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MeV+R<p>MeV+R provides users with point-and-click access to traditionally command-line-driven tools written in R.</p>

Abstract

We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with
Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to
other R packages and provides users with point and click access to traditionally command line
driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical
user interface for Bioconductor applications in microarray data analysis by incorporating three
Bioconductor packages, RAMA, BRIDGE and iterativeBMA.

Rationale
While microarray technology has given biologists unprece-
dented access to gene expression data, reliable and effective
data analysis remains a difficult problem. There are many
freely or commercially available software packages, but biol-
ogists are often faced with trading off power and flexibility for
usability and accessibility. In addition to the potentially pro-
hibitive costs, researchers using commercial software tools
may find themselves waiting for state-of-the-art algorithms to
be implemented with the packages. The Bioconductor project
[1,2] is an open source software project that provides a wide
range of statistical tools primarily based on the R program-
ming environment and language [3,4]. Taking advantage of
R's powerful statistical and graphical capabilities, developers
have created and contributed numerous Bioconductor pack-
ages to solve a variety of data analysis needs. The use of these
packages, however, requires a basic understanding of the R
programming/command language and an understanding of
the documentation accompanying each package. The primary
users of R and the Bioconductor packages have been compu-

tational scientists, statisticians and the more computationally
oriented biologists. However, in our experience, many biolo-
gists find themselves uncomfortable issuing command lines
in a terminal. Hence, there is a need for a graphical user inter-
face (GUI) for Bioconductor packages that will allow biolo-
gists easy access to data analytical tools without learning the
command line syntax. The tcltk package in R adds GUI ele-
ments to R by allowing programmers to write GUI-driven
modules by embedding Tk commands into the R language [5].
There are also GUIs developed for basic statistical analysis in
R, such as the R Commander [6] and windows-based
SciViews [7]. However, these GUIs are not designed for
microarray analysis. There are Bioconductor packages, such
as limmaGUI [8], affylmGUI [9] and OLINgui [10] that are
built on the R tcltk package to provide GUIs. LimmaGUI and
affylmGUI provide GUIs for the analysis of designed experi-
ments and the assessment of differential expression for two-
color spotted microarrays and single-color Affymetrix data,
respectively. OLINgui provides a GUI for the visualization,
normalization and quality testing of two-channel microarray
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data. However, no such GUIs are available for the majority of
Bioconductor packages. In addition, since each Bioconductor
package is often written by a different research group, there is
generally no uniformity in the look and feel of the GUIs avail-
able for the different packages. Hence, the end user may not
be able to easily transfer experience gained with one analysis
tool to the use of another.

An alternative microarray data analysis tool is the MultiEx-
periment Viewer (MeV), a component of the TM4 suite of
microarray analysis tools [11]. MeV has a user-friendly GUI
designed with the biological community in mind. MeV is an
open source Java application with a simple to learn, easy to
use GUI. It comes with many popular microarray analytical
algorithms for clustering, visualization, classification and
biological theme discovery, such as hierarchical clustering
[12] and Expression Analysis Systematic Explorer (EASE)
[13]. MeV was carefully designed to provide an application
programming interface (API), thus allowing straightforward
contributions by the community. MeV is hosted at Source-
Forge [14] in a concurrent versions system repository. As
such, frequent builds of the source code are made possible,
greatly reducing the lag time between version releases.

In this paper, we present MeV+R, which is an effort to provide
more consistent and well-integrated GUIs for Bioconductor
packages by using MeV as a 'wrapper' application for Biocon-
ductor methods. Our work brings the best of both worlds
together: providing state-of-the-art statistical algorithms
from Bioconductor through the open source and easy to use
MeV graphical interface to the biomedical community.
MeV+R has many advantages, including platform independ-
ence, a well-defined modular API, and a point and click GUI
that is easy to learn and use. We demonstrate the successful

integration and advantages of three Bioconductor packages
(RAMA [15], BRIDGE [16], and iterativeBMA [17]) over exist-
ing tools in the MeV environment through case studies. The
underlying framework that we used to integrate these Biocon-
ductor packages with MeV is easily extensible to other analy-
sis tools developed in R. The software, documentation and a
tutorial are publicly available from our project home page
[18].

Implementation
Our integration effort is composed of three separate entities
(Figure 1). MeV provides the graphical user interface while
Rserve serves as the communication layer and R is the lan-
guage and environment in which the analysis packages run.
Rserve is a TCP/IP server that allows various languages to use
the facilities of R without the need to initialize R or link
against an R library [19]. In other words, we use R as the back
end to run Bioconductor packages through the use of Rserve.
Rserve is open source, freely available [20], and licensed
under GPL.

As such, Java, Rserve, and R must all be installed on the user's
computer, and we provide an automated installer on our
project web site. Furthermore, Rserve needs to be running to
be used. However, R does not need to be started. Since Rserve
works through TCP/IP, it can run on the user's own machine,
on an internal network or over the internet. By default, our
code assumes Rserve to be running on the local host, but the
user can change, add and save additional new hosts using a
pull down menu. Once a connection is established, the Java
code in MeV converts the user's data from the MeV data
structure to the R format and loads it into R. The appropriate

Our integration effort is composed of three separate entities: MeV as the GUI, Rserve as the communication layer, and R as the language and environment in which the analysis packages runFigure 1
Our integration effort is composed of three separate entities: MeV as the GUI, Rserve as the communication layer, and R as the language and environment 
in which the analysis packages run.
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R libraries are loaded followed by the R commands that are
necessary to initiate the analysis. Upon completion, the
returned data from R are explicitly called back into MeV and
presented to the user.

We have incorporated three Bioconductor packages, RAMA
[15], BRIDGE [16], and iterativeBMA [17], into MeV to illus-
trate the successful MeV+R integration. The Robust Analysis
of MicroArray (RAMA) algorithm computes robust estimates
of expression intensities from two-color microarray data,
which typically consist of a few replicates and potential out-
liers [15]. RAMA also takes advantage of dye swap experimen-
tal designs. Bayesian Robust Inference for Differential Gene
Expression (BRIDGE) is a robust algorithm that selects dif-
ferentially expressed genes under different experimental con-
ditions on both one- and two-color microarray data [16]. Both
RAMA and BRIDGE make use of a computationally intensive
technique called Markov Chain Monte Carlo for parameter
estimation, and it is non-trivial to re-implement these algo-
rithms in Java. Hence, we took advantage of our previous
development work by simply using MeV as an interface to the
Bioconductor packages. The iterative BMA algorithm is a
multivariate gene selection and classification algorithm,
which considers multiple genes simultaneously and typically
leads to a small number of relevant genes to classify microar-
ray data [17]. The iterativeBMA Bioconductor package imple-
ments the iterative BMA algorithm as previously described
[17] in R, and its implementation is part of our current inte-
gration effort. Both RAMA and BRIDGE are included in the
latest release of MeV (version 4.1), and iterativeBMA will be
included in future releases. The user interfaces, usage and
case studies for RAMA, BRIDGE and iterativeBMA are briefly
described below. Detailed documentation is included with the
software distribution [21] as well as linked in the MeV appli-
cation. Help pages are also available as Help Dialogs accessed
via buttons on the MeV dialog boxes. Our MeV+R implemen-
tation is publicly available and runs on Windows, Mac OS X
and Linux.

Integrated Bioconductor packages: description 
and user interfaces
RAMA: Robust Analysis of MicroArrays
RAMA uses a Bayesian hierarchical model for the robust esti-
mation of cDNA microarray intensities with replicates. This is
highly relevant for replicated microarray experiments
because even one outlying replicate (such as due to scratches
or dust) can have a disastrous effect on the estimated signal
intensity. Outliers are modeled explicitly using a t-distribu-
tion, which is more robust than the usual Gaussian model.
Our model borrows strength from all the genes to decide if a
measurement is an outlier, and hence it is better at detecting
outliers based on a small number of replicate measurements
than other classical robust estimators. Our algorithm uses
Markov Chain Monte Carlo for parameter estimation, and
addresses classical issues such as design effects, normaliza-

tion, transformation, and nonconstant variance. Please refer
to [15] for a detailed description of the algorithm.

User interface
The user can start RAMA by clicking 'Adjust Data' - 'Replicate
Analysis' - 'RAMA' from the MeV main menu. The RAMA dia-
log box is then displayed asking the user to label the arrays
that were loaded into MeV with their appropriate dye color.
At this time, the user is asked to make sure that Rserve is run-
ning. On a Win32 system, double clicking Rserve.exe accom-
plishes this. On a UNIX or Linux or Mac OS X system, the
user issues the command 'R CMD Rserve' at a prompt. By
default, RAMA will look on the local machine for an Rserve
server. However, since Rserve is a TCP/IP server, the Rserve
server can be a remote machine. The user is allowed to adjust
a few advanced parameters, though suggested values are
given as defaults. If an Rserve connection is successfully
made, the location of Rserve is written to the user's MeV con-
figuration file and will be available in later sessions. After
clicking 'OK', the input data are sent to R. An indeterminate
progress bar is displayed while RAMA runs - unfortunately,
the architecture of RServe and the R Server do not allow for
an accurate indication of the time remaining in an ongoing
analysis. Once completed, the user is given a dialog box to
save the results. The returned results will then replace the
loaded data in a new Multiple Array Viewer (MAV). The old
MAV is deleted. The user can then choose to continue using
MeV as if the data were loaded through the native loading
modules.

BRIDGE: Bayesian Robust Inference for Differential 
Gene Expression
BRIDGE fits a robust Bayesian hierarchical model to test for
differentially expressed genes on microarray data. It can be
used with both two-color microarrays and single-channel
Affymetrix chips. BRIDGE builds on the previous work of
Gottardo et al. [15] by allowing each gene to have a different
variance and the detection of differentially expressed genes
under multiple (up to three in our current implementation)
experimental conditions. Robust inference is accomplished
by modeling outliers using a t-distribution, and hence
BRIDGE is powerful even with a small number of samples
(either biological or technical replicates) under each experi-
mental condition. Parameter estimation is carried out using a
novel version of Markov Chain Monte Carlo. The current
implementation of BRIDGE does not handle missing values.
Please refer to [16] for a detailed description of the model.

User interface
BRIDGE starts when a user clicks the 'BRIDGE' button in the
toolbar located on top of the MeV window. The user is once
again presented with a dialog box similar to that of RAMA
asking for the dye labeling identity of each loaded slide. The
user is offered the option to adjust the advanced parameters
and to establish an Rserve connection. After clicking OK, the
input data are sent to R. An indeterminate progress bar is
Genome Biology 2008, 9:R118
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displayed while BRIDGE runs. The results are presented to
the user in three formats: heat maps, expression graphs or
tables. In each format, the genes for which there is strong evi-
dence of differential expression are identified as 'Significant
Genes', defined by the posterior probability being above 0.5.

IterativeBMA: Iterative Bayesian Model Averaging
The iterativeBMA algorithm is a multivariate technique for
gene selection and classification of microarray data. Bayesian
Model Averaging (BMA) takes model uncertainty into consid-
eration by averaging over the predicted probabilities based on
multiple models, weighted by their posterior model probabil-
ities [22]. The most commonly used BMA algorithm is limited
to data in which the number of variables is greater than the
number of responses, and the algorithm is inefficient for
datasets containing more than 30 genes (variables). In the
case of classifying samples using microarray data, there are
typically thousands or tens of thousands of genes (variables)
under a few dozen samples (responses). In the iterative BMA
algorithm, we start by ranking the genes using the ratio of
between-group to within-group sum of squares (BSS/WSS)
[23]. In this initial preprocessing step, genes with large BSS/
WSS ratios (that is, genes with relatively large variation
between classes and relatively small variation within classes)
receive high rankings. We then apply the traditional BMA
algorithm to the 30 top ranked genes, and remove genes with
low posterior probabilities. Genes from the rank ordered
BSS/WSS ratios are then added to the set of genes to replace
genes with low probabilities. These steps of gene swaps and
iterative applications of BMA are repeated until all genes are
subsequently considered. We have previously shown that the
iterative BMA algorithm selects small numbers of relevant
genes, achieves high prediction accuracy, and produces pos-
terior probabilities for the predictions, selected genes and
models [17].

The iterativeBMA Bioconductor package implements the iter-
ative BMA algorithm described in Yeung et al. [17] (previ-
ously implemented in Splus) when there are two classes. It is
part of the original work for this publication. The user docu-
mentation (vignette) is included in the package.

User interface
We have integrated the iterativeBMA Bioconductor package
in MeV. IterativeBMA starts after the user clicks on the
'iBMA' icon on top of the MeV window. The current imple-
mentation of the iterativeBMA Bioconductor package is lim-
ited to only two classes. After loading the data, the user is
asked to label the two classes. The default labels for the two
classes are 0 and 1, respectively. In the same dialog box, the
user is asked to establish an Rserve connection. The user is
also given the option of specifying advanced parameters for
the analysis. The next dialog box asks the user to assign labels
to each of the samples in the data, either by using a pull-down
menu or loading an assignment file. At this point, if Rserve is
not already running, the user is reminded to start the connec-

tion. Then, the data and the parameters are sent to R, and a
progress bar is shown warning the user that the computation
could take a long time. After the iterativeBMA Bioconductor
package finishes running, the following analysis results are
displayed: the predicted probability and class for each test
sample; the posterior probabilities of the selected genes
sorted in descending order; the posterior probabilities of the
selected models sorted in descending order; and the heat-
maps of the selected genes in both classes.

Case studies illustrating the merits of the 
integrated Bioconductor packages
In this section, we compare the performance of the integrated
Bioconductor packages (RAMA, BRIDGE and iterativeBMA)
to existing tools in MeV in order to illustrate the merits of the
integrated packages. In addition, we demonstrate that our
MeV+R modules can be used together with other MeV mod-
ules in the integrated analysis of microarray data, hence,
extending the capabilities of MeV.

RAMA: Robust Analysis of MicroArrays
We compared the microarray gene intensities estimated
using RAMA to that of the log ratios over intensities averaged
over all the replicates on two microarray datasets and the
results are summarized in Table 1. The first dataset is a subset
of the HIV data [24] consisting of the expression levels of
1,028 transcripts, including 13 positive controls and 24 nega-
tive controls, in CD4-T-cell lines at time t = 1 hour after infec-
tion with HIV virus type 1 hybridized to two-color cDNA
arrays. The experimental design consists of four technical
replicates and balanced dye swap in which two of the four rep-
licates were hybridized with Cy3 for the control and Cy5 for
the treatment and then the dyes were reversed on the other
two replicates. The second dataset is a subset of the like and
like data [15] consisting of 1,000 genes over four experiments
using the same RNA preparation isolated from a HeLa cell
line on four different microarray slides. Since the same RNA
was used in both channels, no genes from these data should
show any differential expression. Both sample datasets are
available on our project web site and are included as part of
our MeV+R package release.

Figure 2 shows the log ratios of all genes sorted in descending
order after applying RAMA integrated in MeV+R to the HIV
data. As shown in Figure 2, the log ratios (to base 2) computed
with the robust intensities estimated using RAMA for all 13
positive controls are all greater than one. The log ratios from
RAMA for all 24 negative controls are smaller than one (data
not shown in Figure 2). On the contrary, computing the log
ratios by simply averaging the gene intensities over the four
replicates produces log ratios greater than one for three neg-
ative controls. Applying RAMA to the like and like data pro-
duces no log ratio greater than one as desired since we do not
expect any differentially expressed genes. On the contrary,
the average log ratio of gene intensities yields six genes with
Genome Biology 2008, 9:R118
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log ratios greater than one. Please refer to the supplementary
material [18] for the details of our case studies. To summa-
rize, RAMA produced the desired results on both datasets
while the averaged log ratio produced three and six false pos-
itives, respectively, on these two datasets.

BRIDGE: Bayesian Robust Inference for Differential 
Gene Expression
We compared the differentially expressed genes identified
using BRIDGE, t-test and SAM (Significance Analysis of
Microarrays) [25] as implemented in MeV on two datasets.
Applying BRIDGE to the HIV data described in the previous
section identified all 13 positive controls as 'significant' genes
(Figure 3). On the other hand, applying the one-sample t-test
as implemented in MeV to the same HIV data identified a
total of 14 significant genes, including all 13 positive controls
and one negative control using a p-value cut-off of 0.01 with-

out any Bonferroni correction. Using a p-value cut-off of 0.05
and standard Bonferroni correction, the one-sample t-test
identified only one significant gene (which is one of the 13
positive controls) and incorrectly assigned the remaining 12
positive controls as 'insignificant'. Similarly, using one-sam-
ple SAM as implemented in MeV identified 12 out of 13 posi-
tive controls using default parameters.

The second dataset we used comprises the Affymetrix U133
spike-in data [26], which consists of three technical replicates
of 14 separate hybridizations of 42 spiked transcripts in a
complex human background at varying concentrations.
Thirty of the spikes are isolated from a human cell line, four
spikes are bacterial controls, and eight spikes are artificially
engineered sequences believed to be unique in the human
genome. The data were preprocessed using GCRMA [27],

Table 1

Comparing the results of RAMA to the averaged log ratios on the HIV data and the like and like data

Data Benchmark RAMA Averaged log ratio

HIV data 13 positive controls All 13 positive controls have log ratios 
>1

All 13 positive controls have log ratios 
>1

24 negative controls All 24 negative controls have log ratios 
<1

3 negative controls have log ratios >1

Like and like data No genes expected to be differentially 
expressed

All log ratios <1 6 genes with log ratios >1

RAMA produced the desired results on both datasets while the averaged log ratio produced three and six false positives, respectively, on these two 
datasets.

The results of applying RAMA to the HIV dataFigure 2
The results of applying RAMA to the HIV data. The log ratios computed from RAMA are sorted in descending order, and the top 13 genes with log ratios 
greater than one are the positive controls.

13 positive controls
Genome Biology 2008, 9:R118
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resulting in a dataset of 22,300 genes across 42 samples. In
addition to the original 42 spiked-in genes, we included an
additional 20 genes that consistently showed significant dif-
ferential expression across the array groups and an additional
three genes containing probe sequences exactly matching
those for the spiked-in genes [28,29]. As a result, our
expanded spiked-in gene list contains 65 entries in total. We
used a subset of this spiked-in data consisting of 1,059 genes
that include all 65 spiked-in genes across two samples in
triplicate. In our comparison, only the 65 spiked-in genes
should be identified as differentially expressed.

BRIDGE identified 45 differentially expressed genes on this
data subset. All of these 45 genes identified by BRIDGE are
spiked-in genes. On the other hand, the t-test with a p-value

cut-off of 0.01 without any correction for multiple compari-
son identified a total of 33 significant genes, of which 31 were
spiked-in genes. Using a p-value cut-off of 0.05 and the
standard Bonferroni correction, the t-test identified only four
significant genes (which are among the spiked-in genes).
SAM identified eight spiked-in genes as differentially
expressed.

Our comparison results are summarized in Table 2. We have
shown that BRIDGE is the only tool that successfully identi-
fied all 13 positive controls as 'significant' on the HIV data. In
addition, BRIDGE identified the highest number of true pos-
itives (spiked-in genes) without any false positives on the
Affymetrix spike-in data.

The significant genes identified by applying BRIDGE to the HIV dataFigure 3
The significant genes identified by applying BRIDGE to the HIV data.
Genome Biology 2008, 9:R118
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IterativeBMA: Iterative Bayesian Model Averaging
We compared the performance of iterativeBMA (abbreviated
as iBMA in our MeV+R implementation) to KNN (k-nearest
neighbor) [30] and USC (Uncorrelated Shrunken Centroid)
[31] implemented in MeV using the well-studied leukemia
data [32]. We used the filtered leukemia dataset, which con-
sists of 3,051 genes, 38 samples in the training data and 34
samples in the test set. The data consist of samples from
patients with either acute lymphoblastic leukemia (ALL) or
acute myeloid leukemia (AML). On the leukemia data, itera-
tiveBMA produced 2 classification errors using 11 selected
genes over 11 models (Figures 4 and 5). On the other hand,
KNN does not have a gene selection procedure and produced
2 classification errors using all 3,051 genes. Similarly, USC
produced 2 classification errors using 51 selected genes.

The second dataset we used is the breast cancer prognosis
dataset [33], which consists of 4,919 genes with 76 samples in
the training set, and 19 samples in the test set [17]. The
patient samples are divided into two categories: the good
prognosis group (patients who remained disease free for at
least five years) and the poor prognosis group (patients who
developed distant metastases within five years). The itera-
tiveBMA algorithm produced three classification errors using
four genes averaged over three models. On the other hand,
KNN does not have a gene selection procedure and produced
five classification errors using all genes. Similarly, USC pro-
duced four classification errors using 662 genes.

Our results are summarized in Table 3. On the breast cancer
prognosis data, iterativeBMA produced higher prediction
accuracy using much fewer genes. On the leukaemia data,
iterativeBMA produced comparable prediction accuracy
using much fewer genes.

Using other MeV modules in an integrated data 
analysis
The previous sub-sections showed that our MeV+R modules
achieved superior performance when compared to other
existing tools implemented in MeV. Here we demonstrate
how the R packages that we incorporated into MeV can be
used in combination with other existing tools in MeV. This
illustrates the fact that the MeV+R framework has extended
the capabilities of MeV, and that using these R packages
through the MeV GUI adds value to the integrated analysis of
microarray data.

In this case study, we will follow-up on the results from apply-
ing the iterativeBMA algorithm to the leukemia data [32]. The
iterativeBMA algorithm is a multivariate gene selection
method designed to select a small set of predictive genes for
the classification of microarray data. In the case of the leuke-
mia data, the iterativeBMA algorithm selected 11 genes that
produced two classification errors on the 34-sample test set.
It would be interesting to identify the biological theme in this
11-gene list. Towards this end, we applied EASE [13] as imple-
mented in MeV to determine the over-represented Gene
Ontology categories in this gene list relative to all the genes on
the microarray. Figure 6 shows the tabular view from the
EASE analysis.

Since iterativeBMA identifies a small set of predictive genes
for classification, other genes that exhibit similar expression
patterns to the selected genes are likely of biological interest.
For example, we would like to explore the gene with the high-
est posterior probability 'X95735_at' from the iterativeBMA
analysis on the leukemia data [32]. We applied PTM (Tem-
plate Matching) [34] as implemented in MeV to identify genes
that are highly correlated with 'X95735_at'. Using a p-value
threshold of 0.0001, PTM identified 209 genes that are highly

Table 2

Comparing the results of BRIDGE to t-test and SAM on the HIV data and the Affymetrix spike-in data

t-test

Dataset Benchmark BRIDGE p-value cut-off 0.01, no 
correction

p-value cut-off 0.05, standard 
Bonferroni correction

SAM

HIV data 13 positive controls, 24 negative 
controls

DE 13 14 1 12

TP 13 13 1 12

FP 0 1 0 0

Affymetrix spike-in data 65 spike-in genes

DE 45 33 4 8

TP 45 31 4 8

FP 0 2 0 0

For each dataset and each method, the number of differentially expressed (DE) genes, true positives (TP) and false positives (FP) are shown. For each 
dataset, the maximum TP and the minimum FP across all methods are shown in bold. BRIDGE produced the best results on both datasets in identifying 
the highest number of true positives without any false positives.
Genome Biology 2008, 9:R118
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correlated with 'X95735_at'. Our next task was to find the
biological theme among these 209 genes, so we applied EASE
and TEASE (Tree-EASE). TEASE is a combined analytical
tool for hierarchical clustering and EASE. TEASE computes
the dendrogram using the hierarchical clustering method and
displays the significantly enriched Gene Ontology categories
for each subtree in the dendrogram. Please refer to the sup-
plementary materials [18] for the details of our case studies.

Incorporating additional R packages
We have developed a framework with built-in functions for
the integration of Bioconductor packages into MeV. Detailed
documentation of these built-in functions is provided on our
project web site for software developers. Using this frame-
work, we have integrated three Bioconductor packages
(RAMA, BRIDGE and iterativeBMA) into MeV as proof of
concept. To integrate additional Bioconductor packages into
MeV, a software developer can simply call our built-in func-
tions except for complex and non-standard data views.

Conclusion
MeV+R is a convenient platform to provide biologists with
point and click GUI access to Bioconductor packages. We

have demonstrated the successful integration of Bioconduc-
tor and MeV through three Bioconductor packages, RAMA,
BRIDGE and iterativeBM, and that the incorporated Biocon-
ductor packages produced superior results in the analysis of
microarray data compared to existing tools in MeV. Addi-
tional Bioconductor packages are straightforward to add: the
framework for moving data from MeV to R and back is gener-
alized for code re-use, and each new package will merely
require the development of a GUI for input and output.

Abbreviations
API, application programming interface; BMA, Bayesian
Model Averaging; BRIDGE, Bayesian Robust Inference for
Differential Gene Expression; BSS/WSS, ratio of between-
group to within-group sum of squares; EASE, Expression
Analysis Systematic Explorer; GUI, graphical user interface;
iterativeBMA, iterative Bayesian Model Averaging; KNN, k-
nearest neighbor; MAV, Multiple Array Viewer; MeV, Multi-
Experiment Viewer; PTM, Template Matching; RAMA,
Robust Analysis of MicroArray; SAM, Significance Analysis of
Microarrays; USC, Uncorrelated Shrunken Centroid.

The results of applying iterativeBMA to the leukemia dataFigure 4
The results of applying iterativeBMA to the leukemia data. A heatmap showing the selected genes from iterativeBMA under the training samples labeled as 
class 0 and the test samples assigned to class 0 by the algorithm.
Genome Biology 2008, 9:R118
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Table 3

Comparing the results of iterativeBMA to KNN and USC on the leukemia data and the breast cancer prognosis data

Data Size of data iterativeBMA KNN USC

Leukemia data [32] 38 training samples 11 genes 3,051 genes 51 genes

34 test samples 2 errors 2 errors 2 errors

Breast cancer prognosis data [33] 76 training samples 4 genes 4,919 genes 662 genes

19 test samples 3 errors 5 errors 4 errors
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and the smallest number of classification errors across all three methods are shown in bold. On the leukemia data, iterativeBMA produced the same 
number of classification errors using much fewer genes. On the breast cancer prognosis data, iterativeBMA produced fewer errors using much fewer 
genes.
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