 

peptide by active thrombin. (B) Progress curves showing the response of the cFRET probe to trypsin, 

which exhibits thrombin-like hydrolytic activity. (C) Progress curves showing the response to lysozyme, a 

non-proteolytic enzyme. The dashed lines are normalized control data for samples without enzyme. 
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Next, the cFRET probe was tested against trypsin and lysozyme. Trypsin, like thrombin, is a 

serine protease that hydrolyzes peptide bonds C-terminal to arginine residues,24 and was 

therefore expected to exhibit thrombin-like activity toward Sub(A647) peptide but not bind with 

HD1p aptamer. Figure 2B shows progress curves in response to four concentrations of trypsin 

(1.3 nM, 13 nM, 130 nM, 1.3 µM; data for more concentrations are shown in the SI). The rate of 

hydrolysis of Sub(A647) peptide scaled with the concentration of trypsin, and the progress 

curves were clearly convergent for the highest concentrations. In contrast, the number of 

HD1p/cHD1(Cy3) aptamers per QD was approximately constant as a function of time, regardless 

of trypsin concentration, albeit with some offset (vide infra). This result demonstrated that the 

cFRET probe responded to thrombin-like proteolytic activity differently than it responded to 

thrombin, with the distinction being the minimal response from the aptamer. Finally, as a 

negative control, the cFRET probe was tested against lysozyme, a glycosidase that should neither 

hydrolyze the Sub(A647) peptide nor bind with the HD1p aptamer. Figure 2C shows that, 

consistent with expectations, the number of Sub(A647) and HD1p/cHD1(Cy3) were both 

constant over time for the three different concentrations of lysozyme (20 nM, 200 nM, 2.0 µM). 

 

To reduce the progress curves for hydrolysis of Sub(A647) peptide substrates and displacement 

of cHD1(Cy3) aptamer complements to single numerical parameters, and to help account for 

apparent offsets between samples, the progress curve data in Figure 2 were fit to mathematical 

functions (see Experimental Section, eqns. 8–11). The Sub(A647) data was reduced to an 

average hydrolysis constant, k (min–1), and the displacement of cHD1(Cy3) was reduced to a 

relative change in the number of cHD1(Cy3) per QD, Δ (unitless). The progress curve data in 

Figure 2, summarized in terms of k and Δ, is shown in Figure 3. The kinetic trends observed in 

Figure 2 were reflected in the trends in k and Δ. Notably, both k and Δ increased with increasing 

concentration of active thrombin, only k increased in response to trypsin, and both k and Δ were 

close to baseline values for lysozyme. The empirical k value was found to be a more robust and 

more sensitive reduction of the progress curve data than calculation of initial proteolytic rates, 

and calculating Δ as a relative change was more robust than calculation of an absolute change.  
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Figure 3. (A) Relative change in the number of cHD1(Cy3) per QD524, Δ, and (B) the empirical 

hydrolysis constant, k, of Sub(A647) as a function of the concentration of thrombin (THR), trypsin (TRP), 

or lysozyme (LYZ). The insets show the responses to thrombin on a logarithmic scale. Note that the 

trypsin data has its own set of axes in panel B. Rates for trypsin concentrations >1.3 µM were too fast to 

determine. 

 

Assays with inhibited thrombin. To further evaluate the overall selectivity of the cFRET probe, 

assays were done with both reversibly and irreversibly inhibited thrombin. To reversibly inhibit 

thrombin, argatroban was used. Argatroban is a small molecule, direct inhibitor of thrombin with 

clinical applications and rapid anti-thrombin action via binding with the active site of the 

protease; the inhibition constant is reported to be 39 nM.25 We tested the cFRET probe against a 

two-dimensional series of increasing thrombin and argatroban concentrations. An example of 

progress curves for this experiment are shown in Figure 4A(i) and the raw PL data can be found 

in the SI. Increases in the concentration of argatroban had no significant effect on the number of 
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HD1p/cHD1(Cy3) aptamer hybrids per QD524 but markedly decreased the rate of hydrolysis of 

Sub(A647) peptide. Increases in the concentration of thrombin were able to diminish the level of 

inhibition from the argatroban. Figure 4A(ii) shows these trends in terms of k and Δ, where k 

decreased with increasing concentrations of argatroban and increased with increasing 

concentrations of thrombin, and Δ was insensitive to argatroban but increased with increasing 

concentrations of thrombin. All of these results were consistent with expectations for reversible 

inhibition of thrombin at the active site.  

 

 
Figure 4. (A) Response of the cFRET probe to different concentrations of thrombin and argatroban, a 

reversible inhibitor: (i) representative progress curves for 1 µM thrombin (see SI for full data set); (ii) 
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summary plots showing changes in Δ and k for a range of both thrombin and argatroban concentrations. 

The legends in (i) and (ii) apply to both plots. (B) Response of the cFRET probe to different 

concentrations of inactive, TLCK-treated thrombin (irreversibly inhibited): (i) progress curves; and (ii) 

summary plots showing changes in Δ and k, with comparisons to the analogous data for active thrombin. 

The legend in (i) applies to both plots. The dashed lines in panels A and B are normalized control data for 

samples without thrombin. 

 

To irreversibly inhibit thrombin, treatment with an excess of TLCK was utilized. Unlike 

argatroban, which non-covalently binds to the active site of thrombin, TLCK alkylates the active 

site at the histidine residue in the histidine-aspartic acid-serine catalytic triad.26 Figure 4B(i) 

shows progress curves for the cFRET probe in response to increasing concentrations of TLCK-

inhibited thrombin. In each case, no hydrolysis of Sub(A647) peptides was observed and the 

decrease in the number of cHD1(Cy3) aptamer complements per QD524 scaled in proportion to 

the concentration of thrombin. This contrast was expected for complete, irreversible inhibition of 

thrombin at the active site. Accordingly, the value of k was effectively zero for all concentrations 

of TLCK-thrombin whereas Δ scaled in proportion to the TLCK-thrombin concentration, as 

shown in Figure 4B(ii). Overall, the experiments in Figure 4 demonstrate that detection of 

thrombin activity and concentration is approximately independent.  

 

Validation against a two-probe non-cFRET system. To validate the results obtained with the 

cFRET probe, a system with two separate QD probes was tested against a similar battery of 

experiments. The two probes were conventional donor-acceptors pairs, a QD524-

[HD1p/cHD1(Cy3)]12 conjugate and a QD624-[Sub(A647)]8 conjugate, which separately 

responded to thrombin concentration and activity, respectively, when these two discrete entities 

were mixed in the same sample solution. These results, which are shown in the SI, were 

analogous to those obtained with the cFRET probe: increasing concentrations of active thrombin 

decreased the number of cHD1(Cy3) per QD524 and Sub(A647) per QD624; trypsin decreased 

the number of Sub(A647) per QD624 and, curiously, caused a small increase in the apparent 

number of cHD1(Cy3) per QD; and lysozyme neither altered the number of cHD1(Cy3) per 

QD524 nor the number of Sub(A647) per QD624. TLCK-treated thrombin only altered the 

number of cHD1(Cy3) per QD524, and increasing concentrations of argatroban affected the rate 

of hydrolysis of Sub(A647) from QD624 but not the equilibrium number of cHD1(Cy3) per 
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QD524. Cumulatively, this data confirmed that the multifunctional cFRET probe was able to 

perform the function of two separate QD probes. 

 

Effect of co-assembling aptamer and peptide substrate. Given that the HD1 aptamer has been 

reported to be an inhibitor of thrombin activity,27 we evaluated the effect that co-localizing 

Sub(A647) and HD1p on a common QD scaffold had on the proteolytic activity of thrombin 

toward Sub(A647). [HD1p]M-QD524-[Sub(A647)]8 conjugates were prepared with different 

values of M, and the proteolytic activity of thrombin was evaluated and compared to samples of 

QD524-[Sub(A647)]8 mixed with M×HD1p aptamer (without a ligated polyhistidine tag, thus 

avoiding assembly to the QD). As shown in Figure 5, increasing amounts of aptamer decreased 

proteolytic activity in both cases; however, the inhibitory effect of HD1p aptamer in bulk 

solution was greater than with the HD1p aptamer bound to the QD (i.e., cFRET probe). Co-

conjugation of the Sub(A647) peptide probe and the HD1p aptamer to a common QD scaffold 

appeared to partially mitigate the inhibitory effects of the latter. 

 

 
 

Figure 5. Change in the hydrolysis rate constant, k, for [HD1p]M-QD524-[Sub(A647)]8 conjugates (QD, 

red points) and QD624-[Sub(A647)]8 mixed with M×[HD1p] aptamer (bulk solution, blue points), for M = 

0–30. The inset shows the progress curves used to calculate k. The arrows point in the direction of 

increasing equivalents of HD1p aptamer per QD. The black points correspond to a control experiment 

without HD1p. The dashed line is the normalized control data for a sample without thrombin. 
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Discussion 
The cFRET probe was multifunctional, utilizing two mechanisms of biorecognition and multiple 

FRET pathways to signal the concentration and activity of thrombin via changes in the 

ratiometric PL of the QD524, Cy3, and A647. Quantitative data was obtained by pre-calibration 

of these PL ratios. The conversion of raw PL data to M and N, the number of each probe per QD, 

was sensitive to nanomolar concentrations of thrombin and selective for concentration and 

activity, respectively, as designed. The PL response had some limited sensitivity toward non-

specific secondary effects as trypsin and lysozyme, in sufficient concentration, caused offsets in 

the progress curves. However, these offsets were static for concentrations of lysozyme and 

trypsin that were comparable to the concentrations of thrombin (up to ≥2.0 µM). Occasional 

batch-to-batch variation also caused the calculated initial conjugate valences to vary from the 

nominal M = 12 and N = 8 (e.g., see Fig. 4B). The effects of these variations and offsets were 

minimized by fitting the progress curves to obtain ∆ and k, which were more robust analytical 

measurements than one-point measurements of M and N. In terms of ∆ and k, the response of the 

cFRET probe to lysozyme was negligible, and low concentrations of trypsin yielded only small 

values of ∆, which approached zero with increasing concentration because the aforementioned 

offsets in PL ratio became effectively instantaneous. The reason for the small ∆ response to 

trypsin is unclear, but trypsin also evolved a non-specific response from QD524-

[HD1p/cHD1(Cy3)]12 conjugates in the two-probe non-cFRET system (see Fig. S11). Non-

specific interactions between trypsin and QDs have been previously reported to cause similar 

offsets in FRET ratios and calculated conjugate valences in other systems.28 The response to 

trypsin is thus not an artifact of the cFRET system, but rather a physical phenomenon. Given that 

the ∆ offsets were (i) too rapid to be related to displacement of cHD1(Cy3), (ii) decreased with 

increases in trypsin concentration; and (iii) reached an equilibrium, all of which is inconsistent 

with non-specific hydrolysis, we speculate that these offsets arise from a non-specific interaction 

between the QDs and trypsin. In complex biological media, the high-concentration protein 

background is also expected to cause a static offset that does not interfere with detection via k 

and ∆. Alternatively, it should be possible to minimize or eliminate these effects, and improve 

precision, with further optimization of QD materials, surface chemistry, and biorecognition 

probes. 

 



Analytical Chemistry, 2014, 86, 11181-11188. 

	   17 

The reduced inhibitory effects of HD1p aptamer on thrombin when co-conjugated to a QD 

scaffold with Sub(A647) substrate may be an outcome of one or more of the following factors: a 

dynamic binding equilibrium between the thrombin and HD1p aptamer, where thrombin 

dissociates and sees a high local concentration of Sub(A647) at the QD interface; reduced 

affinity between thrombin and HD1p aptamer when the latter is conjugated to the QD and 

partially hybridized with cHD1(Cy3) (our data indicates Kd ≈ 160 nM, which is higher than the 

34 nM reported elsewhere29); and an enhancement of proteolytic activity when substrate is 

conjugated to a QD.30 The trend of a decrease in proteolytic activity with increasing numbers of 

HD1p aptamer per QD may be a result of greater binding between thrombin and HD1p at the 

expense of interactions between thrombin and Sub(A647), increased steric hindrance that limits 

the accessibility of Sub(A647) to thrombin, or a combination of these two factors. As the 

Sub(A647) peptide is much smaller than HD1p aptamer, the Sub(A647) is not expected to 

sterically hinder interactions between thrombin and HD1p; however, steric interactions between 

multiple HD1p aptamers on a common QD nanoparticle could potentially contribute to the 

apparent increase in the Kd value noted above. In general, the relative affinities of the aptamer for 

the protease, as well as the affinity of the protease for the substrate and its turnover, are likely to 

be important design criteria for cFRET probes of the type described here. The use of aptamers 

with smaller dissociation constants will likely need to be balanced by the use of peptide probes 

for which proteases have larger specificity constants. 

 

The ability of the cFRET probe to discriminate between thrombin activity and concentration was 

predicated on the ability of the HD1p aptamer to bind inhibited thrombin. The HD1 G-

quadruplex sequence binds to exosite I of thrombin,10 such that binding of argatroban and TLCK 

at the active site of thrombin did not affect the ability of HD1p to bind thrombin. In addition to 

binding at the active site, regulators of thrombin activity can also bind at exosite I or exosite II.31 

Inhibitors bound at exosite I would interfere with HD1 aptamer-based detection of thrombin 

concentration, which may be a limitation in some experiments or provide a selectivity advantage 

in other experiments. Note that these considerations pertain to aptamer selection, and not the 

cFRET configuration itself. HD22 is another common thrombin-binding aptamer, but this 

sequence binds to exosite II10 and therefore would be expected to be sensitive to different 
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thrombin-inhibitor complexes than HD1, providing a further consideration for the design and 

optimization of future cFRET probes.  

 

The overall multifunctional probe strategy with cFRET is adaptable to other protease targets for 

which aptamer and substrate sequences are known by substitution of the thrombin-selective 

sequences. Thrombin was a good initial system for proof-of-concept because its physical and 

catalytic properties are well-characterized, its aptamer and substrate sequences are well-known, 

and it has many biological roles in addition to hemostasis (e.g., tumor biology, angiogenesis, 

inflammation32). Ultimately, cFRET probes of this nature are expected to be highly valuable for 

analysis and imaging of the dynamics of many proteases in cultured cells or tissues, extracts, and 

other biological samples. Multifunctional sensing is achieved using a single probe entity and, in 

principle, retains this functionality from the ensemble down to the level of single particles, 

minimizing the amount of exogenous probe that must be introduced to a biological system. 

 

Conclusions 
We have demonstrated proof-of-concept for a QD-based cFRET configuration that, as a discrete 

probe, combines two modes of biorecognition to simultaneously and quantitatively detect both 

protease activity and concentration. Here, thrombin was used as a model system. An aptamer 

sequence was used to bind thrombin and a peptide substrate was used to measure thrombin 

activity. FRET signals were generated by partially hybridizing the aptamer with a Cy3-labeled 

oligonucleotide, and by labeling the distal terminus of the peptide with A647. A central QD524 

served as a FRET donor for both of these dyes, with secondary energy transfer between Cy3 and 

A647. Thrombin displaced these dyes from the QD through different mechanisms, enabling the 

cFRET probe to distinguish thrombin activity from thrombin-like activity, and distinguish 

between active, partially inhibited, or completely inhibited thrombin. This format took advantage 

of both the physical and optical properties of QDs, and is adaptable to other protease targets for 

which both peptide substrates and binding aptamers are known.10 This general design for a 

multifunctional cFRET probe is anticipated to be a valuable tool for real-time measurements of 

protease activity and regulation. It provides more information than aptamer or peptide probes 

alone, while also obviating any need for two separate probes. The overall strategy of combining 
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affinity-based and activity-based biomolecule probes on a common nanoparticle scaffold is also 

likely to benefit the analysis of other classes of enzyme. 
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