
RESEARCH Open Access

Extending and encoding existing biological
terminologies and datasets for use in the
reasoned semantic web
Soroush Samadian1, Bruce McManus1 and Mark D Wilkinson2,3*

Abstract

Background: Clinical phenotypes and disease-risk stratification are most often determined through the direct
observations of clinicians in conjunction with published standards and guidelines, where the clinical expert is the
final arbiter of the patient’s classification. While this "human" approach is highly desirable in the context of
personalized and optimal patient care, it is problematic in a healthcare research setting because the basis for the
patient's classification is not transparent, and likely not reproducible from one clinical expert to another. This sits in
opposition to the rigor required to execute, for example, Genome-wide association analyses and other
high-throughput studies where a large number of variables are being compared to a complex disease phenotype.
Most clinical classification systems and are not structured for automated classification, and similarly, clinical data is
generally not represented in a form that lends itself to automated integration and interpretation. Here we apply
Semantic Web technologies to the problem of automated, transparent interpretation of clinical data for use in
high-throughput research environments, and explore migration-paths for existing data and legacy semantic
standards.

Results: Using a dataset from a cardiovascular cohort collected two decades ago, we present a migration path -
both for the terminologies/classification systems and the data - that enables rich automated clinical classification
using well-established standards. This is achieved by establishing a simple and flexible core data model, which is
combined with a layered ontological framework utilizing both logical reasoning and analytical algorithms to
iteratively "lift" clinical data through increasingly complex layers of interpretation and classification. We compare our
automated analysis to that of the clinical expert, and discrepancies are used to refine the ontological models, finally
arriving at ontologies that mirror the expert opinion of the individual clinical researcher. Other discrepancies,
however, could not be as easily modeled, and we evaluate what information we are lacking that would allow these
discrepancies to be resolved in an automated manner.

Conclusions: We demonstrate that the combination of semantically-explicit data, logically rigorous models of
clinical guidelines, and publicly-accessible Semantic Web Services, can be used to execute automated, rigorous and
reproducible clinical classifications with an accuracy approaching that of an expert. Discrepancies between the
manual and automatic approaches reveal, as expected, that clinicians do not always rigorously follow established
guidelines for classification; however, we demonstrate that "personalized" ontologies may represent a re-usable and
transparent approach to modeling individual clinical expertise, leading to more reproducible science.
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Background
Terminologies and Nosologies have long been used by
clinicians and clinical researchers as a means of more
consistently annotating their observations. It is not sur-
prising, then, that the emergence of the Semantic Web
found fertile ground in the clinical and life science com-
munities, and formal Semantic Web standards have been
rapidly adopted by these communities to migrate exis-
ting annotation systems into these modern frameworks
and syntaxes. While this largely syntactic migration is a
useful exercise, in that it becomes possible to do simple
reasoning over manual annotations, this simple migra-
tion does not enable the full power of modern semantic
technologies to be applied to these important biomedical
datasets. This is, in part, because these semantic re-
sources continue to be used largely as controlled vo-
cabularies rather than as rich descriptors for logical
classification.
The Semantic Web languages Resource Description

Framework (RDF) [1] and Web Ontology Language
(OWL) [2] are the World Wide Web Consortium's re-
commended standards for semantically-explicit encoding
of data and knowledge representation on the Semantic
Web (respectively), and as such, these were the lan-
guages chosen for this study. Given the ability for RDF
and OWL to be used to interpret, rather than simply an-
notate data, it would be useful to examine the migration
path - both for the terminologies and the data - that
enables such rich interpretive reasoning to be applied.
How do we alter and/or extend existing terminologies
such that they can be used to classify clinical data? What
modifications to traditional data capture and representa-
tion must be made in order to make these data amena-
ble to such logical inferences? Can we replace (or at a
minimum, guide) expert clinical annotators in their in-
terpretation of clinical data, and with what level of ac-
curacy can this be achieved? In this report, we explore
one such migration path, and discuss our observations
and results, as well as the barriers and resulting manual-
interventions that were employed to accomplish the goal
of creating a reasoned environment for clinical data
evaluation and interpretation. We base our exploration
in a real-world use case, using clinical data collected and
annotated 20 years ago in the context of a study of pa-
tient outcomes after various cardiovascular interventions.
Heart and Blood Vessel Diseases have a high rate of

mortality and morbidity, and pose a significant disease-
burden on healthcare systems worldwide. In such di-
seases, asymptomatic biological “diseases”, typically pre-
cede the clinical manifestation of symptomatic diseases.
Most of the time, the development of biological disease
into a symptomatic event can be significantly mitigated
or prevented through a combination of medication and
lifestyle changes. It is widely accepted that several risk

factors including age, sex, high blood pressure, smoking,
dyslipidemia, diabetes, obesity and inactivity are major
factors for developing a variety of heart and blood vessel
diseases [3].
To assist with comparison of, and interpretation of,

patient data, clinical researchers have developed guide-
lines for classifying patients phenotypically into various
categories based on a wide variety of raw clinical mea-
surements. For instance, Table 1 shows the American
Heart Association (AHA) [4] guidelines for phenotypic
classification of hypertension based on systolic and dia-
stolic blood pressure observations. Although this classifi-
cation system appears relatively straightforward, it is
important to note that this represents only one of a
number of different classification systems for the same
phenotypic phenomenon (systemic hypertension), some
of which include the informal expert-opinion of the
clinicians themselves. As such, the same patient clini-
cal observations might be categorized as “hypertensive”
using one standard but categorized as “normal” using a
different standard. This leads to problems when attemp-
ting to compare and integrate patient data between stu-
dies or even between different clinicians/centers in the
same study, particularly when the annotation (“normal”
versus “hypertensive”) is published in the dataset in lieu
of the primary clinical measurements. To complicate
matters further, health sciences communities continu-
ously modify and update their guidelines in the light of
new biomedical knowledge. For example, Global Initia-
tive for Chronic Obstructive Lung Disease (GOLD) was
comprehensively updated in 2006 which lead to different
criteria for phenotypic classification with respect to pre-
vious years [5]. As such, even data from the same insti-
tution may be subject to slightly different interpretations
over time. These interpretations become encoded in
published datasets and, unfortunately, it is rare for the
standards under which an interpretation was made to be
rigorously recorded together with that interpretation. This
issue leads to potentially erroneous re-interpretation of
data, particularly when integrating data over long periods
of time, or between disparate institutions. The emergence
and uptake of Semantic Web technologies such as OWL
and RDF by the Life Sciences, and the ability to use these

Table 1 American Heart Association classification for
systolic and diastolic blood pressure [4]

Classification Systolic pressure Diastolic pressure

mmHg kPa mmHg kPa

Normal 90-119 12-15.9 60-79 8.0-10.5

Pre-hypertension 120-139 16.0-18.5 80-89 10.7-11.9

Stage 1 140-159 18.7-21.2 90-99 12.0-13.2

Stage 2 ≥160 ≥21.3 ≥100 ≥13.3

Isolated systolic hypertension ≥140 ≥18.7 <90 <12.0
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technologies to enable dynamic classification of data, pro-
vides exciting opportunities for exploring novel ways to
evaluate the feasibility of doing such clinical annotation
dynamically.
In this largely methodological study we undertook

to create an environment in which “legacy” clinical data
and annotation terminologies are modified such that
they can be used together to automate the dynamic "on-
demand" analysis and logical classification of patients
into various cardiovascular disease risk groups under a
variety of clinical classification guidelines. Specifically,
we undertook a data remodeling process, migrating data
from traditional databases and spreadsheets into a
graph-based data framework (RDF); we utilize OWL to
extend the cardiovascular-specific portion of an existing
clinical annotation system namely GALEN [6] such that
it can be utilized as an interpretation layer over this pa-
tient data; we then created a series of analytical Web
Services which will be used to execute the statistical ana-
lyses of patient data in cases where pure logical reasoning
is insufficient for classification; and finally, we executed
our automated analyses/classifications, and compared
them to the manual annotations done by an expert cardio-
vascular clinician two decades prior. Any differences were
then examined in detail to determine the source of the
discrepancy, and we evaluate and discuss our ability to
modify the interpretive layers to account for differences
between the clinician's manually annotated data and the
automated annotations.

Methods
Datasets and data collection
The dataset used for this experiment consists of clinical
observations of a cardiovascular patient cohort collected
from a number of hospitals in Nebraska, USA from the
period from August 1986 to July 1989. A total number
of 636 unique patients with a total of 1723 encounters
were recorded. The database was originally collected as
a part of a study comparing the cardiovascular disease
risk-profile changes over a period of one year post pro-
cedure/surgery for patients undergoing Coronary Allograft
Bypass Graft (CABG) versus those undergoing percuta-
neous coronary intervention (PCI). An individual's risk
can be assessed using a number of available risk-prediction
tools such as Framingham [7], and Reynolds Risk Scores
[8], which incorporate information on established risk
factors such as blood lipids, Blood Pressure, Body Mass
Index, age, gender, and smoking status. In this dataset two
risk-assessment schemes were used to annotate patient

data: a binary risk score ("at risk", "not at risk") assigned to
individual clinical observations such as blood pressure,
and an overall cumulative risk score using the Framing-
ham risk measurement (see results section). The clinical
observations used in this analysis were as follows:

Age, Gender, Height, Weight, Body Mass Index (BMI),
Systolic Blood Pressure (SBP), Diastolic Blood
Pressure (DBP) Glucose, Cholesterol, Low Density
Lipoprotein (LDL), High Density Lipoprotein (HDL),
Triglyceride (TG)

As an exemplar, the first row of the data set is shown
in Table 2. The intended meaning of acronyms for each
column header (e.g., SBP for Systolic Blood Pressure)
was confirmed with the clinician who owned the dataset.
The table contains two types of data: clinical observa-
tions (un-shaded cells), and the clinician-assessed binary
risk - 1 or 0 for "at risk" or "not at risk", respectively
(shaded cells; e.g., HDL GR for High Density Lipoprotein
Risk Grade). The final column (RISK GR) indicates the
ternary overall risk assessment - 1 for low, 2 for moder-
ate, and 3 for high risk - which the clinician indicated to
us was based on the Framingham Risk Score algorithms.

Overview of approach
In 2005 we proposed a semantic data classification ar-
chitecture in which raw clinical measurements would
be "lifted" through increasingly conceptual/interpretive
layers of ontologies in order to complete an analysis,
evaluation, or query [9]. This would be achieved through
a combination of logical reasoning over the data and
ontologies, in parallel with the discovery of Web Ser-
vices that aggregated and analyzed the data, thereby
dynamically identifying individuals logically compliant
with the ontological classes at each layer. This hybrid
approach is necessary because (useful) OWL reasoning
is limited to a decidable fragment of first-order logic -
effectively, it is possible to define the conditions under
which an individual would be a member of a particular
set/category, and it is possible to infer through a series
of logical statements about the data, whether those con-
ditions exist for a particular data record. However, while
it is possible to infer that particular data properties must
exist as a logical consequence of the existence of other
data properties, it is not possible to derive data through
algorithmic calculations using OWL reasoning alone.
For these cases, we have written and published a series
of Semantic Web Services that consume clinical data,

Table 2 Part of the first row of dataset used in Microsoft excel sheet

SBP DBP TOTAL
CHOL

HDL TG AGE GENDER HEIGHT WEIGHT TG
GR

HDL
GR

LDL
GR

CHOL
GR

BMI
GR

DBP
GR

SBP
GR

RISK
GR

128 80.1 227 55 84 77 M 1.8288 78.1818 0 0 0 1 0 0 0 1
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execute various algorithmic analyses on them, and then
return the dataset with new, derived data properties
attached. These derived properties can then be used by
the OWL reasoner to further classify the clinical data
and "lift" it into increasingly complex clinical phenotypic
categories.
While our approach is not reliant on any additional

technologies for its success, one of our secondary goals
in undertaking this project was to demonstrate that cer-
tain frameworks and practices established by our group
could be used, with very little effort, to automate this
interaction between OWL models and analytical Web Ser-
vices. This automation reduces the complexity of analysis
and evaluation of clinical data for the end-user. While the
iterative process of reasoning, identification of appropriate
analytical algorithms, execution of those algorithms, re-
integration of output data, and re-reasoning could be done
entirely manually (as would be the current practice), au-
tomating the "semantic lifting" process is enabled by
two recently published pieces of technology - Seman-
tic Automated Discovery and Integration (SADI) and the
Semantic Health And Research Environment (SHARE).
SADI is a set of best-practices for modeling Semantic

Web services in the scientific domain [10]. It is designed
to be used in conjunction with OWL ontologies to dis-
cover Web Services capable of generating the properties
that comprise an OWL class definition. Those Services,
once discovered, are invoked by simple HTTP POST of
RDF-formatted data.
SHARE is a SADI client application that allows SADI

services to be discovered during the process of SPARQL-
DL query evaluation [11]. Effectively, SHARE augments
OWL reasoners and SPARQL query engines with the

ability to retrieve data dynamically generated from remote
data sources at the time of query execution and reasoning.
When an ontological concept is present in a SHARE
query, it will exhaustively "decompose" that concept into
its complete set of property restrictions, importing any
additional ontological classes as necessary. Once "decom-
posed", it then utilizes SADI to discover and execute ser-
vices capable of creating those properties based on any
data SHARE already has in its database.
Figure 1 provides a diagrammatic representation of the

"semantic lifting" process. By referring to an ontological
concept in the SPARQL query (Layer 4 in the diagram),
raw data is "lifted" through the ontological layers via an
iterative process of reasoning, service discovery, and exe-
cution. This is our first attempt to deploy such an archi-
tecture over bona fide clinical data.
In order for this approach to be successful, we must

first migrate the legacy data, and any legacy terminolo-
gies, into a more rigorous logical framework that is ca-
pable of being interpreted by OWL reasoners. We will
now describe that process in detail.

Ontologies used
Measurement unit ontology (MUO)
While this study does not (conspicuously) take advan-
tage of the semantic encoding of measurement units, we
wish to nevertheless fully describe the process by which
we transformed legacy data into a semantic framework.
Since neither RDF nor OWL have a built-in method for
representing units, it was necessary to select an approach
to unit representation that would enable us, in future
studies, to take advantage of their inherent semantics du-
ring query and reasoning.

Layer 1:
Blood Pressure 

Layer 2:
High Risk Blood 
Pressure

Layer 3:
High Risk 
Framingham

Layer 4:
DL Query 

Database 1 Database 2 Analytical 
Algorithm

SADI SADI

4

2
3

1

Figure 1 CardioSHARE architecture: increasingly complex ontological layers organize data into more abstract concept.
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MUO is a modular ontology specifically designed to re-
present units in a combinatorial fashion. MUO includes
the definitions of the classes and properties conforming to
the general design principles of upper-level Ontology
DOLCE [12]. The ontology models mainly three disjoint
entities: 1. Units of measurement; 2. Physical qualities that
can be measured, and 3. Common prefixes for units of
measurement. MUO also defines URIs for the most com-
mon units of measurement, “physical qualities” [13], and
prefixes, which can be shared and reused in different do-
main ontologies. Every unit of measurement is attributed
to a physical quality. Two types of units are generally dealt
with in MUO: Base Units and Derived Units are defined
as follows:

Base Units are the units that are not derived from any
other unit. Base units can be used to derive other units.
The international System of Units (SI) It should be noted
that even though ‘kilogram” is considered a base unit in
SI, it is composed of kilo prefix plus base unit “gram”. In
this sense, kilogram is an exception of a unit which is
considered as base unit in SI system. However, to stick to
our design schema, we considered “gram” as the base and
defined kilogram as an extension of it,a defines a number
of independent base units such as meter (m) [14].
Derived Units are the units obtained from combination
of the base units of based units to represent “derived
physical quantities” as defined by DOLCE [12]. In the
formal representation of physical qualities and associated
units, MUO defines property muo:derivesFrom to
express the relationship between the derived unit and the
units it is derived from. Derived Units are further divided
into simple and complex derived units [14].
Simple Derived Units are the units that are derived
from exactly one base unit [14]. For instance, the
millimeter (mm) can be derived from meter (m). These
are units that can be defined by attaching a Prefix to
base Units. MUO also recognizes a different type of
base unit that although derived from exactly one base
unit, has a different dimension. For instance
SquareMeter(m2). For such cases another property
called muo:dimensionalSize is added to account for the
dimensionality differences.
Complex Derived Units are the units that are derived
from more than one base unit [14]. For instance
consider Body Mass Index(BMI) which is a statistical
measure which compares a person's weight and height.
BMI is used to estimate a healthy body weight based
on a person's height. BMI in International System of
Units (SI) [15], is defined as follows [16]:

BMI ¼ mass kgð Þ
height mð Þð Þ2 ð1Þ

BMI defined in this way, has the units kg/m2 and this
unit can be defined as follows using MUO:

:kilogram-per-meter-square rdf:type muo:
ComplexDerivedUnit;

muo:derivesFrom ucum:kilogram;
muo:derivesFrom :meter-squared.

:meter-squared rdf:type muo:SimpleDerivedUnit;
muo:derivesFrom ucum:meter;
muo:dimensionalSize "2"^^xsd:float.

As shown above, MUO proposes a clear and conveni-
ent framework for defining new units of measurements
in terms of existing ones, and this was used to derive
any units required by our investigation not explicitly
defined by the current version of the MUO.

GALEN
The GALEN Common Reference Model (CRM) is a rich
compositional ontology of the medical domain, covering
anatomy, function, pathology, diseases, symptoms, drugs,
and procedures [6]. It was developed by the Department
of Computer Science at the University of Manchester [17].
It is available in both GRAIL [18] and OWL formalisms.
The version used in this study is the latest OWL version
available, dated August 2011 consisting of 2749 classes
and 500 object properties. Several groups have investi-
gated various aspects of the GALEN Ontology including
expressivity, representation, and suitability for specific ap-
plications (e.g., [19]). Based on these studies, and our own
investigation of the suitability of its terminological do-
main, we selected GALEN as our core Ontology descri-
bing cardiovascular concepts. In this paper we primarily
focus on concepts in GALEN that are relevant to car-
diovascular risk monitoring, and describe an approach for
re-factoring and extending the cardiovascular-relevant
classes of GALEN such that they can be used to automat-
ically classify clinical data.

Semanticscience integrated ontology (SIO)
The SemanticScience Integrated Ontology (SIO) is an ef-
fort to create a coherent formal ontology with rigorous
attention to concrete and clearly-stated design patterns
[20]. SIO takes the "realist" position in which things exist
independently of conceptual or linguistic schemes, and
firmly acknowledges that terms used in a discourse de-
notes one or more individuals or classes, for which the
latter may have zero or more instances [21].
The choice of properties in development of any onto-

logy is crucial and non-trivial [22]. The use of a minimal
set of re-usable relations is essential in building consistent,
interoperable and well-formed knowledge bases [23]. For
instance, the following two OWL property constraints
might be considered to describe the same data feature:
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1. Patient hasAttribute someValueFrom
SystolicBloodPressure

2. Patient hasSystolicBloodPressure someValueFrom
Attribute

With respect to re-usability these two representations
are considerably different. When designing ontologies to
support logical reasoning, it is considered good-practice
to encode the complexity of data in class definitions
(statement #1) rather than through proliferation of prop-
erties (statement #2) [23]. The relationships defined by
SIO are highly generic (e.g., "has Attribute", defined by
SIO's property SIO_000008), and this forces us, as the
data modelers, to follow these good design patterns and
formalize data-types through elaboration of ontological
classes which are, whenever possible, distinct in their
properties from all other ontological classes. We adhered
to this design principle as closely as possible in this study.
Finally, SIO is extensively used by analytical tools ex-

posed using SADI Semantic Web Services, and thus our
adoption of SIO also allows us to more easily take ad-
vantage of existing analytical tools published through
the SADI framework, as well as rapidly publish and inte-
grate new tools as-needed for our study.

Unit representation in OWL-RDF
When extracting datasets from disparate sites, particu-
larly over international boundaries, it is not uncommon
for the de facto unit of measurement to be different for
any given clinical observation. Therefore, we must define
a practical approach that allows clinical measurements
to carry different units while not sacrificing interope-
rability. The lack of a standard approach to represent
measurable quantities in RDF has led to a number of dif-
ferent configurations being used in different ontologies
and RDF data repositories (see [14] for more information).
In our introduction of the MUO, we alluded to the

fact that in context of the Semantic Web, representing
physical quantities using ontologies is a non-trivial prob-
lem. RDF does not have any internal support for repre-
senting a literal value together with its unit of measure
[14]. RDF literal nodes can represent numeric values,
such as "120" or "141.5" without units, or value-unit pairs
can be as strings of characters (e.g. “120 mmHg”); however,
the "semantics" of the unit of measure is lost in both of
these approaches, compromising our ability to accurately
integrate datasets with heterogeneous measurements.
GALEN itself has a rather limited coverage of measu-

rement units, and lacks a systematic framework to define
new ones, or create composite units from basic ones. For
instance, the GALEN concept MilligramPerDeciLitre, is
defined as a subclass of the concepts ConcentrationUnit,
but lacks any indication that this unit is composed of
combination of two base units (gram and liter) and two

prefixes (milli and deci). Similarly, SIO incorporates units
from the Unit Ontology (UO) [24] in parallel with qua-
lities from Phenotypic Quality Ontology (PATO) [25] for
representing quantifiable measurements. However, like
GALEN, SIO, UO, and PATO lack any formal framework
for describing the relationship between related units, or
defining new ones. Thus, in order to make use of such
rich semantics in our analyses, we avoided the use of
GALEN measurement units, preferring those defined by,
or defined using, the MOU.
Nevertheless, though MUO does provide a method for

defining the relationships between units and their de-
rivatives, it does not provide a semantic framework for
representing conversions between different units of the
same "type" (e.g., metric and imperial weights). Since this
was a potential problem in our analysis, and is a signi-
ficant problem in science generally, we created a series
of publicly-accessible Semantic Web Services capable
of automatically detecting when unit-conflicts exist
in an aggregated dataset, and automatically resolving
those conflicts to whichever canonical measurement unit
is desired.

Ontological mapping, extensions, and algorithmic
services
The set of OWL classes that are required to describe our
dataset are as follows:

Age, Sex, Mass, Height, BodyMassIndex,
SystolicBloodPressure, DiastolicBloodPressure,
BloodSugarConcentration, SerumCholesterol
Concentration, SerumLDLCholesterolConcentration,
SerumHDLCholesterolConcentration,
SerumTriglycerideConcentration.

We explored GALEN to search for the cardiovascu-
lar concepts listed above, and found it to be sufficiently
comprehensive in terms of coverage of these concepts;
however there were some minor differences in termi-
nology between the labels in our dataset and GALEN
terms. For example, the term SerumHDLCholesterol ap-
pears in GALEN, while the acronym HDL was used in
our clinical dataset. Similarly the concept Glucose exists
in GALEN while BloodSugarConcentration was the label
applied to the (semantically) equivalent measurement in
our clinical dataset. Such discrepancies were manually
mapped based on consultation with expert clinicians,
using their preferred labels. Our intent was to select the
label/class-name that best semantically described the
intended meaning of the concept; while we admit that
this approach is somewhat arbitrary, we could think of
no way to reliably automate these mappings.
The concept Height did not exist in GALEN, though

the class Length did; to avoid over-loading the semantics
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of the existing GALEN class, we defined a new class
Height, and made this a subclass (owl:subClassOf ) of
GALEN's Length.
Our proposed "layered" semantic framework requires us

to identify concepts which are "core" (based on direct
observations - Layer 1 of Figure 1), and concepts which are
"derived" (based on calculations over core observations -
Layer 2 and higher). For instance, the current lipid meas-
urement protocols do not generally measure LDL particles
directly but instead estimate them using the Friedewald
equation [26]:

H≈C � L� kT ð2Þ

where H is HDL cholesterol, L is LDL cholesterol, C is
total cholesterol, T is triglycerides, and k is 0.20 if the
quantities are measured in mg/dl and 0.45 if in mmol/l
[27]. Thus, Triglycerides and Cholesterol are "core" mea-
surements, while LDL is a "derived" measurement. Simi-
larly, BMI is calculated from a relationship between height
and mass, and would be considered "derived". We manu-
ally examined the protocols for obtaining the measure-
ments in our dataset and consider the following GALEN
classes to represent "core" measurements:

Age, Sex, Mass, Height, SystolicBloodPressure,
DiastolicBloodPressure, BloodSugarConcentration,
SerumCholesterolConcentration, SerumHDL
CholesterolConcentration, SerumTriglyceride
Concentration.

We henceforth will refer to these Classes as the "Groun-
ding Classes" - classes whose members will be directly tied
to the dataset through explicit declaration of a piece of
data as being a member of that Class.
The OWL definition of each Grounding Class was cre-

ated by extending the corresponding GALEN Class def-
inition to include the defining features of the "Attribute"
OWL Class from SIO; thus all members of these classes
will (logically) be both GALEN individuals, and SIO
Attributes. This involved adding axioms for the SIO pro-
perties hasMeasurement, hasUnit and hasValue to the
GALEN class definitions.
The example below shows how GALEN class for Sys-

tolic Blood Pressure is extended using external classes
and properties (the prefix before “:” shows the onto-
logical namespace of each entity; the prefix "cardio" is
the namespace used to indicate the ontological classes
we have defined)

cardio:SystolicBloodPressure:
Galen:SystolicBloodPressure and
(sio:hasMeasurement some
cardio:pressuremeasurement)

cardio:pressuremeasurement:
sio:measurement and
(sio:hasUnit some
“muo:unit of pressure” and
hasValue some Literal)

The remainder of the measurements in our clinical
dataset are "derived", based on calculations performed
over the core measurements, and their corresponding
"Derivative Classes" in GALEN are:

SerumLDLCholesterolConcentration BodyMassIndex

The class definition for these was generated using the
same approach as for the Grounding Classes; however,
since members of these Derivative Classes can only be
determined through algorithmic analysis of 'core' measure-
ments, we also created a set of SADI Semantic Web Ser-
vices that expose the necessary algorithms, consuming
members of the relevant Grounding Classes, and genera-
ting members of the Derivative Classes in response. Thus,
data from Layer 1 can be "raised" into Layer 2 Classes (and
above) through invocation of these algorithmic services.

Refactoring the legacy dataset
Assumptions about data collection and measurements
Since the exact protocols describing how the clinical
observations were made were not available, we made the
assumption that they were derived from the most com-
mon measurement protocols. For example, for blood
pressure measurements, we assumed that the measure-
ments were made in a clinical setting (as opposed to cas-
ual home monitoring), using conventional mercury
manometers applied on the left arm. The units used for
each measurement were not explicitly stated in the data-
sets (Table 2) itself, so we made a best-guess based on
the range of the measurement values and confirmed
those with clinical experts. The units used to represent
measurements are shown below.

Height: meter
Weight: kilogram
BodyMassIndex: kilogram per square meter
SystolicBloodPressure, DiastolicBloodPressure:
millimeter of mercury column
SerumHDLCholesterolConcentration,
SerumLDLCholesterolConcentration,
SerumTriglycerideConcentration,
SerumCholesterolConcentration,
BloodSugarConcentration: milligram per deciliter

Data schema
Our primary objective in designing an ontological model
to represent the clinical data was to support dynamic re-
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interpretation of that data under a variety of different
hypothetical scenarios (e.g., re-interpretation as analy-
tical or classification standards change over time). Im-
portantly, it was not our intention to design a data
model with sufficient complexity to represent every as-
pect of a clinical record; rather we were focused on
modeling individual clinical measurements in a way that
would allow them to be automatically analyzed and in-
terpreted. Constraining ourselves to modeling only this
small aspect of the clinical record should, we believe,
allow existing comprehensive clinical record models to
be easily adapted to the framework we propose here.
Figure 2 shows the schematic view of the data model,
described as follows:

1. We defined a class "PatientRecord", as a subclass of
the SIO "record" class. PatientRecord will include all
of the observations about a patient, keeping in-mind
that we considered each patient-encounter to be a
different patient record for the purposes of this study
(i.e., the longitudinality of the data was not
considered).

2. Patient clinical observations were divided into
Grounding Classes and Derived Classes as described
above, and were modeled as owl:Individuals of these
classes, with the corresponding unit and value
attached by the SIO hasUnit and hasValue properties.

3. Each resulting Grounding Class member was
attached as an attribute of the PatientRecord using
the hasAttribute property from SIO.

Finally, using MUO methodologies (described above),
we defined the units kilogram, kilogram-per-meter-
squared, millimeter-of mercury-column, milli-gram-per-
deci-liter, and milli-mole-per-liter, which were used for
various individual studies as described in the Results
section.

Approach to binary patient classification (“at risk” versus
“not at risk”)
In our dataset the clinical researchers used a binary system
to classify patients as being "at risk" or "not at risk" based
on each of the following measures: Blood Pressure,
Cholesterol, HDL, LDL, Triglycerides, and BMI. Thus, we
created OWL classes representing each of these categories -
for example, "HighRiskSBPRecord" to represent patient
records reflecting a high-risk score with respect to Systolic
Blood Pressure, and "LowRiskSBPRecord" to represent
patient records reflecting a low-risk score with respect to
Systolic Blood Pressure. These categories would then be

PatientRecord

cardio:Mass

owl:Literal

sio:hasUnit

sio:hasValue

cardio:Height

cardio:SerumCholesterolConcentration

cardio:SerumTriglycerideConcentration

cardio:SerumHDLCholesterolConcentration

cardio:DiastolicBloodPressure

cardio:SystolicBloodPressure

cardio:BloodSugarConcentration

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:hasAttribute

sio:has measurement

sio:Measurement

muo:Unit

Figure 2 Data schema using concepts in legacy ontologies. The additional features shown on the Mass class are present on all classes in that
row, but are hidden to improve readability.

Table 3 American Heart Association classification for
systolic and diastolic blood pressure [4]

Classification Systolic pressure Diastolic pressure

mmHg kPa mmHg kPa

Normal 90-119 12-15.9 60-79 8.0-10.5

Pre-hypertension 120-139 16.0-18.5 80-89 10.7-11.9

Stage 1 140-159 18.7-21.2 90-99 12.0-13.2

Stage 2 ≥160 ≥21.3 ≥100 ≥13.3

Isolated systolic hypertension ≥140 ≥18.7 <90 <12.0
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used in SHARE SPARQL queries to trigger data "lifting",
and to compare the result of the resulting automated
categorization of patient records with the expert annotation
of the clinical researchers two decades ago.
Working through one example in detail - Table 3

shows the American Heart Association's classification of
systolic and diastolic blood pressure values. Although
they indicate five different ranges (Normal, Prehyperten-
sion, Stage 1 hypertension, etc.) the clinical researchers
who generated our dataset had only two categories - "at
risk", and "not at risk". Through discussions with the
researchers, they indicated that they considered Normal
and Prehypertension to be "not at risk" (in Table 3) and
all other categories to be "at risk". In Tables 3 through 6
the light shaded area represents “low risk” whereas the
dark shaded area represents the “high risk” groups as
defined by the guidelines. As such, we modeled an onto-
logical class "HighRiskSBPRecord" in OWL as follows:

HighRiskSBPRecord =
cardio:PatientRecord and

(sio:has Attribute some
(cardio:SystolicBloodPressure and sio:
hasMeasurement some
(sio:Measurement and
(sio:hasUnit value cardio:milli-meter-of-
mercury-column) and
(sio:hasValue some double
[> = "140.0"^^double]))))

In Tables 3 through 6 the light shaded area represents
“low risk” whereas the dark shaded area represents the
“high risk” groups as defined by the guidelines.
In a somewhat different scenario, Table 4 shows the

American Association risk stratification for cholesterol,
HDL and Triglycerides, each of which has three categories -
high, medium, and low - compared to our clinician's binary
categorization of high and low. As above, we attempted to
create OWL classes to model these risks; however, in this

case we had no guidance from the clinician as to what to do
with intermediate measurements, as their original policy
had not been recorded. As such, in our initial (somewhat
trivial) analysis, we defined "high risk" and "low risk" records
as being congruent with the high and low risk categories of
the official guidelines, and ignored all data in the intermedi-
ate category. We describe how we modified these models,
and our ability to determine the actual clinician's risk thresh-
old, in the Results section.
Modeling BMI and LDL risks were slightly more com-

plex, since these two measurements are derived by algorith-
mic analysis of one or more 'core' measurements. BMI is
calculated using a person’s weight and height (Equation 1)
[15], and the guidelines were modeled in OWL following
the American Heart Association guidelines in Table 5. The
resulting OWL classes representing BMI and HighRiskBMI
measurements respectively were as follows:

cardio:BodyMassIndex =
galen:BodyMassIndex and
(sio:hasMeasurement some cardio:measurement)

cardio:measurement =
sio:measurement and
(sio:hasUnit some cardio:UnitOfAreaDensity and
sio:hasValue some Literal)

Table 4 American Heart Association classification for cholesterol, HDL, and triglycerides [28,29]

Level (mg/dl) Level (mmol/L) Interpretation

Cholesterol <200 <5 Desirable level corresponding to lower risk

200-240 5.2-6.2 Borderline high risk

>240 >6.2 High risk

HDL <40 for men, <50 for women <1.03 Low HDL cholesterol, heightened risk

40-59 1.03-1.55 Medium HDL level

>60 >1.55 High HDL level, optimal condition

Triglyceride <150 <1.69 Normal Range: low risk

150-199 1.70-2.25 Borderline high

200-499 2.26-5.65 High

>500 >5.65 Very high: high risk

Table 5 American Heart Association classification for
BMI [30]

BMI (kg/m2) Category

Below 18.5 Underweight

18.5 to 24.9 Healthy weight

25.0 to 29.9 Overweight

30 to 39.9 Obese

40 and above Morbidly obese
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HighRiskBMI=
PatientRecord and
(sio:hasAttribute some
(cardio:BodyMassIndex and sio:hasMeasurement some
(sio:Measurement and
(sio:hasUnit value cardio:kilogram-per-meter-
squared) and
(sio:hasValue some double[> = 25.0]))))

The schematic diagram of the SADI Web Service inter-
face for BMI calculation is shown in Figure 3. The input
and output of the Service is as follows (sample data, and
instructions on how to send this data to the SADI service,
are provided in the Supplementary Information [27]):

Input:

(sio:hasAttribute some cardio:Height) and
(sio:hasAttribute some cardio:Mass)

Output:

sio:hasAttribute some
(cardio:BodyMassIndex and
(sio:hasMeasurement some ( sio:hasMeasurement and
(sio:hasUnit value cardio:kilogram-per-meter-squared and
(sio:hasValue some Literal)))

Subsequently, we calculated LDL in a similar fashion
using SADI-compliant Semantic Web Services. . LDL is cal-
culated based on HDL measurements via the Friedewald
equation (Equation 2 [26]) and the guidelines were modeled
in OWL following the guidelines in Table 6. Note that the
Friedewald equation includes a constant that is sensitive to
the units HDL is measured in; however since we are expli-
citly declaring and automatically converting units, this ser-
vice is able to automatically determine which is the correct
constant to use in every case.

Approach to ternary risk assessments
In addition to the somewhat trivial binary risk assess-
ments described above, we wish to determine whether
more complex clinical phenotype and risk classifications
can be automated using the same infrastructure. For ex-
ample, some clinicians are more interested in estimating
the probability of a patient developing a certain type of
cardiovascular disease within a specific period of time.
Researchers have developed a variety of algorithms for
estimating a patient’s statistical probability of death
(from cardiovascular disease) or of developing a variety
of cardiovascular diseases, with one of the most widely
adopted being the Framingham Risk Scores [8]. There are
a number of different Framingham Risk Scores centered
around different cardiovascular diseases (e.g., Congestive
Heart Failure versus Atrial Fibrillation), the period of time
under which the risk assessment is calculated (e.g., 5 year
versus 10 year risk), and the precise Framingham standard
used. For instance, the same patient clinical observations
might be categorized as “high risk” using Canadian Stan-
dards, but categorized as “medium –high risk” using
American or European Standards.
To test our ability to automatically classify patients into

complex risk-stratification models such as Framingham, we
created OWL models of the Framingham Risk Scores for
General Cardiovascular Disease in Men [31]. Table 7 shows
the scoring framework proposed by the Framingham study
to calculate the estimated risk score for General Cardiovas-
cular Disease in men based on the mean values for clinical
observations. Similar tables exist for women and other
cardiovascular diseases such as Arterial Fibrillation,
Congestive Heart Failure, Coronary Heart Disease,
General Cardiovascular Disease, Hard Coronary Heart
Disease, Intermittent Claudication, Recurring Coronary
Heart Disease, Stroke After Atrial Fibrillation.
In our dataset, clinician had annotated the records

with three scores: “high risk”, “low risk” and “moderate
risk”. For this study, we only considered the records of

sio:Measurement

cardio:Mass cardio:Height

sio:Measurement

cardio:Mass cardio:Height

cardio:BMI

Figure 3 The schematic diagram of the SADI web service interface to the BMI calculation service. The property-restriction imposed on the
output, when detected by SHARE, triggers the discovery and invocation of the Service that attaches the BMI class with appropriate units and
value properties attached to it.
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male patients and records with no missing values for the
various observations required to make a risk evaluation.
The conventional classification used in Canadian health

care system is based on three levels of quantization (0–9:
low Risk, 10–19: Medium risk, > = 20: High risk) over the
accumulated individual risk score (Table 8).
The input and output classes for SADI web service to cal-

culate the Framingham Risk Score are defined as follows:

Input:

PatientRecord and
(sio:hasAttribute some cardio:Age) and
(sio:hasAttribute some cardio:
SerumCholesterolConcentration)and
(sio:hasAttribute some cardio:
SerumHDLCholesterolConcentration) and
(sio:hasAttribute some cardio:SystolicBloodPressure)

Output:

sio:hasAttribute some
(GeneralCVDFraminghamRiskScore and
(sio:hasValue some Literal))

Since an OWL class representing Risk Score did not
exist in any of the Ontologies we were using, we defined
a class named RiskScore and a second, GeneralCVDFra-
minghamRiskScore, which is a subclass of the former.

Results
Evaluation of automated binary risk classification
Evaluation of our ability to dynamically reproduce the ori-
ginal clinical classifications, using the approaches described
above, was undertaken as follows: In the dataset, when the
clinician had indicated the patient was "at risk" for a given
type of observation, this was represented as a numeric "1",
while if they indicated the patient was not at risk, we repre-
sented this as a numeric "0". We then used our "HighRisk"
and "LowRisk" OWL Classes in SPARQL queries, calling-
up the clinician-annotated numerical score in the same
query. For each HighRisk query, we would expect the clini-
cians score to be "1" in all cases if our automated analysis is
functioning correctly, and should be "0" in all cases for the
LowRisk queries. Figure 4 shows two queries for SBP mea-
surements and their clinician-assigned risk grade, together
with a screen-shot of the abbreviated output for each query.
If the system is calculating risk correctly, then all results of
the query for high risk (Figure 4A) should be assigned a
score of "1" by the clinician, and similarly the results of the
query for low risk (Figure 4B) should be assigned a score of
"0". Similar queries were issued for DBP, Chol, HDL, TG,
and BMI attributes. Table 9 shows the comparison between
manual and automatic risk classification for all attributes in
the dataset. In most cases, our automated analysis of the

Table 7 Estimated risk of general cardiovascular disease in men [31]

Points Age, y HDL Total cholesterol SBP not treated SBP treated Smoker Diabetic

−2 60+ <120

−1 50-59

0 30-34 45-49 <160 120-129 <120 No No

1 35-44 160-199 130-139

2 35-39 <35 200-239 140-159 120-129

3 240-279 160+ 130-139 No

4 280+ 140-159 Yes

5 40-44 160+

6 45-49

7

8 50-54

9

10 55-59

11 60-64

12 65-69

13

14 70-74

15 75+

Table 6 LDL guidelines [29]

Level (mg/dl) Level (mmol/L) Interpretation

<129 <3.3 Desirable level

130-159 3.3-4.1 Borderline high risk

>160 >4.1 High risk
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data was entirely concordant with the expert annotations of
the clinician; however, there were several cases of discrep-
ancy as discussed in the next section. More detailed query/
result pairs, plus before/after categorization data for all clin-
ical observations can be found as supplementary material
at [27].

Discrepancies between automated and expert binary
classifications
Systolic and diastolic blood pressure risks
Classifying patients as being “high risk” or “low risk”
based on blood pressure was consistent with manual
curation of experts in every case.

LDL
Similar to SBP and DBP, for LDL manual and automatic
classifications were consistent.

Total cholesterol risk
Some patient risk classifications differed between our
automated analysis and the expert annotations. In each
case, the risk score fell between 5 and 5.2. Interestingly,
in the American Heart Association guidelines (Table 4)
there is a gap in their measurement-continuum, resul-
ting in a lack of any interpretation-guidance for mea-
surements between 5 and 5.2. Our automated analysis
therefore revealed that the clinical expert had com-

pensated for this gap by assigning these measurements
to the "low risk" category. By modifying our OWL model
to change the low risk cut-off level from 5 to 5.2, we
were then able to achieve perfect correspondence with
the clinical expert; moreover, this correspondence shows
that the clinician had used this 5.2 boundary as their
upper limit for low-risk when undertaking their binary
classification.
Original AHA guideline in OWL:

HighRiskCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> = 5.0]))))

LowRiskCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio: SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[< 5.0]))))

Modified model:

HighRiskCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> = 5.2]))))

LowRiskCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio: SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[< 5.2]))))

HDL and Triglyceride risk
Having no guidance on how to build the model in these
cases where the clinical (binary) classification had no
correspondence to the three or four level categorization
system of the official guidelines, we first modeled the
extreme cases (high/low, ignoring borderline/medium
categories), expecting to find complete congruence
with the expert annotation at least for these patients.
Surprisingly, in neither case did our automated cate-
gorization match the expert clinical categorization.

Table 8 10-year risk for general CVD by total
Framingham Risk Score [31]

Total points 10-year risk

<9 <1%

9 1%

10 1%

11 1%

12 1%

13 2%

14 2%

15 3%

16 4%

17 5%

18 6%

19 8%

20 11%

21 14%

22 17%

23 22%

24 27%

25 or more ≥30%

Samadian et al. Journal of Biomedical Semantics 2012, 3:6 Page 12 of 18
http://www.jbiomedsem.com/content/3/1/6



We determined (by manual inspection) that in these
cases the clinician did not follow any of the guideline
category boundaries for their binary classification ra-
ther, they "invented" boundaries reflecting their per-
sonal opinion of risk. In the case of HDL, the
boundary was well under the official lower limit
(0.89 mmol/L compared to the official boundary of
1.03 mmol/L), whereas for Triglyceride measurements
the clinician chose a cutoff between the guidelines
range for "High" risk (2.26-5.65 mmol/L). The original
OWL models, and the adjusted OWL models are
shown below. The adjusted models provided perfect
correspondence with the expert clinical classification
when used in our automated framework.

HDL
Original AHA guideline in OWL:

HighRiskHDLCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumHDLCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[<= 1.03]))))

LowRiskHDLCholesterolRecord=
PatientRecord and
(sio:hasAttribute some

A

B

Figure 4 SPARQL queries (Prefixes not shown) followed by a small snapshot of the results for automatic classification of patients into
“high risk” (A) and “low risk” (B) for Systolic Blood Pressure. Note that, because of unit conversion layer, the units used to model the
guideline may or may not be the same as the unit used to model clinical data.
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(cardio: SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> 1.55]))))

Modified model:

HighRiskHDLCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumHDLCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[<= 0.89]))))

LowRiskHDLCholesterolRecord=
PatientRecord and
(sio:hasAttribute some
(cardio: SerumCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> 0.89]))))

Triglyceride
Original AHA guideline in OWL:

HighRiskTriglycerideRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumTriglycerideCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> = 2.26]))))

LowRiskTriglycerideRecord=
PatientRecord and
(sio:hasAttribute some
(cardio: SerumTriglycerideConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[<1.69 ]))))

Modified model:

HighRiskTriglycerideRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:SerumTriglycerideCholesterolConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[> = 2.63]))))

LowRiskTriglycerideRecord=
PatientRecord and
(sio:hasAttribute some
(cardio: SerumTriglycerideConcentration and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:mili-mole-per-liter) and
(sio:hasValue some double[<2.63 ]))))

Body Mass Index risk
Similarly, we determined from our results that the
guideline used by the expert in their classification was
more relaxed than the AHA guidelines. By changing the
threshold in our OWL class definition from 25 to 26, we
were able to achieve perfect correspondence with the
expert’s annotations. It is important to point-out, with
respect to this measurement, that we did not need to
modify the analytical Web Service in order to achieve
this correspondence - only the OWL model needed to
be adapted to match the interpretation of the clinical
expert. The significance of this observation will be dis-
cussed later.
Original AHA guideline in OWL:

HighRiskBMIRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:BodyMassIndex and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:kilogram-per-meter-
squared) and
(sio:hasValue some double[> = 25.0]))))

LowRiskBMIRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:BodyMassIndex and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:kilogram-per-meter-
squared) and

(sio:hasValue some double[< 25.0]))))

Modified model:
HighRiskBMIRecord=
PatientRecord and

Table 9 Comparison between manual and automatic
binary risk classifications

True positive rate “at risk” % False positive rate”at risk” %

SBP 100 0

DBP 100 0

CHOL 92.6 0

HDL 100 56.5

TG 100 8.5

BMI 100 18.8

LDL 100 0

Correctness represents the degree of fidelity of automatic classification to that
of the expert.
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(sio:hasAttribute some
(cardio:BodyMassIndex and
sio:hasMeasurement some ( sio:Measurement and
(sio:hasUnit value cardio:kilogram-per-meter-
squared) and
(sio:hasValue some double[> = 26.0]))))

LowRiskBMIRecord=
PatientRecord and
(sio:hasAttribute some
(cardio:BodyMassIndex and
sio:hasMeasurement some (sio:Measurement and
(sio:hasUnit value cardio:kilogram-per-meter-
squared) and

(sio:hasValue some double[< 26.0]))))

Evaluation of automated ternary risk classification
Figure 5 shows the SPARQL query which automatically
classifies patient records into the "moderate risk"
Framingham guidelines OWL model, compared with the
annotations done manually by experts (see supplemen-
tary material [27] for other Framingham guideline
query/result pairs). Below this is an abbreviated table of
exemplar query output specifically showing rows of dis-
crepancy which are of particular interest for discussion.

Discrepancies between automated and expert ternary
classifications
Framinghamrisk
No expert-annotated “high risk record” was classified as
“low risk record” by automatic classification or vice versa
only the “moderate risk records” were differentially-
classified by our automated approach compared to the
clinical expert classification. Interestingly, however, the
automated interpretations included both higher- and
lower-risk classifications compared to the expert an-

notations. As can be seen in the first two rows of the
Figure 5 results table, the same calculated Framingham
risk-score of 15 was classified as being “low risk” and
“medium risk” respectively by the expert clinician, while
another "medium risk" score (19) was classified as "high
risk" by the expert. After trouble-shooting the code and
the ontological definitions, we examined the scores to
determine if, as with the binary classifications above, it
would be possible to improve our performance by relaxing
or tightening certain constraints in the OWL class defini-
tions, however we determined that this was not possible.
This suggests that other factors, not captured by the
guidelines, have led the clinical expert to select one or the
other risk category for any given patient. In discussions
with the clinician, we learned that the patients were under
varying regimes of pharmaceutical blood pressure treat-
ment, and that this would have affected their risk-assess-
ment. We are undertaking a follow-up study in which we
attempt to semantically model and add drug treatment
regimes to the patient's profiles and our risk models to de-
termine if this is sufficient to resolve all cases of mis-
classification by our automated system, or if there remain
yet additional factors that are being used by clinicians to
make their risk assessment. Regardless, we may not ever
be able to determine, with any certainty, the bases for the
original risk classifications, and this is an important point
for discussion.

Discussion
Interpreting discrepancies between automated and
manual risk classification
It is first important to note that the data in our study - in
particular, the risk classifications of the patients -
were not used for the purpose of selecting an inter-
vention in the course of the patient's clinical care.
We presumed that clinical researchers would use

SELECT ?patientrecord ?calculatedrisk ?riskgrade
FROM <http://cardio-soroush.rhcloud.com/framingham/patients.rdf> WHERE{

?patientrecord rdf:type cardio:MediumRiskFraminghamScoreRecord.
?patientrecord cardio:ExpertFraminghamGrade ?riskgrade.
?patientrecord cardio:hasAttribute ?attr.
?attr rdf:type cardio:GeneralCVD10YearFraminghamRiskScore.
?attr cardio:hasValue ?calculatedrisk

}

Calculated 
Risk Score 

Calculated 
Risk Grade 

Expert-assigned 
Grade 

15 2 1 

15 2 2 

19 2 3

Figure 5 SPARQL queries and a small snapshot of the results for automatic classification of patients into “high risk”, “medium risk”
and “low risk”, respectively.
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existing published guidelines for categorization in the
course of their clinical research, but this was not
necessarily a valid premise.
In our results, we note a variety of discrepancies bet-

ween our initial OWL models' rigorous adherence to
published clinical standards, and the evaluation and
phenotypic classification by the expert clinical re-
searcher. Some of these were due to missing data in the
guidelines themselves, where we were able to, with rea-
sonable confidence, guess what the clinician's interpret-
ation of the guideline was and model that interpretation.
Others were due to the researcher "bending" the guide-
lines either to match their personal beliefs, or because it
was more appropriate for the research question they
were asking. We were similarly able to (as far as we can
tell) accurately modify the OWL models to match the
clinician's expert opinion in many of these cases. Some
cases, however, have so far eluded our ability to capture,
in OWL, what the intent or rationale of the researcher
was. Nevertheless, assuming that the decisions are not
"arbitrary", we are confident that with further study we
will be able to construct OWL models that correspond
to these complex clinical interpretations. Moreover,
while in this pilot study, we manually modified the cutoff
levels of the OWL models after visual inspection of the
data, our subsequent studies undertake to determine these
boundaries using data-mining and pattern-detection
approaches, thus this should not be considered an insur-
mountable weakness of the current work.
That experts (at least in our case, but we believe it is

likely to be true for many cases) do not strictly follow
published guidelines when classifying patients in their
clinical research is, in itself, not surprising; however, it
does have implications for both reproducibility of clin-
ical studies, as well as the accuracy and interpretation of
statistically sensitive high-throughput studies such as
GWAS. Potential factors that influence experts to devi-
ate from guidelines may include clinical observations
outside of those that make up the guideline, or other
non-clinical yet measurable/detectable features. Regard-
less, it is important for reproducibility and rigor that ex-
perimental methods be fully explained and detailed, yet
at the same time it is undesirable (in fact, likely impos-
sible) to force clinical researchers to follow guidelines
which go against their expert beliefs. As such, a middle-
ground is needed where experts retain their "perso-
nalized" classification system, and yet have this system
formally encoded in a transparent, publishable, and re-
usable manner.
In this study, we demonstrate that the semantic mo-

deling approach we advocate here provides re-usable,
rigorous models which are nevertheless flexible, allowing
individual, personalized expert-knowledge to be enco-
ded, published, and shared. Moreover, these rigorous yet

personalized ontological models can be used to drive the
automated analysis of data, removing the individual from
the analytical process. This is important because "ana-
lysis tweaking", based in human intervention in the ana-
lytical or interpretative process, historically has gone
unrecorded and thus led to non-reproducible science.
Our approach, while not preventing the expert from
imposing their own interpretation on the data (in fact,
encouraging it!), ensures that in order to "tweak" the ana-
lysis, such an intervention must be made explicit in their
ontological model; moreover, the resulting ontology can
be published together with the study results to ensure
transparency. Not only does this facilitate reproducibility
of the study by making the personal expert opinion/in-
terpretation accessible to other researchers, but it also
allows explicit and accurate comparison between the
formally-encoded expert opinions of a diverse commu-
nity of clinical researchers, and the ability to use a third-
party interpretation to investigate your own data - i.e.
the ability to "see your data through the eyes of another".
We think this is a powerful new approach to transparent
and reproducible clinical research, where ideas and
interpretation-regimes are explicitly recorded, shared,
and compared.

Broader implications of "personalizing" OWL ontologies
Our use of OWL in this study differs markedly from the
norm in the biomedical community, where ontologies
are used primarily to compel harmonization around a
particular world view, thus facilitating cross-study com-
parisons by dis-allowing individual opinion or interpre-
tation. In contrast, we began from the perspective that
individual clinicial researchers would insist upon their
authority, as experts, to classify patients in whatever way
they thought was correct for a particular study, and
would resist forced adherence to guidelines (in fact, in
some cases it is the guidelines themselves that are the
topics of investigation and evaluation). Indeed, we dem-
onstrate in this study that clinicians frequently deviate
from established clinical guidelines, yet we also demon-
strate that OWL classes can be constructed to model an
individual clinician's expert perspective, thereby making
their interpretation transparent, and re-usable in a rigor-
ous manner. Most importantly, however, our inability in
some cases to accurately reproduce the interpretation of
the expert post facto, even after manually re-modeling the
guidelines, shows the danger of not capturing these per-
sonal, expert perspectives in some formal framework such
as OWL at the time the experiment is being run. These
ontologies, representing individual perspectives on how
data should be interpreted, resemble in silico hypotheses -
the belief system of the individual undertaking the study,
which may or may not be correct and/or shared by any
other researcher. In this study, we demonstrate that these
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clinical hypotheses can be automatically evaluated over
real patient data using existing Semantic Web tools and
frameworks.

Conclusions
This study had several, largely methodological, objec-
tives. First, there are a large number of "legacy" datasets
that would be of benefit to researchers if they were pub-
lished on the Semantic Web. We demonstrated a work-
able path for conversion and publication of these
datasets that provided advantages beyond simply making
the data available as "triples", but also in making it
semantically transparent such that it could be easily re-
analyzed by third-party researchers using their own clas-
sification frameworks. Second, the majority of ontologies
available in the life sciences to date are class hierarchies,
where the labels of each class are largely used to stan-
dardize annotations. The ability to logically reason over
these labels is quite limited, thus inhibiting their use for
automated annotation and classification of data. Never-
theless, these ontologies are increasingly comprehensive
and reflect expert consensus of what concepts are rele-
vant in a given domain. Here, we proposed and demon-
strated a path for extending an existing ontology such
that it could be utilized by DL reasoners to dynamically
classify and interpret datasets - a process that is cur-
rently done largely by experts. Third, we demonstrated
that clinical phenotype classification systems could be
modeled in the OWL language by taking advantage of
the rich, axiomatic structure of OWL-DL ontologies,
and a variety of analytical Web Services. We showed
how this combination of ontologies and Services can be
used to make clinical data analyses both more transpar-
ent and more automated. Finally, we showed that indi-
vidual clinicians deviate from established clinical
guidelines at every layer of an analysis, and this de-
monstrates the need for a formal, yet personalized clinical
interpretation framework to ensure transparency and repro-
ducibility. We demonstrate that this can be achieved by
creating and publishing "personalized" OWL ontologies.

Endnotes
aIt should be noted that even though ‘kilogram” is

considered a base unit in SI, it is composed of kilo prefix
plus base unit “gram”. In this sense, kilogram is an ex-
ception of a unit which is considered as base unit in SI
system. However, to stick to our design schema, we con-
sidered “gram” as the base and defined kilogram as an
extension of it.
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