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ABSTRACT   

Fully developed speckle has been used previously to estimate the out-of-plane motion of ultrasound images. However, in 
real tissue the rarity of such patterns and the presence of coherency diminish both the precision and the accuracy of the 
out-of-plane motion estimation. In this paper, for the first time, we propose a simple mathematical derivation for out-of-
plane motion estimation in which the coherent and non-coherent parts of the RF echo signal are separated. This method 
is based on the Rician-Inverse Gaussian stochastic model of the speckle formation process, which can be considered as a 
generalized form of the K-distribution with richer parameterization. The flexibility of the proposed method allows 
considering any patch of the RF echo signal for the purpose of displacement estimation.  The experimental results on 
real tissue demonstrate the potential of the proposed method for accurate out-of-plane estimation. The underestimation 
of motion in ex vivo bovine tissue at 1 mm displacement is reduced to 15.5% compared to 37% for a base-line method.  
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1. INTRODUCTION  
The deviation of a coherent field phase front from its original form, after confronting a random medium, results in a 
granular noise-like pattern in ultrasound images referred to as speckle1. Speckle is an informative signal rather than 
being random noise and it can be used to reveal information about the imaging system or the random medium2. On the 
other hand, the speckle formation process can be considered as the summation of small phase changes of the incident 
coherent signal produced by randomly distributed scatterers3. Such a process intrinsically suggests it can be modeled as a 
stochastic process. By modeling the speckle formation process, it is possible to obtain information about the echo signal 
amplitude and intensity distributions. 

Sensorless freehand ultrasound aims to eliminate the need of a position sensor mounted on the transducer with speckle 
tracking. The main challenge is the out-of-plane motion estimation. Three main categories have been introduced in the 
literature for the purpose of speckle tracking: regression-based, correlation-based, and learning-based methods.  

The regression-based method4 determines the best affine linear estimation of a circularly Gaussian distributed Radio 
Frequency (RF) signal correspondent to a Fully Developed Speckle (FDS) pattern and is closely related to the 
correlation of speckle patches. The majority of the remaining work on ultrasound speckle tracking is correlation-based. 
The second order statistics and low-order moments of the envelope ultrasound echo signals has been used to estimate the 
out-of-plane motion for more than two decades5. Many of the proposed correlation-based methods focus on the 
improvement of FDS detection by introducing different FDS detection methods, such as optimal low-order moments6, 
novel meshing7, and the use of the K-S test as a non-parametric goodness of fit8. Other efforts intend to increase the 
motion estimation accuracy by adapting the correlation curve and compensating the loss of coherency by using 
additional information such as correlation in the axial and lateral directions8, beam steering9, developing a heuristic 
method to consider the coherent part of the image10, using Maximum Likelihood Estimators (MLE) for motion 
estimation11, or incorporating the information of several noisy measurements in a probabilistic framework12. Recently a 
new learning based method of out-of-plane motion estimation on imagery of real tissue has been introduced13. They 
adapt the scale factor of the nominal correlation curve based on training data. 

In this paper, we have developed a novel correlation-based method that incorporates coherency in the derivation of 
correlation function and gives a general form of previously proposed correlation-based methods. For any patch of the 
image, the parameters of the Rician-Inverse Gaussian (RiIG) model are estimated from the RF signal, and from these 
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parameters, the correlation coefficient is computed. Since we propose an analytical closed-form formula for the 
correlation, it is possible to estimate the out-of-plane motion. The remaining parameter needed in this formulation is the 
elevation width of the ultrasound Point Spread Function (PSF) in its elevation direction which can be found from a prior 
calibration process. 

2. METHODS 
2.1 Speckle formation process 

As mentioned, the speckle formation process can be modeled as a stochastic process. It can be stated as the summation 
of  complex phasors as below 2: 

| | . (1) 

 is the complex RF signal and  is the number of scatterers in a resolution cell. The number of scatterers in a resolution 
cell for a randomly distributed medium follows a Poission process 14. If the number of scatterers is large enough, the 
amplitude of the radio-frequency signal, , has a Rayleigh distribution. In this case in-phase (I) and 
quadrature (Q) components of the RF signal,  and , are zero-mean Gaussian distributed. The Rayleigh distribution is 
correspondent to FDS.  

If the variances of I and Q components of the RF signal are Γ distributed, the RF echo signal is K distributed14. In a 
general form,   and  are compound random variables as follows: √ , (2-1) √ . (2-2) 

 and  are normally distributed with a covariance matrix of identity.  

If Z is Γ distributed, with 0,  has a Rician distribution. If  0,  becomes homodyned-K 
distributed15. There is no explicit analytical expression for homodyned-K Probability Density Function (PDF) and its 
second order statistics; hence, it is more difficult to use for the application of the out-of-plane motion estimation. 

Considering the Inverse Gaussian (IG) distribution for  and zero  and , the resulting distribution is the RiIG 16. The 
physical interpretation of RiIG is that the complex RF signal is a combination of two independent Brownian motion with 
drifts  and  and the Inverse Gaussian (IG) first passage time. The drift part models the presence of coherency in the 
echo signal. In this statistical process,  models the speckle-free part of the signal and ,  correspond to the FDS 
part. A previous study on RiIG shows that it outperforms K, and Nakagami distributions in modeling ultrasound echo 
signal14. Moreover, it has some interesting characteristics that make it suitable for the application of out-of-plane motion 
estimation. It is possible to estimate the parameters of RiIG distribution fairly well, even from a few samples14. 
Moreover, its posterior distribution formula is available in a closed form that makes it possible to estimate the coherent 
part, , in a Maximum A-Posterior (MAP) manner16. Finally, the model allows for separation of the coherent and non-
coherent parts of the correlation function, as will be described next. 

2.2 Motion estimation based on second order statistics 

For a linear rectangular array, the point spread function (PSF) of the returned echo amplitude can be simplified as17: , , , _ _ _ , .  (3) 

where y indicates the out-of-plane or elevation direction.  equals  and  .  refers to transducer 

dimension in the elevation direction.  is the distance along the beam axis and  is the ultrasound wavelength in its 
central frequency.  represents a constant factor.  
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For a random process  and spatial point spread function of an imaging system , , , if the displacement is only in 
elevation direction, based on the linear system theory, the autocorrelation function of the backscattered complex process 
can be written as2: ∆ ∆ ∆ ∆ , (4) 

where  indicates the convolution operator and   is the complex conjugate of . 

In the case of a rectangular array  can be approximated by  function and it gives: ∆  ∆ ∆ ∆ . (5) 

The very simple approximation of the convolution of two   functions is a Gaussian one. However, such an 
approximation may be one of the sources of the out-of-plane motion underestimation based of Gaussian correlation 
curves reported in previous papers. Since the convolution of two  functions can be determined by term-wise 
Fourier transform2, it gives: ∆ ∆ ∆ 1 ∆ . (6) 

Under Rayleigh conditions, where the microstructure of the imaging sample is uncorrelated as a result of randomly 
scattered fine particles in the imaging sample, and due to the averaging over uniformly distributed phases we have 2: 

R ∆ 2 ∆ . (7) 

 is the variance of the diffuse part. In this case, the autocorrelation of the output process only reveals the information 
of imaging PSF (   rather than the information of medium and it can be used to estimate the out-of-plane motion 
(∆ . 

In the case of RiIG process, autocorrelation function can be written as: ∆                                        . 
(8) 

We assumed that  and  are the same for the closely positioned frames and . 1 and 2 subscripts 
represent the process at the positions  and  respectively. 

Considering  and  fully correlated for two adjacent frames, without loss of generalization, it can be assumed 
 or   such that 0 1. Considering the fact that  models the variance of the first passage time of 

the process, it is plausible to suppose that  is independent of the normally distributed part. Under these circumstances: ∆ √ √ . (9) 

Since the Rayleigh condition goes for the normal part of RiIG distribution and the variances of these normal 
distributions are unit, we can replace  by ∆  (see 2 for more details on the derivation of Rayleigh and K 
correlation functions).  ∆ 2√ ∆ . (10) 

In this new correlation function, the variance of the diffuse part is replaced by 2√  (compare with Eq. 7) and 
 represents the effect of coherent part. 

Substituting the moment of  from14 in Eq. 9 and apply the result in Eq. 5, we may write: ∆ ∆ ∆ 1 ∆ . (11) 

After some simple arithmetic: 
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∆ 1 1 2√∆ 1 2∆ ∆ . (12) 

 is the coherent part of the correlation and  is the Rayleigh part which out-of-plane displacement can be estimated 
from. To eliminate the scaling factor K, it is feasible to use correlation coefficient instead: ∆0 ∆ , (13) 

where  is mean of the process at position  and  is the variance of the process. Assuming  is a stationary 
process to its second order, and using the explicit terms for RiIG moments14, from Eq.12 and Eq. 13 the correlation 
coefficient is given by: 

2 √ 1 2∆∆43 . (14) 

The maximum value of function 
∆∆  equals  and 0 1, so  is less than 1 for all the values of ∆ , as 

expected. 

 is directly calculated from the ultrasound RF signal. All the parameters in the right side of Eq. 14, including , , and 
, can be estimated from data based on Expectation Maximization algorithm (EM) explained in14,16.  is the variance of 

the imaging system PSF at different depths, which can be known from the system manufacturer or can be calibrated 
from a speckle phantom. The second approach has been followed in this work. 

The mathematical expression for MAP estimation of the coherent part ( ) of the RF signal can be written as: ̂ arg max | | .  (15) 

Since the posterior distribution of , | | , is given in a closed form16, ̂ is explicitly determined. For the details and 
discussion on the parameter estimation of RiIG model see14. 

 

3. EXPERIMENTAL SETUP 
The image acquisition system consists of a 10 MHz 2D linear probe (SonixGPS, Ultrasonix Inc., Richmond, BC, 
Canada). The elevation movement of the phantom is created by means of a linear motor stage (T-LSR150B, Zaber 
Technologies Inc., Vancouver, BC, Canada) with equal steps of 0.0635 mm. The ultrasound probe is fixed during the 
experiments and the phantom is placed on top of the motor stage. We considered the frames to be parallel with no in-
plane motion.   

Firstly in a calibration process, a phantom with a large number of randomly distributed scatterers is scanned. At four 
different axial depths of the image (0.57, 0.95, 1.33, 1.75 cm) a patch of 100 RF sample× 25 pixel is considered. The 
PSF elevation width of the ultrasound transducer (

yσ ) is estimated at each depth from the selected patch to minimize the 
difference of true displacement and estimated ones from a sequence of 40 frames with equal steps of 0.0635 mm 
displacements. Then, the same experiment is performed on real tissue. At each depth, similar to the depths selected in the 
calibration phase, a random window of 100 RF sample× 25 pixel is selected. Here for the sake of simplicity we used non 
overlapping windows, but it is possible to apply this method on any arbitrary window at the selected depth. The 
parameters of the RiIG model are estimated as explained previously. Since all of the parameters used in Eq. 14 are now 
determined, the out-of-plane motion is computable. Note that the value of 

yσ  for each depth is different and comes from 
the calibration process.  
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the patches and the one that comes from the randomly located scatterers. In this frame work it is possible to use almost 
all patches of the images regardless of being FDS and take advantage of plenty estimations and make the final out-of-
plane motion estimation more robust. 

Here we just evaluated the out-of-plane motion estimation for the frames with fixed elevation displacement. It is possible 
to determine the complete out-of-plane transform between two frames based on the elevation distance of tree different 
corresponding points on the frames10.  

Experiments on a tissue sample suggest that considering the coherent part significantly improves both the precision and 
the accuracy of the out-of-plane motion estimation. Our results indicate by choosing a suitable frame distance (around 
0.6 mm in this experiment) the underestimation over a long distance can be considerably reduced. More experiments are 
needed to demonstrate ability on tracking in vivo.  
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