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Out-of-plane motion estimation based on a Rician-Inverse Gaussian
model of RF ultrasound signals: speckle tracking without fully
developed speckle
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ABSTRACT

Fully developed speckle has been used previously to estimate the out-of-plane motion of ultrasound images. However, in
real tissue the rarity of such patterns and the presence of coherency diminish both the precision and the accuracy of the
out-of-plane motion estimation. In this paper, for the first time, we propose a simple mathematical derivation for out-of-
plane motion estimation in which the coherent and non-coherent parts of the RF echo signal are separated. This method
is based on the Rician-Inverse Gaussian stochastic model of the speckle formation process, which can be considered as a
generalized form of the K-distribution with richer parameterization. The flexibility of the proposed method allows
considering any patch of the RF echo signal for the purpose of displacement estimation. The experimental results on
real tissue demonstrate the potential of the proposed method for accurate out-of-plane estimation. The underestimation
of motion in ex vivo bovine tissue at 1 mm displacement is reduced to 15.5% compared to 37% for a base-line method.
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1. INTRODUCTION

The deviation of a coherent field phase front from its original form, after confronting a random medium, results in a
granular noise-like pattern in ultrasound images referred to as speckle'. Speckle is an informative signal rather than
being random noise and it can be used to reveal information about the imaging system or the random medium?. On the
other hand, the speckle formation process can be considered as the summation of small phase changes of the incident
coherent signal produced by randomly distributed scatterers’. Such a process intrinsically suggests it can be modeled as a
stochastic process. By modeling the speckle formation process, it is possible to obtain information about the echo signal
amplitude and intensity distributions.

Sensorless freehand ultrasound aims to eliminate the need of a position sensor mounted on the transducer with speckle
tracking. The main challenge is the out-of-plane motion estimation. Three main categories have been introduced in the
literature for the purpose of speckle tracking: regression-based, correlation-based, and learning-based methods.

The regression-based method* determines the best affine linear estimation of a circularly Gaussian distributed Radio
Frequency (RF) signal correspondent to a Fully Developed Speckle (FDS) pattern and is closely related to the
correlation of speckle patches. The majority of the remaining work on ultrasound speckle tracking is correlation-based.
The second order statistics and low-order moments of the envelope ultrasound echo signals has been used to estimate the
out-of-plane motion for more than two decades’. Many of the proposed correlation-based methods focus on the
improvement of FDS detection by introducing different FDS detection methods, such as optimal low-order moments®,
novel meshing’, and the use of the K-S test as a non-parametric goodness of fit®. Other efforts intend to increase the
motion estimation accuracy by adapting the correlation curve and compensating the loss of coherency by using
additional information such as correlation in the axial and lateral directions®, beam steering’, developing a heuristic
method to consider the coherent part of the image'’, using Maximum Likelihood Estimators (MLE) for motion
estimation'', or incorporating the information of several noisy measurements in a probabilistic framework'?. Recently a
new learning based method of out-of-plane motion estimation on imagery of real tissue has been introduced". They
adapt the scale factor of the nominal correlation curve based on training data.

In this paper, we have developed a novel correlation-based method that incorporates coherency in the derivation of
correlation function and gives a general form of previously proposed correlation-based methods. For any patch of the
image, the parameters of the Rician-Inverse Gaussian (RilG) model are estimated from the RF signal, and from these
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parameters, the correlation coefficient is computed. Since we propose an analytical closed-form formula for the
correlation, it is possible to estimate the out-of-plane motion. The remaining parameter needed in this formulation is the
elevation width of the ultrasound Point Spread Function (PSF) in its elevation direction which can be found from a prior
calibration process.

2. METHODS
2.1 Speckle formation process

As mentioned, the speckle formation process can be modeled as a stochastic process. It can be stated as the summation
of N complex phasors as below *:

N
A =Z|ai|emi =X, +jY,. 1)
i=1
A is the complex RF signal and N is the number of scatterers in a resolution cell. The number of scatterers in a resolution
cell for a randomly distributed medium follows a Poission process '*. If the number of scatterers is large enough, the
amplitude of the radio-frequency signal, R = \/X? + ¥;?, has a Rayleigh distribution. In this case in-phase (I) and

quadrature (Q) components of the RF signal, X,. and Y,., are zero-mean Gaussian distributed. The Rayleigh distribution is
correspondent to FDS.

If the variances of I and Q components of the RF signal are I' distributed, the RF echo signal is K distributed'’. In a
general form, X, and Y, are compound random variables as follows:

Xr =iy + BrZ + \/ZNx: (2-1)
Y, = uy, + ByZ + VZN,. (2-2)
N, and N,, are normally distributed with a covariance matrix of identity.

If Z is T' distributed, withu, =u, =0, R has a Rician distribution. If g, = f, = 0, R becomes homodyned-K
distributed". There is no explicit analytical expression for homodyned-K Probability Density Function (PDF) and its
second order statistics; hence, it is more difficult to use for the application of the out-of-plane motion estimation.

Considering the Inverse Gaussian (IG) distribution for Z and zero u, and u,, the resulting distribution is the RilG ' The
physical interpretation of RilG is that the complex RF signal is a combination of two independent Brownian motion with
drifts B, and B, and the Inverse Gaussian (IG) first passage time. The drift part models the presence of coherency in the
echo signal. In this statistical process, Z models the speckle-free part of the signal and N,, N,, correspond to the FDS
part. A previous study on RilG shows that it outperforms K, and Nakagami distributions in modeling ultrasound echo
signal*. Moreover, it has some interesting characteristics that make it suitable for the application of out-of-plane motion
estimation. It is possible to estimate the parameters of RilG distribution fairly well, even from a few samples'’.
Moreover, its posterior distribution formula is available in a closed form that makes it possible to estimate the coherent
part, Z, in a Maximum A-Posterior (MAP) manner'®. Finally, the model allows for separation of the coherent and non-
coherent parts of the correlation function, as will be described next.

2.2 Motion estimation based on second order statistics

For a linear rectangular array, the point spread function (PSF) of the returned echo amplitude can be simplified as'”:

. y
9(x,y,2) = g(x, Z)in_planeg(Y)out_of_plane = Kg(x,z). sinc? (O'_) 3)
y
T . . . . sin(my) Ao2zo
where y indicates the out-of-plane or elevation direction. sinc(y) equals ———and 7, = . D,, refers to transducer
Ty y Dy y

dimension in the elevation direction. z, is the distance along the beam axis and A, is the ultrasound wavelength in its
central frequency. K represents a constant factor.
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For a random process A and spatial point spread function of an imaging system g(x, y, z), if the displacement is only in
elevation direction, based on the linear system theory, the autocorrelation function of the backscattered complex process
can be written as’:

R(dy) = R4(8y)  g(=Ay) * g " (8y), 4)
where * indicates the convolution operator and g * is the complex conjugate of g.

In the case of a rectangular array g(y) can be approximated by sinc? function and it gives:
R(Ay) = K?R, (Ay) * sinc? (i—y) * sincz(i—y). (5)
y y

The very simple approximation of the convolution of two sinc? functions is a Gaussian one. However, such an
approximation may be one of the sources of the out-of-plane motion underestimation based of Gaussian correlation
curves reported in previous papers. Since the convolution of two sinc? functions can be determined by term-wise
Fourier transform?, it gives:

K2

s (1= sinc (ﬂ)) (6)

9y

R(Ay) = Ry4(Ay) *

Under Rayleigh conditions, where the microstructure of the imaging sample is uncorrelated as a result of randomly
scattered fine particles in the imaging sample, and due to the averaging over uniformly distributed phases we have *:
RARayleigh (AY) = 20—(% 6(Ay) (7)

o2 is the variance of the diffuse part. In this case, the autocorrelation of the output process only reveals the information
of imaging PSF (g(y) ) rather than the information of medium and it can be used to estimate the out-of-plane motion

(4y).
In the case of RilG process, autocorrelation function can be written as:

Ro(AY) = < (BrZy + Zy Ny + j(BiZy + \Z1Ny1)) (BrZy + ZoNyy + j(BiZ2 + \[Z2N,y5))* >

=< JZ1Zy >< NyyNyy > +<JZ1Z; >< Ny Ny, > + B* < Z,Z, >.

®)

We assumed that B, and fB; are the same for the closely positioned frames and B = /% + B7. 1 and 2 subscripts
represent the process at the positions y; and y, respectively.

Considering Z; and Z, fully correlated for two adjacent frames, without loss of generalization, it can be assumed
Z, =kZ,orZ; = kZ, such that 0 < k < 1. Considering the fact that Z models the variance of the first passage time of
the process, it is plausible to suppose that Z is independent of the normally distributed part. Under these circumstances:

Ro(Ay) = Vk < NyyNyp >< Z > +Vk < NyyNy, >< Z >+ kf? < Z% >. )

Since the Rayleigh condition goes for the normal part of RilG distribution and the variances of these normal
distributions are unit, we can replace < N,;N,, > by §(Ay) (see * for more details on the derivation of Rayleigh and K
correlation functions).

Ru(Ay) = 2Vk < Z > 8(Ay) + kB2 < Z2 >. (10)

In this new correlation function, the variance of the diffuse part is replaced by 2vVk < Z > (compare with Eq. 7) and
kB? < Z? > represents the effect of coherent part.

Substituting the moment of Z from'* in Eq. 9 and apply the result in Eq. 5, we may write:
KZ

R(8Y) = Ra(8y) * s (1 = sine (%)) (11)

After some simple arithmetic:
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5\? 1 5\ 2Vk . (2hy
R(Ay) = K2kp? (;) (1 + 5_;/) o2 + K? (;)(M—y)z<1 — sinc (a—y» =R, + R, (8y). (12)

R, is the coherent part of the correlation and R, is the Rayleigh part which out-of-plane displacement can be estimated
from. To eliminate the scaling factor K, it is feasible to use correlation coefficient instead:

_CQy) _RAy) —pay) * g(y) X ua(y2) * g(y)
IO o} ’

(13)

where p,(y) is mean of the process at position y and o7 is the variance of the process. Assuming A is a stationary
process to its second order, and using the explicit terms for RilG moments'®, from Eq.12 and Eq. 13 the correlation
coefficient is given by:

— )
Gy (14)

1—sinc(2A—y>

The maximum value of function ( (My);y

) equals ﬁ and 0 < k < 1, so p is less than 1 for all the values of Ay, as
y
expected.

p is directly calculated from the ultrasound RF signal. All the parameters in the right side of Eq. 14, including k, 8, and
¥, can be estimated from data based on Expectation Maximization algorithm (EM) explained in'*". oy is the variance of
the imaging system PSF at different depths, which can be known from the system manufacturer or can be calibrated
from a speckle phantom. The second approach has been followed in this work.

The mathematical expression for MAP estimation of the coherent part (Z) of the RF signal can be written as:
2 = argmax pzr(z|r). (15)

Since the posterior distribution of Z, pzr(z|r), is given in a closed form'¢, 2 is explicitly determined. For the details and
discussion on the parameter estimation of RiIG model see'*.

3. EXPERIMENTAL SETUP

The image acquisition system consists of a 10 MHz 2D linear probe (SonixGPS, Ultrasonix Inc., Richmond, BC,
Canada). The elevation movement of the phantom is created by means of a linear motor stage (T-LSR150B, Zaber
Technologies Inc., Vancouver, BC, Canada) with equal steps of 0.0635 mm. The ultrasound probe is fixed during the
experiments and the phantom is placed on top of the motor stage. We considered the frames to be parallel with no in-
plane motion.

Firstly in a calibration process, a phantom with a large number of randomly distributed scatterers is scanned. At four
different axial depths of the image (0.57, 0.95, 1.33, 1.75 cm) a patch of 100 RF sample> 25 pixel is considered. The
PSF elevation width of the ultrasound transducer (O'y) is estimated at each depth from the selected patch to minimize the

difference of true displacement and estimated ones from a sequence of 40 frames with equal steps of 0.0635 mm
displacements. Then, the same experiment is performed on real tissue. At each depth, similar to the depths selected in the
calibration phase, a random window of 100 RF sample X 25 pixel is selected. Here for the sake of simplicity we used non
overlapping windows, but it is possible to apply this method on any arbitrary window at the selected depth. The
parameters of the RilG model are estimated as explained previously. Since all of the parameters used in Eq. 14 are now
determined, the out-of-plane motion is computable. Note that the value of & = for each depth is different and comes from

the calibration process.
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4. RESULTS

Fig. 1 shows samples of estimated distributions of R and Z from a phantom image. RilG is a distribution with three
parameters: g, y and§ . The EM algorithm has been used to estimate these parameters from 20 20, 50 % 50, and 100

RF sample 25 pixel patches at the same center position. Figure 1 summarizes the result. The PDF of the RF amplitude
samples of the phantom is compared to the one which is generated from the closed-form formula and the estimated
parameters. Z is determined from MAP estimation and it is compared to the PDF resulted from closed-form formulation
of IG model. It is observed that estimated PDFs follow the real ones fairly well, even for small numbers of samples. Fig.
1 indicates that as the number of samples increases, the closer estimation to the real data is acquired.

Exm“ <10t o

R

Estimated Beta: 0.4752 Estimated Bota. 0.4745 [ Estimated Beta: 0.4735 R
Estimated Gamma: 0.0197 — + —Estimated R Ectimated Gamma: 0.0210 — — —Estimated R Estimated Gamma; 0.0211 — « —Estimated R

5 I Estimated Delts: 86.2583 z stk Estimated Delta: 90 4764 7 5 Estimated Delta: 55.2448 7
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(@) (b) ()
Fig. 1 Estimated PDF in comparison with real PDF from (a) 20 % 20 (b) 50 X 50 and (C) 100 %X 100 patches

To evaluate the proposed method, the base-line method of low-order moments for FDS detection'® has been
implemented and a Gaussian curve has been fitted on the correlation curve of the phantom data. As Fig. 2(a) shows, FDS
patches are rare within the real tissue and no FDS patch is found at the third depth. Underestimation of displacement in
the proposed method occurs at greater depths in comparison with the FDS-based method. The average underestimation

of our implementation of a base-line method at Imm displacement is 37% compared to 15.5% with the proposed
method.
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Fig.2 (a) Bovme ultrasound image (red star indicates FDS patch and blue x shows randomly selected patch at each
depth) (b) Displacement estimation using base-line FDS method for three patches (c) Displacement estimation
using the proposed method

5. DISCUSSION AND CONCLUSION

One of the main concerning issues in FDS-based freehand ultrasound is the rarity of FDS patches in real tissue. The
presence of coherency causes underestimation of out-of-plane motion as the displacement increases. We proposed a
novel correlation-based method of out-of-plane motion estimation for non-FDS patches. The method is based on the
RilG model of speckle formation process which is a general representation for ultrasound echo intensity. This model
provides the possibility of dividing the correlation of two patches into two terms. The one that shows the coherency of
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the patches and the one that comes from the randomly located scatterers. In this frame work it is possible to use almost
all patches of the images regardless of being FDS and take advantage of plenty estimations and make the final out-of-
plane motion estimation more robust.

Here we just evaluated the out-of-plane motion estimation for the frames with fixed elevation displacement. It is possible
to determine the complete out-of-plane transform between two frames based on the elevation distance of tree different
corresponding points on the frames'”.

Experiments on a tissue sample suggest that considering the coherent part significantly improves both the precision and
the accuracy of the out-of-plane motion estimation. Our results indicate by choosing a suitable frame distance (around
0.6 mm in this experiment) the underestimation over a long distance can be considerably reduced. More experiments are
needed to demonstrate ability on tracking in vivo.
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