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ABSTRACT

The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial
inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE
uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5
decades in frequency from 30 GHz to 6 THz (1 cm to 50 μm wavelength). Multi-moded non-imaging optics
feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the
difference spectrum between orthogonal linear polarizations from the two input beams. The differential design
and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental
signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I,
Q, and U parameters with angular resolution 2.◦6 and sensitivity 0.2 μK per 1◦ square pixel. The principal
science goal is the detection and characterization of linear polarization from an inflationary epoch in the early
universe, with tensor-to-scalar ratio r < 10−3 at 5 standard deviations. We describe the PIXIE instrument and
mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4
semiconductor bolometers.
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1. INTRODUCTION

Linear polarization of the cosmic microwave background (CMB) carries the oldest information in the universe.
Quantum fluctuations of the space-time metric (gravity waves) excited only 10−35 seconds after the Big Bang
impart a distinctive signature to the CMB polarization. Such a signal is expected to exist; the simplest inflation
models predict detectable amplitudes in the range 30–100 nK. Detection of the gravity-wave signature of inflation
would have profound consequences for cosmology and high-energy physics. Not only would it establish inflation
as a physical reality; it would provide a direct, model-independent determination of the relevant energy scale,
shedding light on physics at energies 12 orders of magnitude beyond those accessible to direct experimentation
in particle accelerators.

CMB polarization results from Thomson scattering of CMB photons by free electrons. A quadrupolar anisotropy
in the radiation incident on each electron creates a net linear polarization in the scattered radiation. The required
quadrupole can result from either intrinsic fluctuations in the radiation field itself, or the differential redshift as
tensor gravity waves propagate through an isotropic medium. The two components can be distinguished by their
different angular properties. Density fluctuations are a scalar quantity; their polarization signal must therefore
be curl-free. Gravity waves, however, are tensor perturbations whose polarization includes both gradient and
curl components. In analogy to electromagnetism, the scalar and curl components are often called “E” and “B”
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Figure 1. Angular power spectra for unpolarized, E-mode, and B-mode polarization in the cosmic microwave background.
The dashed line shows the PIXIE sensitivity to B-mode polarization at each multipole moment � ∼ 180◦/θ. The sensitivity
estimate assumes a 4-year mission and includes the effects of foreground subtraction within the cleanest 75% of the sky
combining PIXIE data at frequencies ν < 600 GHz. Filled points and error bars show the response within broader � bins
to a B-mode power spectrum with amplitude r = 0.01. PIXIE will reach the confusion noise from the gravitational lensing
of the E-mode signal by cosmic shear along each line of sight (dash-dot), and has the sensitivity and angular response to
measure even the minimum predicted B-mode power spectrum at high statistical confidence.

modes. Only gravity waves induce a curl component: detection of a B-mode signal in the CMB polarization
field is recognized as a “smoking gun” signature of inflation, testing physics at energies inaccessible through any
other means.1–8

Figure 1 shows the amplitude of CMB polarization as a function of angular scale. At the degree angular scales
characteristic of the horizon at decoupling, the unpolarized temperature anisotropy is typically 80 μK. These
fluctuations in turn generate E-mode polarization, which at amplitude ∼3 μK is only a few percent of the
temperature fluctuations. The B-mode amplitude from gravity waves is unknown. This amplitude is related
directly to the energy scale V∗ of inflation,9 V∗ = r(0.003 Mpl)4, where Mpl = 1.22 × 1019 GeV is the Planck
mass and r = T/S is the power ratio of gravity waves to scalar fluctuations. If inflation results from Grand
Unified Theory physics (energy ∼ 1016 GeV), the B-mode amplitude should be in the range 1 to 100 nK. Recent
WMAP results suggest likely values 30-100 nK, toward the upper range of GUT inflation.10 Signals at this
amplitude could be detected by a dedicated polarimeter, providing a direct, model-independent measurement of
the energy scale of inflation.

Detecting the gravity-wave signature will be difficult. As recognized in multiple reports,11–13 there are three
fundamental challenges:

• Sensitivity The gravity-wave signal is faint compared to the fundamental sensitivity limit imposed by
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Figure 2. left: Schematic view of the PIXIE optical signal path. As the dihedral mirrors move, the detectors measure
a fringe pattern proportional to the Fourier transform of the difference spectrum between orthogonal polarization states
from the two input beams (Stokes Q in instrument coordinates). A full-aperture blackbody calibrator can move to block
either input beam, or be stowed to allow both beams to view the same patch of sky. Right: Physical layout of PIXIE
optics.

photon arrival statistics. Even noiseless detectors suffer from this photon-counting limit; the only solution
is to collect more photons.

• Foregrounds The gravity-wave signal is faint compared to the polarized Galactic synchrotron and dust
foregrounds. Separating CMB from foreground emission based on their different frequency spectra requires
multiple frequency channels.

• Systematic Errors The gravity-wave signal is faint compared to both the unpolarized CMB anisotropy
and the dominant E-mode polarization. Accurate measurement of the B-mode polarization requires strict
control of instrumental effects that could alias these brighter signals into a false B-mode detection.

Satisfying the simultaneous requirements of sensitivity, foreground discrimination, and immunity to systematic
errors presents a technological challenge. In this paper, we describe an instrument capable of measuring the
CMB and diffuse Galactic foregrounds with background-limited sensitivity in over 400 frequency channels using
only 4 detectors.

2. INSTRUMENT DESCRIPTION

The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to detect and characterize
the polarization signal from an inflationary epoch in the early Universe. The proposed instrument combines
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Table 1. Optical Parameters

Parameter Value Notes

Primary Mirror Diameter 55 cm Sets beam size on sky
Etendu 4 cm2 sr 2.7 times larger than FIRAS
Beam Diameter 2.◦6 tophat Equivalent 1.◦6 Gaussian FWHM
Throughput 82% Excludes detector absorption
Detector Absorption 54% Reflective backshort

Mirror Stroke ±2.6 mm peak-peak Phase delay ±10 mm
Spectral Resolution 15 GHz Set by longest mirror stroke
Highest Effective Frequency 6 THz Spacing in polarizing grids

Detector NEP 0.7 × 10−16 W Hz−1

System NEP 2.7 × 10−16 W Hz−1 Background limit

multi-moded optics with a Fourier Transform Spectrometer to provide breakthrough sensitivity for CMB po-
larimetry using only four semiconductor detectors. The design addresses each of the principal challenges for
CMB polarimetry. A multi-moded “light bucket” provides nK sensitivity using only four detectors. A polariz-
ing Fourier Transform Spectrometer (FTS) synthesizes 400 channels across 2.5 decades in frequency to provide
unparalleled separation of CMB from Galactic foregrounds. PIXIE’s highly symmetric design enables operation
as a nulling polarimeter to provide the necessary control of instrumental effects.

Figures 2 shows the instrument concept. Two off-axis primary mirrors 550 mm in diameter produce twin
beams co-aligned with the spacecraft spin axis. A folding flat and 50 mm secondary mirror route the beams
to the FTS. A set of six transfer mirror pairs, each imaging the previous mirror to the following one, shuttles
the radiation through a series of polarizing wire grids. Polarizer A transmits vertical polarization and reflects
horizontal polarization, separating each beam into orthogonal polarization states. A second polarizer (B) with
wires oriented 45◦ relative to grid A mixes the polarization states. A Mirror Transport Mechanism (MTM)
moves back-to-back dihedral mirrors to inject an optical phase delay. The phase-delayed beams re-combine
(interfere) at Polarizer C. Polarizer D (oriented the same as A) splits the beams again and routes them to two
multi-moded concentrator feed horns. Each concentrator is square to preserve linear polarization and contains
a pair of identical bolometers, each sensitive to a single linear polarization but mounted at 90◦ to each other
to measure orthogonal polarization states. To control stray light, all internal surfaces except the active optical
elements are coated with a microwave absorber,14 forming a blackbody cavity isothermal with the sky.

Table 1 summarizes the instrument optics. Cryogenic pupil stops at the primary mirror and field stops at the
transfer mirrors limit the etendu to 4 cm2 sr to produce a circular tophat beam with diameter 2.◦6∗. Throughput
from the entrance aperture to the detector is 82%, evenly split among geometric loss, diffractive loss, and
absorption on the wire grids. A low-pass filter on each folding flat blocks zodiacal light. The optics, including
the square concentrator, preserve polarization: orthogonal polarization states at the detector remain orthogonal
within 3◦ when projected to the sky.

Each of the four detectors measures an interference fringe pattern between orthogonal linear polarizations from
the two input beams. Let �E = Exx̂ + Ey ŷ represent the electric field incident from the sky. The power at the
detectors as a function of the mirror position z may be written

PLx =
1
2

∫
(E2

Ax + E2
By) + (E2

Ax − E2
By) cos(4zω/c)dω

PLy =
1
2

∫
(E2

Ay + E2
Bx) + (E2

Ay − E2
Bx) cos(4zω/c)dω

PRx =
1
2

∫
(E2

Ay + E2
Bx) + (E2

Bx − E2
Ay) cos(4zω/c)dω

∗The angular smoothing from the tophat beam (window function in �) may be approximated by a 1.◦6 Gaussian full
width at half maximum.
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PRy =
1
2

∫
(E2

Ax + E2
By) + (E2

By − E2
Ax) cos(4zω/c)dω , (1)

(Appendix A), where ω is the angular frequency of incident radiation, L and R refer to the detectors in the left
and right concentrators, and A and B refer to the two input beams

The term modulated by the mirror scan is proportional to the Fourier transform of the frequency spectrum for
Stokes Q linear polarization in instrument-fixed coordinates. Rotation of the instrument about the beam axis
interchanges x̂ and ŷ on the detectors. The sky signal (after the Fourier transform) then becomes

S(ν)Lx =
1
4

[ I(ν)A − I(ν)B + Q(ν)sky cos 2γ + U(ν)sky sin 2γ ]

S(ν)Ly =
1
4

[ I(ν)A − I(ν)B − Q(ν)sky cos 2γ − U(ν)sky sin 2γ ]

S(ν)Rx =
1
4

[ I(ν)B − I(ν)A + Q(ν)sky cos 2γ + U(ν)sky sin 2γ ]

S(ν)Ly =
1
4

[ I(ν)B − I(ν)A − Q(ν)sky cos 2γ − U(ν)sky sin 2γ ] , (2)

where I = 〈E2
x + E2

y〉, Q = 〈E2
x −E2

y〉, and U = 2Re〈ExEy〉 are the Stokes polarization parameters, γ is the spin
angle, and S(ν) denotes the synthesized frequency spectrum with bins ν set by the fringe sampling.

The fringe pattern measured at each detector samples the Fourier transform of the frequency spectrum of the
difference between one linear polarization from the A-side beam and the orthogonal linear polarization from
the B-side beam (Eq. 1). The frequency bins in the synthesized spectra S(ν) are set by the mirror throw and
detector sampling,

Sν =
Ns−1∑
k=0

Si exp(2πiνk/Ns) (3)

where Si is a time-ordered sample and ν denotes frequency. As the mirror moves, we obtain Ns detector samples
over an optical path length ±ΔL. The Fourier transform of the sampled fringe pattern returns frequencies
n × c/(2ΔL) where n = 0, 1, 2, ..., Ns/2. The path length (optical stroke) thus determines the width of the
frequency bins in the synthesized spectra, while the number of detector samples within each optical stroke
determines the number of frequency bins and thus the highest sampled frequency. With Ns = 1024 and ΔL = 1
cm, we obtain 512 synthesized frequency bins of width 15 GHz each. The corresponding physical mirror movement
Δz = ΔL/[4 cos(α) cos(δ/2)] = ±2.58 mm accounts for the folded optics as well as the off-axis optical path
(α = 15◦) and beam divergence (δ = 6.5◦).

PIXIE operates as a nulling polarimeter: when both beams view the sky, the instrument nulls all unpolarized
emission so that the fringe pattern responds only to the sky polarization. The resulting null operation greatly
reduces sensitivity to systematic errors from unpolarized sources. Normally the instrument collects light from
both co-aligned telescopes. A full-aperture blackbody calibrator can move to block either beam, replacing the
sky signal in that beam with an absolute reference source, or be stowed to allow both beams to view the same
sky patch. The calibrator temperature is maintained near 2.725 K and is changed ±5 mK every other orbit to
provide small departures from null as an absolute reference signal. When the calibrator blocks either beam, the
fringe pattern encodes information on both the temperature distribution on the sky (Stokes I) as well as the
linear polarization. Interleaving observations with and without the calibrator allows straightforward transfer of
the absolute calibration scale to linear polarization, while providing a valuable cross-check of the polarization
solutions obtained in each mode.

Figure 3 shows the observatory and mission concept. The two parallel beams point along the spacecraft spin axis,
which is maintained perpendicular to the Sun line and nearly anti-nadir to minimize signals from the Sun or the
Earth. An external blackbody calibrator moves to cover either beam and can be stowed to leave both beams open
to the sky. The calibrator, beam-forming optics, beam splitters, and interferometer are maintained at 2.725 K to
remain in thermal equilibrium with the sky. Each semiconductor bolometer is cooled to base temperature 0.1 K
using an adiabatic demagnetization refrigerator. The observatory operates from a 660 km polar sun-synchronous
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Figure 3. PIXIE observatory and mission concept. The instrument is maintained at 2.725 K and is surrounded by shields
to block radiation from the Sun or Earth. It observes from a 660 km polar sun-synchronous terminator orbit. The
rapid spin and interferometer stroke efficiently separate Stokes I, Q, and U parameters independently within each pixel
to provide a nearly diagonal covariance matrix.

orbit with 6 AM or 6 PM ascending node to allow an unobstructed view to deep space while avoiding emission
from the Sun or Earth. The instrument thus observes a great circle each orbit, while the orbit precession of
1◦ per day achieves full sky coverage in each 6-month observing period. PIXIE is technologically mature and
could launch as early as 2017.

3. INSTRUMENT PERFORMANCE

3.1 Sensitivity

The noise equivalent power (NEP) of photon noise in a single linear polarization is given by

NEP2
photon =

2AΩ
c2

(kT )5

h3

∫
αεf

x4

ex − 1

(
1 +

αεf

ex − 1

)
dx, (4)

where x = hν/kT , ν is the observing frequency, A is the detector area, Ω is the detector solid angle, α is detector
absorptivity, T is the physical temperature of the source, ε is the emissivity of the source, and f is the power
transmission through the optics.15 For a fixed integration time τ the detected noise is simply

δP =
NEP√

τ/2
(5)

where the factor of 2 accounts for the conversion between the frequency and time domains. The noise at the
detector may in turn be referred to the specific intensity on the sky,

δIν =
δP

AΩ Δν (αεf)
(6)

where Δν is the observing bandwidth.
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PIXIE combines a large collecting area with non-imaging optics to maximize the number of photons while
minimizing the detector count. The light-gathering ability of an instrument is specified by its etendu AΩ.
Increasing the etendu for a single detector increases the photon noise, NEP ∝ (AΩ)1/2, thereby decreasing the
relative contribution of the intrinsic detector (phonon) noise. But since the signal increases linearly with etendu,
the signal-to-noise ratio improves as (AΩ)1/2. Increasing the etendu relaxes detector noise requirements while
simultaneously improving the overall system sensitivity to sky signals.

The multi-moded PIXIE optics provide sensitivity comparable to kilo-pixel focal plane arrays while requiring only
4 semiconductor bolometers. For diffraction-limited single-mode optics, the etendu and wavelength are related as
AΩ = λ2 so that the beam size scales with the observing wavelength. For multi-moded optics, however, the beam
size is fixed and the number of modes N scales as N = AΩ/λ2. Multi moded optics thus allow a considerable
increase in sensitivity compared to single-moded designs of comparable size. The improvement is large enough to
allow precision measurement of the gravity-wave signature in polarization using a handful of detectors. Over just
the frequency range 30–600 GHz where the CMB is brightest, each PIXIE detector measures 22,000 independent
modes of the electric field.

With the calibrator deployed over either aperture, the instrument measures both polarized and unpolarized
emission (Stokes I, Q, and U). With both beams open to the sky, the instrument is insensitive to unpolarized
emission but has twice the sensitivity to polarized signals†. Averaging over the four detectors, the combined
instrument sensitivity to either unpolarized or polarized emission within each synthesized frequency bin is

δII
ν = 2.4 × 10−22 W m−2 sr−1 Hz−1

δIQU
ν = 3.4 × 10−22 W m−2 sr−1 Hz−1 (7)

for a one-second integration with the calibrator deployed over either aperture, and

δIQU
ν = 0.5 × 10−22 W m−2 sr−1 Hz−1 (8)

when the calibrator is stowed.16 PIXIE will spend approximately 30% of the observing time with the calibrator
deployed and 60% with the calibrator stowed. The remaining 10% includes both high-temperature calibration
of the Galactic dust signal and lost observing time.

Eqs 7 and 8 give the specific intensity within each synthesized frequency bin. The wire grid polarizers become
inefficient in reflection at wavelengths λ < 60 μm defined by the 30 μm wire spacing, limiting the effective
frequency coverage to 400 bins from 30 GHz to 6 THz (Fig 4). For continuum sources like the CMB we may
integrate over multiple bins to further improve sensitivity. Table 2 shows the resulting sensitivity to a CMB
source. A 2-year mission achieves rms sensitivity 200 nK within each 1◦ × 1◦ pixel, falling to 70 nK with 4 years
of observations.16

Cosmological foregrounds present a natural sensitivity limit. Primordial density perturbations source E-mode
polarization. Gravitational lensing from the mass distribution along each line of sight creates a shear that distorts
the orientation of the primordial polarization field, analogous to the shear in galaxy orientations observed along
the line of sight toward distant massive clusters. By perturbing the polarization orientation, gravitational lensing
mixes the E and B modes and transforms a small fraction of the dominant E-mode polarization into a B-mode.
On angular scales θ > 0.◦5, the lensed B-mode signal is well approximated by a random white noise field on the
sky (Fig 1). This sky noise is present along every line of sight and adds in quadrature with the instrument noise.
PIXIE will reach reach this cosmological “noise floor” beyond which little additional gain can be realized.

The PIXIE sensitivity allows robust detection and characterization of the inflationary B-mode signal. Averaged
over the cleanest 75% of the sky, PIXIE will detect the gravity-wave signal r < 10−3 at 5 standard deviations,
two orders of magnitude more sensitive than Planck and a factor of ten below the predicted signal for GUT-scale
inflation. The resulting sensitivity allows characterization of the B-mode angular power spectrum in ∼20 bins
at multipoles  < 100 limited by the 2.◦6 diameter beam (Figure 1).

†Replacing the blackbody calibrator emission with sky emission in one beam leaves the noise nearly unchanged but
doubles the sky signal incident on the FTS.
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Table 2. Observatory CMB Sensitivity

Observing Mode NET NEQ
(μK s1/2) (μK s1/2)

Calibrator Deployed 13.6 19.2
Calibrator Stowed — 5.6

3.2 Foregrounds

On the large angular scales of interest to PIXIE, foregrounds are dominated by polarized emission from the
Milky Way’s interstellar medium.12,17 Polarized emission within the Galaxy is dominated by two main sources.
Synchrotron radiation from cosmic ray electrons accelerated in the Galactic magnetic field approximates a power-
law spectrum

I(ν)synch ∝ νβs (9)

with βs ∼ −0.7. Thermal emission from dust grains follows a greybody spectrum,

I(ν)dust ∝ Bν(Tdust)νβd (10)

with βd ∼ 1.7. CMB emission follows a Planck spectrum, with power-law spectral index β = 2 in the low-
frequency Rayleigh-Jeans portion and an exponential cutoff on the Wien side of the blackbody spectrum (Fig
4).

CMB emission can be distinguished from Galactic foregrounds based on their different frequency spectra. The
number of independent frequency channels must equal or exceed the number of free parameters to be derived
from a multi-frequency fit. A conservative approach requires at least ten frequency channels at the millimeter
wavelengths where the CMB is brightest: three parameters (amplitude, spectral index, and spectral curvature)
for synchrotron emission, three parameters (amplitude, spectral index, and frequency-dependent polarization
fraction) for thermal dust emission, two parameters (amplitude and spectral index) for electric dipole emission
from a population of rapidly spinning dust grains, one parameter (amplitude) for free-free emission (thermal
bremsstrahlung) reflected from diffuse interstellar dust, and one parameter (amplitude) for CMB polarization.

A commonly used technique forms a linear combination of frequency channels,

TILC =
∑

ν

ανTν , (11)

to separate CMB from foreground emission based on the different spectra. If the component spectra are known,
the coefficients αν may be chosen such that a CMB spectrum is recovered with unit response while the foreground
signals are canceled.18,19 A useful way to express sensitivity is to quote the Foreground Degradation Factor
(FDF), the ratio of the noise per pixel in the foreground-reduced map to corresponding noise obtained using
straight noise weighting. PIXIE has many more frequency channels than foreground components, allowing
efficient foreground suppression without excessive noise penalty. PIXIE achieves FDF=1.02 – the noise penalty
for rejecting foregrounds with PIXIE is only 2%. This noise penalty is included in all estimates of CMB sensitivity.

The internal linear combination technique requires knowledge of the foreground spectral indices. PIXIE has
400 effective channels from 30 GHz to 6 THz, allowing independent determination of the spectral indices within
each sky pixel. PIXIE primarily observes at frequencies above 100 GHz where the dominant foreground is
dust. Simulations using realistic polarized foregrounds20,21 and instrument noise successfully recover the long-
wavelength dust index from the input maps to 0.06% precision, corresponding to ±0.001 uncertainty in the dust
spectral index. The resulting error in the recovered CMB component is below 1 nK.

The broad frequency range of the PIXIE data provides rich ancillary science in addition to the primary goal of
inflationary science. Thomson scattering of CMB photons from free electrons at the epoch of reionization sources
E mode polarization on large angular scales. The same scattering necessarily distorts the unpolarized CMB away
from a blackbody. PIXIE will observe both the E-mode polarization and unpolarized spectral distortion. The
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Figure 4. RMS anisotropy for the CMB and polarized foregrounds. The dashed line shows the rms noise within each
synthesized frequency channel, averaged over the high-latitude sky. The grey band shows the range of amplitudes 0.01 <
r < 0.1 for the primordial gravity-wave signal. The width of the dust and synchrotron bands reflects rms foreground
variation along high-latitude lines of sight. PIXIE combines multi-moded optics with a Fourier Transform Spectrometer
to achieve high sensitivity in 400 spectral channels spanning 2.5 decades in frequency.

combination can be used to fix not only the optical depth, but also the gas temperature, and hence provide
information on the ionization mechanism at redshift z ∼ 10. PIXIE data in the far-infrared will characterize the
monopole, dipole, and higher-order power spectrum of the far-IR background to test the matter distribution at
redshift z ∼ 3. PIXIE will measure line emission from the interstellar medium, including the prominent Cii (158
μm), Nii (205 μm), and Oi (63 μm) lines as well as the CO series.

3.3 Systematic Errors

Reliable detection of the primordial gravity-wave signal requires rigorous control of systematic errors. PIXIE’s
highly symmetric design provides multiple levels of rejection for potential instrumental effects. Each detector
measures the difference between the x̂ polarization from one beam and the ŷ polarization from the other beam.
The four detectors thus sample different combinations of x̂ vs ŷ polarization from the A vs B beams in the left vs
right optics (Eq. 1). Common-mode instrumental effects cancel in the appropriate sum or difference of selected
detector pairs.16

The primordial B-mode signal is faint compared to the photon noise within a single interferogram. PIXIE’s
design mitigates the effects of low-frequency 1/f noise. An AC bias circuit modulates the detector output at 1
kHz to reduce the amplitude of 1/f noise from the detector or readout electronics. The Fourier transform acts
on short (1 second) stretches of data. Each interferogram is independent: 1/f noise or baseline drifts on time
scales much longer than 1 second appear as a constant slope or low-order polynomial in the spatial frequency
basis of any single interferogram. The Fourier transform of such low-order polynomials affects only the lowest
few spectral bins and does not project efficiently onto either the CMB or foreground spectra. 1/f noise is thus
inefficient at creating striping in the CMB polarization maps.
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Table 3. Systematic Error Budget
Effect Leakage PIXIE Mitigation Residual

FTS Spin Orbit Xcal Symmetry Preflight (nK)

Beam Ellipticity E → B X X X X 2.7

Cross Polarization �T 2 → B X X X 1.5

Polarized Sidelobes ΔT → B X X X X 1.1

Instrumental Polarization ΔT → B X X X X X < 0.1

Polarization Angle E → B X X X 0.7

Pointing Offset ΔT → B X X X X X 0.7

Relative Gain ΔT → B X X X X < 0.1

Scan-Synch Gain T → B X X X X < 0.1

Scan-Synch Offset T → B X X X X X < 0.1

Statistical characterization of the B-mode signal requires accurate knowledge of the noise properties of the
polarization spectral maps. The spatial symmetry of the fringe pattern about zero path length forces the sky
signal entirely into the real part of the Fourier transform. The imaginary component of the Fourier transform
provides an independent realization of the instrument noise, including systematics and any 1/f component,
sampled at the same time and through the same optics as the noise in the sky spectra. The imaginary spectral
maps may be analyzed identically to the real spectral maps (including multipole power spectra) as blind tests
of systematics, with identical noise amplitude as the analyzed signal maps.

A number of authors have examined systematic errors for CMB polarimetry.11,22–30 These systematic errors
may be grouped into several broad categories. Scan-synchronous effects, which accumulate coherently through
multiple observations, are of particular concern for CMB polarimetry. Amplitude modulation of the observed
fringe pattern by the spacecraft spin efficiently rejects simple scan-synchronous pickup or offset variation. Scan-
synchronous modulation of the instrument responsivity (gain drift) is more serious. Variation in responsivity at
twice the spin period will modulate the dominant unpolarized signal to mimic a polarized source. PIXIE’s null
design mitigates such a systematic error. With the calibrator stowed, the instrument responds only to polarized
sky emission, removing the source term for gain modulation. Gain drifts only affect data when the calibrator is
deployed. The calibrator is maintained within 10 mK of the sky temperature to allow operation near null. The
residual systematic error signal is linear in the sky–calibrator temperature difference, while true sky signals are
independent of the calibrator. Calibration data taken at different calibrator temperature allows identification
and removal of scan-synchronous gain drifts. Residual modulation (e.g. from instrument asymmetries) can be
rejected by comparing the signal from the 4 independent detectors. Gain drifts are predominantly common mode
and produce identical signals on all 4 detectors,. True sky signals have opposite sign for specific detector pairs,
allowing separation from common-mode signals.

Beam effects modulate the sky signal and can produce systematic errors. For example, instrument rotation of
an elliptical beam pattern over an unpolarized sky creates a spurious “polarization” response at twice the spin
frequency as the elliptical beam beats against the quadrupolar component of the local anisotropy. Since beam
effects directly modulate the true sky signal, they can not be removed simply by altering the scan strategy and
are sometimes referred to as “irreducible” systematic errors. The effect depends on anisotropy on angular scales
smaller than the instrument beam and is thus of particular concern for an instrument like PIXIE whose 2.◦6 beam
diameter is larger than the degree angular scale of unpolarized CMB anisotropy.

PIXIE’s differential design mitigates beam-related systematic errors. With the calibrator stowed, the unpolarized
signal cancels to leading order, leaving only the differential ellipticity between the A- and B-side beams as a
source of potential error. Regardless of calibrator position, polarized and unpolarized signals produce a different
sign on each of the four detectors (Eq. 2), allowing unambiguous separation and rejection of beam effects.

A non-zero cross-polar beam response creates systematic errors by mixing the Stokes Q and U parameters,
thereby aliasing the dominant E-mode polarization into a spurious B-mode pattern. The dominant cause is
the quadrupolar component of the cross-polar beam pattern‡. PIXIE’s non-imaging optics produce a tophat

‡A cross-polar response that is uniform across the beam affects the amplitude of the response to a polarized sky signal
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beam with nearly uniform polarization response, mitigating this effect. As with other beam-related effects, true
polarized sky signals enter each detector at a specific relative phase in spin angle and can be identified by the
appropriate detector-pair difference.

Table 3 lists the major sources of systematic error and their estimated effect on the PIXIE polarization results.
Systematic errors are small compared to the photon noise.

APPENDIX A. OPTICAL SIGNAL PATH

PIXIE is fully symmetric about the plane bisecting the transfer mirrors (Figure 2). Consider a plane wave
incident on the instrument A-side primary mirror,

�E0 = Exei(kz−ωt) x̂ + Eyei(kz−ωt) ŷ (12)

where x̂ is in the plane of the diagram, ŷ is normal to the page, and ẑ is along the direction of propagation. For
clarity, we will ignore the term i(kz −ωt) since it is common to all expressions, and denote the amplitude of the
field in the x̂ and ŷ directions as

�E0 = Ax̂ + Bŷ (13)

where A = Ex and B = Ey. Reflection from a mirror reverses the direction of propagation and flips the sign
of the electric field. Reflections from the primary, folding, and secondary mirrors flip the sign three times and
route the beam to the FTS. Reflection from the first transfer mirror flips the sign a fourth time. The field after
reflection from the first transfer mirror is thus

�E1 = �E0 = Ax̂ + Bŷ (14)

The first polarizing grid transmits the x̂ polarization while reflecting ŷ. The second left-side transfer mirror
collects the beam reflected from the polarizing grid (with a minus sign for the reflection), while the right-side
transfer mirror collects the transmitted beam. After reflecting off the second transfer mirror (which induces
another sign flip), the fields are

�EL2 = Bŷ �ER2 = −Ax̂ (15)

where subscripts L and R refer to the left and right sides of the instrument, respectively. The beams then
encounter the second polarizing grid, oriented such that from the point of view of the radiation the wires are
at 45◦ from the plane of polarization. Half of each beam is transmitted and half is reflected, imposing a new
polarization basis on the radiation which we denote û and v̂. The relationship between û, v̂ and ŷ, ẑ coordinate
systems is

û = (x̂ + ŷ)/
√

2

v̂ = (x̂ − ŷ)/
√

2 (16)

Hence the radiation just before the second polarizer can be described as

�EL2 = B(û − v̂)/
√

2
�ER2 = −A(û + v̂)/

√
2 (17)

The wires of the second polarizer are aligned with the û vector so that the E fields in the û direction are reflected
(with a minus sign) while those in the v̂ direction are transmitted.

The third transfer mirror mirror on the left side thus collects the reflected (û) radiation from �EL2 (with a minus
sign) plus the transmitted (v̂) radiation from �ER2. The third transfer mirror on the right collects transmitted
(v̂) radiation from �EL3 plus the reflected (û) radiation from �ER3 (with a minus sign). After reflection from the
third transfer mirror (which induces another sign flip), the fields become

�EL3 = (Bû + Av̂)/
√

2 �ER3 = (−Aû + Bv̂)/
√

2. (18)

(polarization efficiency) but does not mix the E and B modes.
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In the original coordinate system we may write this as

�EL3 = [(A + B)x̂ − (A − B)ŷ]/2 �ER3 = [−(A − B)x̂ − (A + B)ŷ]/2. (19)

Note that the second polarizing grid mixes the original polarization states – we began with amplitude A oriented
along x̂ and amplitude B oriented along ŷ. From Eq. 19 we now have linear combinations of A and B along
each coordinate axis x̂ and ŷ.

Each beam then reflects from the dihedral mirror assembly. The dihedral mirror treats the two polarization
states differently. The x̂ polarization reflects from two faces, generating two canceling negative signs, while the
ŷ polarization reflects from two faces but also changes direction, resulting in a net change of sign. In addition,
the different path length of the left beam with respect to the right beam generates an optical phase delay that
depends on the position of the dihedral mirror assembly. The path is shortened on one side but lengthened on
the other, creating a total phase delay e+2izω/c on one side and e−2izω/c on the other side, where z is the position
of the dihedral mirror assembly. The beams then reflect from the fourth transfer mirror. Including the phase
delay, the electric fields after the fourth transfer mirror become

�EL4 = [−(A + B)x̂ − (A − B)ŷ]e2izω/c/2
�ER4 = [ (A − B)x̂ − (A + B)ŷ]e−2izω/c/2, (20)

or in the rotated coordinate system,

�EL4 = (−Aû − Bv̂)e2izω/c/
√

2
�ER4 = (−Bû + Av̂)e−2izω/c/

√
2. (21)

The beams then recombine at the third polarizing grid. The phases are different (in general) and will lead
to either constructive or destructive interference. The wires in the third polarizer are oriented identically to
the second polarizer. Radiation leaving the fourth transfer mirror on the left side (�EL4) will thus reflect the û
component to the fifth transfer mirror on the left side (with a minus sign) while transmitting the v̂ component
to the fifth transfer mirror on the right side. The fifth transfer mirror induces another sign change. The fields
after the fifth transfer mirror are thus

�EL5 = (−Aûe2izω/c − Av̂e−2izω/c)/
√

2
�ER5 = (−Bûe−2izω/c + Bv̂e2izω/c)/

√
2, (22)

or in the original coordinate system

�EL5 = [−A(e2izω/c + e−2izω/c) x̂ − A(e2izω/c − e−2izω/c) ŷ ]/2
�ER5 = [ B(e2izω/c − e−2izω/c) x̂ − B(e2izω/c + e−2izω/c) ŷ ]/2 (23)

Re-writing the exponentials as sines and cosines, we obtain

�EL5 = −A cos(2zω/c) x̂ − iA sin(2zω/c) ŷ

�ER5 = iB cos(2zω/c) x̂ − B cos(2zω/c) ŷ (24)

The beams then encounter the fourth polarizing grid. The wires of the fourth grid are oriented the same as the
first grid, reflecting the ŷ component while transmitting x̂. After a final reflection from the sixth transfer mirror,
the beams reach the detectors. The electric fields at the detectors from radiation originally incident from the
left-side beam are thus

�EL6 = −iB sin(2zω/c) x̂ − iA sin(2zω/c) ŷ

�ER6 = A cos(2zω/c) x̂ − B cos(2zω/c) ŷ (25)
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PIXIE has 4 detectors, each of which measures a single linear polarization. The detectors are arranged in two
pairs. One member of each pair measures the x̂ component while the other member measures ŷ. The bolometers
measure the incident power, which is the square of the electric field:

PLx = B2 sin2(2zω/c) =
1
2

B2[1 − cos(4zω/c)]

PLy = A2 sin2(2zω/c) =
1
2

A2[1 − cos(4zω/c)]

PRx = A2 cos2(2zω/c) =
1
2

A2[1 + cos(4zω/c)]

PRy = B2 cos2(2zω/c) =
1
2

B2[1 + cos(4zω/c)] (26)

The derivation thus far has ignored radiation incident from the B-side beam. Since PIXIE is fully symmetric, the
derivation for radiation from the B-side beam is identical to radiation from the A-side beam. Using the principle
of superposition we can combine the results from both sides and all frequencies to obtain the power incident on
the bolometers as a function of the dihedral mirror position z:

PLx =
1
2

∫
(B2 + C2) + (C2 − B2) cos(4zω/c)dω

PLy =
1
2

∫
(A2 + D2) + (D2 − A2) cos(4zω/c)dω

PRx =
1
2

∫
(A2 + D2) + (A2 − D2) cos(4zω/c)dω

PRy =
1
2

∫
(B2 + C2) + (B2 − C2) cos(4zω/c)dω (27)

where we use notation

A = EA
x = x̂ component of incident E field from A − side beam

B = EA
y = ŷ component of incident E field from A − side beam

C = EB
x = x̂ component of incident E field from B − side beam

D = EB
y = ŷ component of incident E field from B − side beam.

Each detector thus measures a DC term plus an interference fringe pattern modulated by the position of the
dihedral mirror. Low-frequency noise will render the DC component unusable. The modulated term is propor-
tional to the Fourier transform of the difference spectrum between one linear polarization from one input beam
and the orthogonal linear polarization from the other beam.

PIXIE can operate in two modes. With the calibrator stowed, both beams view the same part of the sky.
The power on each detector then becomes

PLx =
1
2

∫
(E2

x + E2
y) + (E2

x − E2
y) cos(4zω/c) dω

PLy =
1
2

∫
(E2

x + E2
y) − (E2

x − E2
y) cos(4zω/c) dω

PRx =
1
2

∫
(E2

x + E2
y) + (E2

x − E2
y) cos(4zω/c) dω

PRy =
1
2

∫
(E2

x + E2
y) − (E2

x − E2
y) cos(4zω/c) dω. (28)

We may rewrite this in terms of the Stokes parameters

I = E2
x + E2

y

Q = E2
x − E2

y

U = 2ExEy (29)
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to obtain

PLx =
1
2

∫
I(ω) + Q(ω) cos(4zω/c) dω

PLy =
1
2

∫
I(ω) − Q(ω) cos(4zω/c) dω

PRx =
1
2

∫
I(ω) + Q(ω) cos(4zω/c) dω

PRy =
1
2

∫
I(ω) − Q(ω) cos(4zω/c) dω (30)

The detected fringe pattern is thus directly proportional to the Fourier transform of the frequency spectrum of
the Stokes Q linear polarization of the sky. The spacecraft spin modulates the polarized signal from the sky
while leaving the unpolarized component unchanged. The sky signal

�E = Exx̂ + Ey ŷ (31)

in sky-fixed coordinates [x̂, ŷ] becomes

�E = (Ex cos γ + Ey sin γ) x̂′

+ (Ey cos γ − Ex sin γ) ŷ′ (32)

in instrument coordinates [x̂′, ŷ′], where γ is the spacecraft rotation angle relating the two coordinate systems.
When the calibrator is in the stowed position, we may thus recover the polarization state of the sky as

PLx =
1
2

∫
[Q(ω) cos(2γ) + U(ω) sin(2γ)] cos(4zω/c) dω

PLy =
1
2

∫
[−Q(ω) cos(2γ) − U(ω) sin(2γ)] cos(4zω/c) dω

PRx =
1
2

∫
[Q(ω) cos(2γ) + U(ω) sin(2γ)] cos(4zω/c) dω

PRy =
1
2

∫
[−Q(ω) cos(2γ) − U(ω) sin(2γ)] cos(4zω/c) dω, (33)

where we have dropped for clarity the constant term (proportional to Stokes I) not modulated by the mirror
movement.

The instrument can also operate with a blackbody calibrator blocking one aperture. Assume that the calibrator
blocks the A-side beam. The detected power may now be written

PLx =
1
2

∫
(E2

x,sky + E2
y,cal) + (E2

x,sky − E2
y,cal) cos(4zω/c) dω

PLy =
1
2

∫
(E2

x,cal + E2
y,sky) − (E2

x,cal − E2
y,sky) cos(4zω/c) dω

PRx =
1
2

∫
(E2

x,cal + E2
y,sky) + (E2

x,cal − E2
y,sky) cos(4zω/c) dω

PRy =
1
2

∫
(E2

x,sky + E2
y,cal) − (E2

x,sky − E2
y,cal) cos(4zω/c) dω

(34)

The fringe pattern now depends on the difference between the sky signal in one linear polarization and the
calibrator signal in the orthogonal polarization. We may write a single linear polarization state as a linear
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combination of Stokes parameters,

E2
x,sky =

Isky + Qsky

2

E2
y,sky =

Isky − Qsky

2
(35)

The calibrator is unpolarized so that 〈E2
x,cal〉 = 〈E2

y,cal〉. As the spacecraft spins, the measured fringe pattern
yields the frequency spectrum of the Stokes I, Q, and U parameters from the sky,

PLx =
1
4

∫
[ Isky(ω) − Ical(ω) + Q(ω) cos(2γ) + U(ω) sin(2γ) ] cos(4zω/c) dω

PLy =
1
4

∫
[ Isky(ω) − Ical(ω) − Q(ω) cos(2γ) − U(ω) sin(2γ) ] cos(4zω/c) dω

PRx =
1
4

∫
[ Ical(ω) − Isky(ω) + Q(ω) cos(2γ) + U(ω) sin(2γ) ] cos(4zω/c) dω

PRy =
1
4

∫
[ Ical(ω) − Isky(ω) − Q(ω) cos(2γ) − U(ω) sin(2γ) ] cos(4zω/c) dω, (36)

where we again drop for clarity the constant terms (now proportional to Ical + Isky + Qsky) not modulated by
the mirror movement. Note the factor of two difference for the Stokes Q and U terms between Eqs. 33 and 36.
When the calibrator is over one beam, the fringe pattern is sensitive to Stokes I, Q, and U. When both beams
view the sky, the fringe pattern is only sensitive to linear polarization (Stokes Q and U), but at twice the signal
intensity since the instrument now interferes two copies of the sky signal.

The factor of two increase in sensitivity when both beams view the sky is possible because the instrument
interferes one linear polarization from one beam with the orthogonal polarization from the other beam. Circu-
larly polarized sky emission would introduce correlations between the orthogonal linear polarization states, but
continuum emission at millimeter wavelengths has no significant circular polarization.
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