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Introduction

Concerned with explicit forms of wavefield
propagator . of the linearized forward model

B-> BB 2

rg3 > 0

Would like to find explicit . suitable for wave-
equation migration:

= simultaneously operates on sets of traces

= fully incorporates velocity information of medium

® no parabolic approximations
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Introduction

Goal: employ the complete 1-Way Helmholtz
operator for .

Grimbergen, J., F. Dessing, and C. Wapenaar, 1998, Modal expansion of one-
way operator on laterally varying media: Geophysics, 63, 995—-1005.

-jAarH, H>, = H 1 H,4

Problem: computation & storage complexity
® creating and storing H, is trivial
= however H, is not trivial to compute and store

e N = |l
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Introduction

In this case . is computed by eigenvalue
decomposition

e [IN=

LT

(IN=

o7 VAAzs

® requires, per frequency:
1 eigenvalue problem (O(n%))
2 full matrix-vector for eigenspace transform (O(n?))




Introduction

Band-diagonalization techniques like parabolic
approximation trades for speed with approximations

Is there another way?




Our approach

Consider a related, but simpler problem: shifting (or
translating) signal

| i Aw
operatoris S =¢ 72+ D

D is differential operator




Our approach

Computation requires similar approach to .

S IN=

LT

MINE

A
QUA
LT

However, for D, L = DFT, so computation trivial
with FFT




Our approach

Suppose FFT does not exist yet
2 L

= L
3
K




Our approach

suppose some nodes didn’t finish their jobs




Our approach

mathematically, the system is incomplete

Fw:1,4,...

s(x)

evidently some information of original s(x) is
invariably lost. Or is it?




Compressed Sensing

states that given system of the form

measured q
. —
signal

!

linear model of restricted sparse representation of

D — .
measurement process orzgmal data

(measurement basis)
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Compressed Sensing

states that given system of the form

measured q
. —
signal

!

linear model of restricted sparse representation of

D .
measurement process original data

(measurement basis)

can exactly “recover” x from y by solving L1 problem
N

x = argmin|x||, = >, |xj] s.t. Ax =y,
X i =1

Candes, E., J. RomBerg, and T. Tao, 2006b, Stable signal recovery from in-
complete and inaccurate measurements: Communications On Pure and L \SLIM
Applied Mathematics, 59, 1207-1223. \!)
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time domain
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Jtime domain
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' Jtime domain

estricted signal in Fourier domain |
(real)

i v*‘u I H -
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Jtime domain

- domai

recovered signal in time domain
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Compressed Sensing

X has to be sparse
A has to be Fourier transform

Compressed sensing theory gives us strict bounds on
regions of recoverability

Enables deliberate incomplete computations




Compressed Senstre “Computation”

if we “shift” s(k) with e i gx A , what happens when
we recover s(x) using s’(k)?




Compressed Seastag “Computation”

if we “shift” s(k) with e i gx A , what happens when
we recover s(x) using s’(k)?

Answer: we recover a shifted s(x)!




Compressed Sensing

] \‘”“” “ '”\ ]

signal in space domain incomplete signal in Fourier signal in space domain
domain

Compressed Processing

|

T

l

signal in space domain incomplete and shifted signal

. . . shifted signal in space domain
in Fourier domain f 8 P
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Straightforward Computation
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signal in space domain shifted signal in Fourier
domain

shifted signal in space domain

Compressed Processing

1 .\ ‘m' | [l
N r.f

signal in space domain incomplete and shifted signal

. . . shifted signal in space domain
in Fourier domain f 8 P
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Compressed Seastag “Computation”

In a nutshell:

" Trades the cost of L1 solvers for a compressed

operator that is cheaper to compute, store, and
synthesize

L1 solver research is currently a hot topic in applied
mathematics

Tibshirani, R., 1996, Least absolute shrinkage and selection operator, Soft-
ware: http://www-stat.stanford.edu/~tibs/lasso.html.

Candes, E. J., and J. Romberg, 2005, €,-magic. Software: http://www.acm.
caltech.edu/limagic/.

Donoho, D. L., I. Drori, V. Stodden, and Y. Tsaig, 2005, SparseLab, Soft-
ware: http://sparselab.stanford.edu/.

Figueiredo, M., R. D. Nowak, and S. J. Wright, 2007, Gradient projection for
sparse reconstruction, Software: http://www.1x.it.pt/~mtt/GPSR/.

Koh, K., S. J. Kim, and S. Boyd, 2007, Simple matlab solver for 11-regular-

ized least squares problems, Software: http://www-stat.stanford.edu/
~tibs/lasso.html. | \USLIM
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Compressed Wavetield Extrapolation

Recall the similarity between W+ and S

“NE =N

e 7 VAAz3 LT

MIN=

—J




Compressed Wavetield Extrapolation

Structure of H; H, = LALT H; = LAY2L"
= analytically

Ho = H1H1

Ho = k*(x) + 0,0,
= discretely

H; = C+ Dy

2
Cl)




Compressed Wavetield extrapolation

eigenfunctions of Ho at 30 Hz for constant velocity medium

Eigenvalue Index

Asymptotically identical to the Cosine transform R
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Compressed Wavetield extrapolation

eigenfunctions of Hs at 30 Hz for Marmousi velocity medium
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Eigenvalue Index

fairly close to the Cosine transform
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Straightforward 1-Way inverse Wavefield Extrapolation

A w* H“ ¢ »WW

h “

wavefield in space-time back-extrapolated wavefield
domain in H2 domain

Compressed 1-Way Wavefield Extrapolation

wavefield in space-time incomplete back-
domain extrapolated wavefield in H2

domain

back-extrapolated to impulse
source in space-time domain

back-extrapolated to impulse
source in space-time domain

L \SLIM
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Compressed wavetield extrapolation

simple 1-D space/time propagation example with point scatters
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Compressed wavetield extrapolation

simple 1-D space/time propagation example with point scatters
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4 8 > 4 6 8
propagated 1.5km down recovered though L1 inverson

Restricted L transform to ~0.01 of original coefficients
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Sparsity through curvelets

for extrapolation to reflectivity, we first transform
signal into a sparsifies reflectivity

we know reflectivity are sparse in curvelets

Candes, E. J., and L. Demanet, 2005, The curvelet representation of wave

propagators 1s optimally sparse: Communications on Pure and Applied
Mathematics, 58, 1472—-1528.




Example (Canadian overthrust)

Offset (km) Offset (km)
400 402 404 406 408 410 7 8 9 10

original reflectivity downward extrapolated 50m

Offset (km)
5 6 7 8 9 10

Inverse extrapolated explicitly




Example (Canadian overthrust)

Offset (km) Offset (kﬂé)

Inverse extrapolated explicitly ~inverse extrapolated with
compressed computation

~15% coefficients used




Discussions

Bottom line: synthesis, operation, and storage cost
savings versus L1-solver cost

require good sparsity-promoting basis (ie Curvelets)

potential to apply same technique to a variety of
different operators




Conclusions

1) Take linear operator with suitable structure for

compressed sensing, having a diagonalizing basis
which is incoherent with the signal basis

2) Compressed sensing theory tells us how much
computation we can throw away while still
recovering full signal with L1 solver

3) Then we can take advantage of results in
compressed sampling for compressed computation

Take home point:

® Fxploit compressed sensing theory for gains in
scientific computation




Still awake?

Check-out the full paper at:

Lin, T'T.Y. and E Herrmann, 2007, Compressed wavetield extrapolation:
Geophysics, 72, SM77-SM93




Compressed wavetield extrapolation

y = Re_j“’\/KAfE3 L'u

X = argminy ||X|
u’ X

— X

Randomly subsample in the Modal domain
Recover by norm-one minimization
Capitalize on

® the incoherence between modal functions and
impulse sources

" reduced explicit matrix size




Compressed wavetield extrapolation
with curvelets

— Re‘jw\/KA””S L'Cclu

y
X

— argminy ||x[; st. RL'C'x=y

~

~ /
u — X

Original and reconstructed signals remain in the
curvelet domain

Original curvelet transform must be done outside of
the algorithm




