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ABSTRACT

Administering epidural anesthesia can be a difficult procedure, especially for inexperienced physicians. The use of ultra-
sound imaging can help by showing the location of the key surrounding structures: the ligamentum flavum and the lamina
of the vertebrae. The anatomical depiction of the interface between ligamentum flavum and epidural space is currently
limited by speckle and anisotropic reflection. Previous work on phantoms showed that adaptive spatial compounding with
non-rigid registration can improve the depiction of these features. This paper describes the development of an updated
compounding algorithm and results from a clinical study. Average-based compounding may obscure anisotropic reflec-
tors that only appear at certain beam angles, so a new median-based compounding technique is developed. In order to
reduce the computational cost of the registration process, a linear prediction algorithm is used to reduce the search space
for registration. The algorithms are tested on 20 human subjects. Comparisons are made among the reference image plus
combinations of different compounding methods, warping and linear prediction. The gradient of the bone surfaces, the
Laplacian of the ligamentum flavum, and the SNR and CNR are used to quantitatively assess the visibility of the fea-
tures in the processed images. The results show a significant improvement in quality when median-based compounding
with warping is used to align the set of beam-steered images and combine them. The improvement of the features makes
detection of the epidural space easier.
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1. INTRODUCTION

1.1 Epidural anesthesia in obstetrics

Obstetric subjects may require the use of anesthesia to reduce the pain of labour or of a cesarean section. Anesthesia is
injected into the epidural space as shown on Fig. 1 and a nerve block for the lower body is then provided. The epidural
space is typically found at depths between 20-90mm 1 . A failed epidural needle insertion procedure by which the needle
perforates the dura mater can cause the subject to experience post-operative headaches, and, in more severe cases where
the needle damages the spinal cord, paralysis or death 2 .

Anesthesia needs to be injected in several different doses and at different times into the epidural space of the subject.
Rather than performing a separate epidural needle insertion procedure for every dose, increasing the risks of failure, the
anesthesiologist inserts a catheter in the epidural space and anesthesia can then be delivered at any time thereafter.

Depending on the form and angle of the spinous processes (Fig. 1) on each vertebra, the doctor has to choose the best
needle angle and puncture point that maximizes the chance of reaching the epidural space without touching bone, and with
the fewest number of attempts to minimize subject discomfort. In general, the epidural needle is inserted perpendicularly
to the skin surface because the space between the spinous processes of vertebrae lumbar 2 and lumbar 3 (L2/L3), and
lumbar 3 and lumbar 4 (L3/L4), are usually best accessed at angle 0 o, i.e. perpendicular to skin, as seen in Fig. 1. The
anesthesiologist then slowly inserts a saline-filled needle while applying continuous force on the plunger to obtain pressure
feedback from the tissue around the needle tip. When the needle tip reaches the epidural space, which is a fluid-filled
cavity, the saline fluid is easily injected and a loss of resistance is felt. The anesthesiologist then knows that the needle
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Figure 1. Epidural needle insertion, midline approach. The epidural space is circled.

tip has reached the epidural space. The catheter is then inserted through the epidural needle shaft into the epidural space.
Next, the needle is removed leaving the catheter in place and anesthesia can finally be delivered at will via the catheter.

It has been observed that the use of ultrasound (US) to view the subject’s lumbar anatomy facilitates the localization of
the epidural space3 permitting an initial guess of the skin to epidural space depth. Moreover, it is suggested that ultrasound
images can be used to get a-priori estimates of a suitable puncture point and needle insertion angle 4 and this greatly
improves the learning curve of inexperienced physicians and failures happen less frequently. A previous study 5 showed
two groups of residents performing epidural anesthesia, one with the help of ultrasound (ultrasound group) and the other
without (control group). The ultrasound group achieved a success rate of 84% in the first 10 attempts whereas the control
group had a success rate of 60%. Moreover, in the next 50 attempts, the ultrasound group achieved a success rate of 94%
whereas the control group had a success rate of 86%. Epidural anesthesia is even more difficult when the subject has
abnormal anatomical conditions such as scoliosis1 and obesity. Ultrasonography was also used as real-time feedback for
epidural procedures on young infants 6 , using the image instead of the traditional loss-of-resistance technique to detect the
epidural space and the study shows a reduced number of bone contacts and an increase in the successful intraoperative
analgesia rate from 90.5% to 100%. Although the study focuses on epidural depths of two month-old infants, which
is around 7mm and much smaller than the epidural depth of adults (20-90mm), it shows the potential benefit of using
ultrasound to visualize the lumbar region during an epidural needle insertion procedure.

1.2 Ultrasound imaging of lumbar region

Ultrasound is noninvasive, harmless at low power, portable, accurate and cost effective. However, ultrasound of the lumbar
region shows an image filled with speckle and artifacts which can impede detection of important features such as the
ligamentum flavum and other hard to detect structures. Ultrasound uses the pulse-echo technique to generate images. The
received echo is based on ultrasound reflections from large-scale (relative to wavelength) structures, such as bone (i.e.
specular reflection) and reflections from small-scale structures, such as cells (i.e. random scattering). However, if the
specular reflection is strong enough, such as a bone, it casts shadows in the beam direction and structures underneath are
obstructed. Random scattering creates speckle from constructive and destructive interference 7 . Although the texture of the
speckle can be related to tissue type8 , in general it is considered as a noise present throughout the image. Other artifacts
such as reverberation and refraction also affect image quality. As the epidural space is a void, its location is estimated from
more visible surrounding structures such as the ligamentum flavum, dura mater and laminas, plus prior knowledge of the
lumbar anatomy.

Ultrasound reflects best when the wavefront encounters a structure perpendicular to the direction of propagation. In
other words, since the ultrasound beam direction can be controlled, the propagation direction can be varied to some extent
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Figure 2. a) Ultrasound image of the lumbar spine with speckle noise and shadowing. A sagittal paramedian plane is used. b) Outlines
of the reference and two beam steered images are shown. Spatial compounding uses positive and negative isonation angles to produce a
set of beam-steered images that are subsequently combined.

with respect to the reflectors. If the angle at which the beam is steered is far from perpendicular to the surface of the
structure, the structure may not appear clearly9 . Some of these limitations are shown in Fig. 2(a).

1.3 Image processing techniques

Many post-processing methods employ filters to reduce speckle. Examples are the diffusion filter 10 , the adaptive weighted
median filter11 , homogeneous region growing mean filter, and aggressive region growing filter 12 . They all suffer to some
degree from loss of fine detail resolution because of the removal of some high frequency content.

Compounding has been used previously in three ways to reduce speckle: temporal compounding, spatial compound-
ing13 14 15 and frequency compounding16 . The amount of speckle reduction, according to the theory of compounding, on
the signal-to-noise ratio (SNR)17 can be as high as

√
n, where n is the number of images averaged.

Temporal compounding consists of averaging several images with either a slight movement of the tissues or of the
transducer. This inherently introduces misalignment. Frequency compounding captures several images at the same location
at different transmission frequencies, decorrelating the speckle patterns among images. Previous studies have shown
modest improvements.

Spatial compounding is now popular among commercial manufacturers and will be presented in the next section.
Wilhjelm et al.18 studied various spatial compounding strategies with different parameters and found the average-based
compounding to yield highest SNR and contrast. However, spatial compounding was performed on unregistered images
where small misalignments tend to blur edges. A new median-based compounding will be presented in this work combined
with non-rigid registration for feature alignment. stuff

2. SPATIAL COMPOUNDING WITH WARPING, LINEAR PREDICTION AND MEDIAN-BASED
COMPOUNDING

2.1 Spatial compounding

Spatial compounding uses beam steering19 20 21 , which captures several frames by sending the ultrasound pulses at dif-
ferent angles of incidence (see Fig. 2(b) for an illustration of the principle). Since speckle noise is dependent on the
distribution of small-scale reflectors along the ultrasound path 22 , changing the beam angle will also change the speckle
noise pattern. Thus, the images will depict different noise patterns but similar anatomical features, so averaging these
images should reduce the noise and features should be enhanced. Spatial compounding has been previously investigated as
a way to improve other diagnostic tasks such as detecting atherosclerotic plaques 14 15 and breast cancer23 . The application
of spatial compounding to these images reduced speckle noise and improved the boundary continuity.

Spatial compounding also has other benefits, such as the possibility of enhancing structures that are only visible at
certain beam angles. For example, certain weak but important features, such as a biopsy needle 9 24 only appear at certain

Proc. of SPIE Vol. 6920  69200I-3

Downloaded from SPIE Digital Library on 05 Jul 2011 to 137.82.117.28. Terms of Use:  http://spiedl.org/terms



beam angles because the surface of the weak feature is at an oblique angle to the ultrasound. The structure of main interest
in this work is the epidural space, which is immediately under the ligamentum flavum and initial experience suggests it is
only clear at certain beam angles.

2.2 Registration techniques

Despite the ability to rapidly steer the ultrasound beam and acquire several images in succession of the same region,
conventional spatial compounding still suffers from blurring due to misalignment of features. The speed of sound varies by
as much as 14% in soft tissue25 and the resulting distortion (including refraction) causes the apparent positions of structures
to be slightly different under different angles of incidence. Re-alignment of the features using an additional block-matching
non-rigid registration (warping) was previously proposed by our group to properly align the structures of each image 13 .
The result was a sharper ultrasound image. This method was tested on artificial phantoms, on a human forearm 13 and
recently on a spine phantom26 . Building on those results, the warping/compounding method is extended here to improve
visibility of the ligamentum flavum in vivo, and therefore the epidural space.

2.2.1 Similarity measures

Registration performance is highly dependent on the similarity measure used as a cost function for finding the best align-
ment. A good similarity measure will yield a single strong peak upon best alignment.

Previous literature used several methods such as sum of absolute differences (SAD), mean squared error (MSE) 27 ,
normalized covariance (NCOV), normalized crosscorrelation (NCC), entropy of the difference image and mutual informa-
tion28 . Mutual information29 30 is a very popular similarity measure for registration of multimodality images but is too
easily affected by artifacts. NCC and NCOV are very similar measures. Since the two images to be registered are quite
similar, the means are assumed to be small enough so that the NCC and NCOV will yield similar results. The NCC is used
for this work.

2.2.2 Interpolation and mapping

The beam-steered images are divided into blocks and each block registered to the reference image. Once the individual
warping vectors have been found for each block, each pixel is assigned a warping vector by smooth interpolation.

Many interpolation techniques are well known and have been compared on operations such as resizing and rota-
tion31 32 33 . Popular interpolation techniques are placed in order of performance as follows: nearest neighbour, linear,
cubic and cubic B-spline. When testing the different methods, we found that performance was very similar so cubic
interpolation was chosen since the computational cost is low.

Inverse mapping associates a vector to each pixel in the destination image, corresponding to a pixel in the original
image. Inverse mapping does not encounter the problem of holes and overlapping like in forward mapping as each pixel
has only one associated value. Inverse mapping is used here.

2.3 Linear prediction techniques

In order to further reduce computational cost, a coarse to fine or multi-resolution approach is often used where lower
resolution blocks are registered and then higher resolution blocks are registered using a smaller search region 13 . This
method, however does not make use of the trends in the warping vectors of neighbouring blocks.

Linear prediction34 is a standard technique in audio coding in which one would give an initial guess of the current value
based on a function of the previous values. The error signal, typically much smaller than the signal itself, requires fewer
bits to be coded. The same idea can be used in making an initial guess at the value of the warping vector of the current
block based on surrounding blocks, under the assumption that the warping vector field is smoothly varying. The search
region for the current block can then be reduced.

This method starts at a location in the image with strong feature content to get reliable registration. The neighbouring
blocks are then initialized with the value of the current block’s warping vector, allowing a much smaller search region.
This is repeated for all blocks in the image. The Canny edge detector is used for the purpose of detecting and counting
edges and thus assess if a block is suitable for being the starting point for the linear prediction. The Canny edge detection
technique35 is a gradient-based method and is currently the most commonly used method 36 37 38 39 .
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When using linear prediction, one needs to define the first block for which one will find the warping vector, and the
other blocks will follow. There are three sensible block positions to start. The first position is at the top of the image, where
the refraction errors are smallest, therefore expecting the smallest warping required. However, the top of the image is often
noisy with poor resolution so it is not suitable as the basis for finding the initial warping vectors. A second candidate is at
the middle of the image, where a user is most likely to put the anatomical region of interest, and where the resolution is
highest. However, it is not guaranteed to be the location with strong feature content and may contain shadows. The last
location is where there are most edges (features). In this case, the Canny edge detector is used to detect areas containing
edges, and then the block with the highest count is assumed to be the best starting candidate. This is a suitable choice for
the first warping vector as it should produce the most accurate registration result. For shorter notation, we use LP2+ to
designate linear prediction with a reduction of the search region by factor 2 in each direction using Canny to choose the
initial block.

2.4 Median-based compounding

Since the features of interest do not appear on all frames, taking the average may not highlight weak anisotropic reflectors.
Therefore, a new adaptive method is developed.

A gradient-based compounding method assumes a frame has a high information content at a given pixel when the image
gradient is large at that location. Accordingly, any edges are weighted more than homogeneous regions. Many gradient
calculation methods can be used. To avoid a response from relatively small-scale speckle noise, the gradient of a smoothed
image is calculated using the Laplacian of a Gaussian (LoG). The key parameter is the size of the filter. This parameter
should be set according to each type of image since speckle scale depends on probe characteristics such as frequency and
depth setting. This method gives

pgradient(x,y) = ∑I
i Gi(x,y)pi(x,y)

∑I
i Gi(x,y)

(1)

where pi(x,y), Gi(x,y) are the pixel value, gradient of the image i at position (x,y). p gradient(x,y) is the gradient-weighted
average of all images at location (x,y). Equation 1 calculates a weighted average of the pixels in different images, de-
pending on their gradient. Since the specific goal of this new compounding method is to highlight weak reflectors near the
epidural space, a nonlinear median operator may be more appropriate to generate a more distinct transition from light to
dark regions. A median-based approach can be built upon the gradient calculations as follows:

P(x,y) = {pi(x,y)|Gi(x,y) > Gthreshold,∀i ∈ I} (2)

pmedian(x,y) =

⎧
⎨

⎩

median(P(x,y)), |P(x,y)| ≥ |I|
2

pgradient(x,y), otherwise
(3)

where P(x,y) is the set of all pixels pi(x,y) which have a Gi(x,y) that is larger than a set threshold. pmedian(x,y) is the
adaptive median of location (x,y), meaning the median of all points in P(x,y) if P(x,y) contains more than half of the
number of images, otherwise, it is pgradient(x,y). The median-based method builds on the gradient-based method with an
added decision-making component: if a pixel combines mainly data with high feature content, the median of those points
is used, otherwise, the gradient-based technique is used. In this way, the pixel retains a sharper response as it is no longer
a weighted average, and speckle averaging of homogenous regions is retained.

2.5 Finding the right parameters

It is crucial to find the right parameters for the algorithm to yield best performance at a reasonable computational cost.
The first choice is the number of beam-steered images and the number of degrees between each image. Too small an angle
between each image and the speckle noise pattern will be highly correlated; too large and there will be few images within
the range of angles that provide good image quality. We chose images from −8 o to 8o with a step size of 2o as a good
tradeoff between individual image quality and the number of images to average 13 .
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2.5.1 Warping parameters

The second parameter to choose is the size of the blocks. The blocks must be large enough so that a block contains
significant anatomical features, therefore making the registration more accurate, and small enough to produce a different
warping vector for each block as each block is associated with a different refraction error.

The third parameter to choose is the size of the search region for aligning the blocks. A large region increases the
chance of having high computational cost and misregistration, where a structure in the beam-steered image is matched
with the wrong structure in the reference image. However, a small search region size means that the best registration may
not be found.

Parameter selection was performed on a few sample images. Quantitative measures are computed on the regions of
interest in each image and the parameters giving the best results are chosen. Table 1 shows the maximum Laplacian at the
ligamentum flavum as the measure of interest. The search region is thus set to ±8×±2 and the block size is set to 51 x 51
pixels.

Table 1. Maximum Laplacian of a slice at ligamentum flavum for a human subject in set 1 (this analysis should be done for each set of
ultrasound transducer parameters)

block size
hor x vert 193 96 64 51 39 31 26

4x2 123 114 103 101 96 87 83
4x4 110 102 117 106 98 98 85
8x2 118 112 125 139 122 126 99
8x4 126 112 108 136 99 120 93

3. RESULTS AND DISCUSSION

3.1 Experimental setting

This study was approved by the Ethical Review Boards of the University of British Columbia and British Columbia Chil-
dren’s and Women’s Health Centre and written informed consent was obtained from all subjects. Pregnant women at term
in active labour or scheduled for elective cesarean section were included (n=20). Subjects who had contraindictions to
neuraxial anesthesia or who could not communicate in English were excluded. Subject biometrics were age 35±4 years,
weight 76±15 kg, height 161±7 and skin-to-epidural depth of 51±11 mm.

Prior to epidural catheter placement, subjects were scanned using a 1-5MHz (centered at 3.3MHz) curvilinear probe
(Ultrasonix Corp., Richmond, BC, Canada) in the paramedian plane. Images were recorded and the the interspace between
L3/L4 (lumbar vertebra 3 and lumbar vertebra 4) or L2/L3 interspace was reliably identified by using ‘counting down’ and
‘counting up’ techniques. Each subject was scanned in the sitting position with L3/L4 or L2/L3 interspaces identified using
surface landmarks and confirmed by ultrasound. Images were taken with ultrasound depths between 0-60mm to 0-120mm.
Pre-scan converted B-mode images showing the ligamentum flavum and laminas were captured over the range of beam
steering angles. Examples scans are shown in Fig.3. The sonographer finds the best image and then the beam-steered
frames are acquired.

3.2 Qualitative evaluation

We now compare the images before and after compounding with different compounding methods. Simple compounding
(Fig. 4(b) and 5(b)) averages out most speckle, however, the ligamentum flavum and the bone boundaries are blurred.
The doublet has been blurred to the point that it appears as one line. Using warping (Fig. 4(c) and 5(c)) sharpens the
compounded image and the ligamentum flavum is seen as a doublet again. Using linear prediction (Fig. 4(d) and 5(d))
yields results that are faster but comparable to warping alone; the ligamentum flavum is still seen as a clear doublet. When
using the median-based compounding (Fig. 4(e),4(f), 5(e),5(f)), the images are slightly sharper and more tissue details
appear. Fig. 5 shows a case where the doublet is a very faint structure, compounding indeed loses the depiction of the
doublet by blurring. The doublet starts to resurface after warping is used. And finally, the doublet appears clearer when
using median-based spatial compounding with warping. When using LP2+ (Fig. 4(f), 4(f), 5(f), 5(f)), the depiction of the
doublet is still clear, showing that quality does not degrade much when using LP2+ to reduce the computational cost.
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Figure 3. Images for subject 15 and 5; the region in the white rectangle is used for quantitative evaluation of features near the epidural
space, the structure being pointed to is the ligamentum flavum doublet and the circled structure is the lamina or bone boundary.

3.3 Quantitative measures

There are two structures of interest in this clinical application: the ligamentum flavum and the lamina which is the bone
seen in the images. For detecting bone boundaries, we would ideally have a sharp edge and therefore the gradient of
the bone boundaries is taken as the quantitative measure. The ligamentum flavum is seen most of the time as a doublet.
Ideally, we would see a set of sharp lines, therefore the Laplacian of the leading line is taken as the quantitative measure.
The Laplacian is calculated by taking the gradient of the gradient. Since the features of interest are horizontal structures,
the quantitative measures are computed on vertical line profiles through the image at the locations of interest.

The quantitative measures are calculated on all 20 sets of images and results are compiled in Table 2. Although the
reference image scores highly, the features are difficult to discern due to speckle, as shown in Figs. 4(a) and 5(a).

Table 2. Gradient and Laplacian at regions of interest for human subjects for several methods
method Laplacian of lig. flav. gradient of bone boundaries

reference image 211±59 59±14
simple spatial compounding 132±39 45±16

average-based compounding with warping 148±40 47±16
median-based comp. w/ warping 163±38 51±17

average-based comp. w/ warping with LP2+ 163±44 50±14
median-based comp. w/ warping with LP2+ 155±35 51±16

Another important quantitative measure is speckle reduction. This can be measured through the computation of the
signal-to-noise ratio (SNR) separately for light and dark regions, as well as the contrast-to-noise ratio (CNR), shown in
Table 3. Here the compounding methods show a large improvement.

Table 3. SNR for light and dark regions and CNR
method SNR light SNR dark CNR

reference image 6.0±1.0 4.5±1.5 1.9±0.5
simple compounding 7.4±1.6 7.5±2.8 2.4±0.7

average-based compounding with warping 7.2±1.5 7.4±2.8 2.4±0.7
median-based comp. w/ warping 7.0±1.4 6.8±2.5 2.3±0.6

average-based comp. w/ warping with LP2+ 7.3±1.8 7.3±2.7 2.3±0.8
median-based comp. w/ warping with LP2+ 7.1±1.7 6.6±2.4 2.3±0.8

3.4 Computational cost

The different methods presented above have various individual computational costs which are summarized in Table 4.
Spatial compounding alone adds very little extra cost. Standard warping is very costly (479ms), and brings the maximum
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Figure 4. Images for subject 15 after compounding. The epidural space is the short horizontal line-pair near the middle. a) reference
image, b) simple compounding, c) compounding with warping, d) compounding with warping and LP2+, e) median-based compounding
with warping, f) median-based compounding with warping and LP2+.
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(d) (e) (f)

Figure 5. Images for subject 17 after compounding. The epidural space is the short horizontal line-pair at the bottom-left. a) reference
image, b) simple compounding, c) compounding with warping, d) compounding with warping and LP2+, e) median-based compounding
with warping, f) median-based compounding with warping and LP2+.
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frame rate down to two frames per second which makes it impractical for real-time implementation. By using linear
prediction to reduce the size of the search region by factor 2 in each direction (LP2+), the cost of finding the warping
vectors becomes much smaller (130ms), but we must perform a Canny edge detection which costs 11ms. The median-
based compounding takes 905ms, but more work can be done to reduce the cost of the median 40 .

Table 4. Computational cost of spatial compounding with warping for different parts of the algorithm. CPU time is calculated using a
P4 3.0GHz with 1GB RAM, and a warping search region of ±4×±4 (set 2 with image size 636 x 359) and ±8×±2 (set 1 with image
size 726 x 423) pixels.

image size
method 192x304 636 x 359 726 x 423

image resizing and angle correction 1.8 3.8 5.0
averaging images 4.2 10.7 14.3
displaying image negligible negligible negligible

interpolating warping vectors 1.6 6.3 8.5
remapping the image 1.3 4.1 5.2
Canny edge detection 1.8 7.3 11.2

finding the warping vectors 94.6 354.4 479.8
finding the warping vectors with LP2+ 27.4 96.7 130.3

adaptive median 164.6 662.2 904.9

4. DISCUSSION AND CONCLUSION

4.1 Summary

In many cases, it is very hard to look at an ultrasound image and find the ligamentum flavum. One usually relies on
the lamina which is a stronger reflector to predict where the ligamentum flavum is. The images are heavily affected by
speckle noise. When spatial compounding is used, it is more obvious where the features are but the features are blurred.
Using warping makes edges clearer and thus makes the skin-to-epidural depth easier to measure. The choice of parameters
will not only affect the intelligibility of the compounded image but also affects the computational cost. For each set of
images, a set of parameters was found to yield the best compounded images for a reasonable cost. The test on 20 sets
of human subjects show that real-time compounding with warping using an exhaustive search to align blocks of angled
images to the reference frames yields a significant improvement to image quality and sharpness but is still not feasible on
a standard processor. By using linear prediction, one can reduce the search region while maintaining good performance on
reducing speckle noise and restoring continuous sharp boundaries on features such as bones and the ligamentum flavum.
The median-based compounding yields sharper edges and certain details on surrounding tissues can be resolved but at a
very high cost. The cost may be possible to reduce by using more sophisticated image combination algorithms.

4.2 Future work

With better ultrasound images of the lumbar region permitting an easier depiction of the ligamentum flavum, the next step
would be to develop a system that can identify the ligamentum flavum and surrounding structures automatically, making
the interpretation of ultrasound images even more obvious to the untrained anesthesiologist.

As 3D imaging becomes more useful and popular, spatial compounding will be extended to 3D, permitting arbitrary
reslicing through the volume and perhaps a better depiction of the ligamentum flavum and surrounding structures. Com-
putational costs will become a major issue when it comes to imaging. Complexity is roughly of the order n 2 in 2D and of
the order n3 for 3D. Efforts will be made to decrease computational complexity, following the techniques used to reduce
computational complexity in the 2D case. For instance, linear prediction, with a gain factor of 4 in the 2D case theoretically
decreases the cost by a factor 16, and in the 3D case the theoretical decrease is 64.
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