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Summary

We present a new method to stabilize the three term AVO in-
version using curvelet and wavelet transforms. Curvelets are
basis functions that effectively represent otherwise smooth
objects having discontinuities along smooth curves. The applied
formalism explores them to make the most of the continuity
along reflectors in seismic images. Combined with wavelets,
curvelets are used to denoise the data by penalizing high
frequencies and small contributions. This approach is based on
the idea that rapid amplitude changes along the ray-parameter
axis are most likely due to noise. The AVO inverse problem is
linearized, formulated and solved for all(x, z) at once. Using
densities and velocities of the Marmousi model to define the
fluctuations in the elastic properties, the performance of the
proposed method is studied and compared with a conventional
method. We show that our method better approximates the
true data after the denoising step, especially when noise level
increases.

Introduction

In oil exploration industry, reflection seismology is widely used
to image the subsurface structure. Pressure waves are emitted
by a source at the surface into the Earth. Due to the property
contrast between two consecutive layers, one part of the energy
is transmitted and the other is reflected back up to be detected
by receivers at the surface. Signals are recorded over a range of
source and receiver offsets.
The reflectivity varies significantly along the ray-parameter axis
and it can be used to make inferences about the properties of
the layers. This technique is called Amplitude Versus Offset
(AVO) inversion. Due to the ill-conditioned nature of the inverse
problem, it is difficult to obtain accurate estimates for these
properties. In other words, a small amount of noise may lead to
large errors in the estimates.

In the first part of this paper, we present how curvelets and
wavelets can be used to stabilize the three term AVO inversion.
We explore the fact that seismic images can be efficiently repre-
sented by curvelets since discontinuities (i.e. interfaces between
layers) occur along curves. By working on the coefficients of the
curvelet transform instead of the data, we consider the point as
part of an environment in opposition to an isolated point. Con-
sequently, information regarding the near-neighborhood of each
point can be used to better denoised the data. Intuitively, the
curvelet transform can be seen as a local extraction of major
events combined with a local averaging of the noise. Based on
the idea that rapid amplitude changes along the ray-parameter
axis result from noise (Kuehl and Sacchi, 2003), we denoise the
data by thresholding high frequencies and small contributions.
The denoised data are inverted for all(x, z) at once.

In a second part, we illustrate our method using densities and ve-
locities of the Marmousi model to define the fluctuations in the

elastic properties. The denoised data and the recover model are
compared with results obtained by using a conventional method
where only wavelets could have been used to smooth AVO re-
sponses and the inverse problem were carried out point-by-point.

Wavelet and curvelet transforms

Multi-resolution transforms have proven to be successful in
signal processing applications (Mallat, 1999). Among these,
wavelets are probably the most famous and widely used. Be-
cause they are localized and multi-scale, their ability to preserve
and characterize point singularities in a noisy signal is proven
to be better than discrete Fourier transform. However their poor
orientation selectivity prevents to represent higher-dimensional
singularities effectively.

The curvelet transform is a relatively new multi-scale transform
with strong directional character in which elements are strongly
anisotropic at fine scales, with effective support shaped accord-
ing to the parabolic scaling principle length2 ∼ width (Can-
des and Donoho, 1999). Curvelets provide stable, efficient, and
near-optimal representation for seismic data with reflectors on
piece-wise smooth curves.
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Figure 1: Some curvelets at different scales (Courtesy Em-
manuel Cand̀es)

AVO inversion of PP data

At position (xi, zi), the linearized Zoeppritz equation for PP
reflection coefficients (RCs) can be written for small angles and
contrasts as (Aki and Richards, 1980)
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whereρ is the density,cP (resp. cS) the velocity of P-waves
(resp. S-waves), and the ray parameterp× c̄P = sin θ.
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Using the following substitutions (van Wijngaarden, 1998) for
the acoustic impedanceZ
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the RCs can be approximated by
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For N ray parameters, the local forward model for the seismic
data becomes
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with
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dpts is the seismic data (i.e. reflectivities) for one point in the
space domain along the ray parameter axis,mpts the model (i.e.
elastic properties) for this point, andnpts the noise. Without
loss of generality, we will assume the additive noise to be white
Gaussian with the same mean and variance for all the points.

In the conventional approach for the estimation of contrasts in
elastic properties, one carry out for each point of the space do-
main

min
mpts

||dpts −Kptsmpts||2 (8)

whereKpts stands for the linearized reflection operator. By re-
peating the process, the sections for each contrast parameter are
built point-by-point. Due to the ill-conditioned nature of the in-
verse problem, it is difficult to obtain accurate estimates for the
contrast parameters.
We, on the other hand, consider the RC cube as a whole even
though it is still ill-conditioned. The seismic data becomes

d = Km + n (9)

whered is the whole RC cube,K the corresponding linearized
reflection operator,m the 3 contrast parameter sections, andn
the white Gaussian noise. In this case, one can introduce in the
cost function to be minimized globala priori knowledge in order
to help to converge to the model. Sacchi propose to minimize the
following cost function (Kuehl and Sacchi, 2003)

F (m) = ||W (d−Km)||2 + λ2||∂p(Km)||2 (10)

whereW is a (diagonal) weighting operator andλ2 a tradeoff
parameter depending on the noise level. The second term in
the objective function imposes a relative smoothing constraint
in the ray parameter domain but it doesn’t include anya priori
information on the lateral continuity along reflectors.

Our concern is to account for both smoothness in the ray-
parameter domain and along edges in the space domain. The
general idea is to use curvelets in the space domain (2-D) to
benefit from information regarding edges and wavelets in the
ray-parameter domain (1-D) to denoise AVO responses.

Improvement of the data SNR

The denoising of the data does not require the problem to be
linearized. Instead of using a smoothing constraint term in
the cost function, we use the multi-scale property of wavelets.
The smoothness condition is then equivalent to penalize high
frequency and small contribution coefficients of the wavelet
transform in the ray-parameter domain by thresholding. These
coefficients are most likely due to noise in the data. But first,
to make the most of the continuity along reflectors, we take a
curvelet transform in the space domain. This operation can be
seen as a local averaging of the noise and a very efficient way to
sparsely represent our signal. Chronologically speaking

Cxzd = CxzKm + Cxzn (11)

WpCxzd = WpCxzKm + WpCxzn (12)

ˆ̃
d = ΘΓ(WpCxzd) ≈ WpCxzKm (13)

whereCxz is the curvelet transform in the space domain,Wp

the wavelet transform in the ray-parameter domain,ΘΓ(.) a hard

thresholding with a threshold levelΓ, andˆ̃
d the approximate of

the data in the curvelet-wavelet domain.
Γ is estimated by evaluating the composition of curvelet and
wavelet transforms of a few standard white noise signals (Starck
et al., 2002)
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Q
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Since the amplitudes are important in our case, it is important to
only consider hard thresholding, which preserve the amplitudes
unlike soft thresholding. Note also that the threshold levelΓ
does not prevent strong events in the high frequencies to remain.
Thus, it is possible to apply this method to data containing post-
critical angles.
From Eq. 13, by taking the inverse wavelet and inverse curvelet
transforms, one have an approximation of the datad̂

d̂ = C−1
xz W−1

p ΘΓ(WpCxzd) ≈ Km. (15)

At this point, we assume that the noise was removed from the
data and we carry out the inverse problem usingd̂ to obtain the
recovered modelmr

mr = min
m
||d̂−Km||2 (16)
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Example

To illustrate our method, densities and velocities of the Mar-
mousi model are used to define the fluctuations in the elastic
properties. Two noisy data setsd1 andd2 are built. d1 (resp.
d2) has aSNR = 0 dB (resp. SNR = 6 dB). Without loss
of generality, we will assume the additive noise to be white
Gaussian. As a first approximation, small angle and small
contrast assumptions are made. In other words, the dip is not
corrected.

Both data sets are processed using our method and a conven-
tional one. The conventional method considers each point sep-
arately as formulated in Eq. 5 and imposes a smoothing con-
dition on their AVO response. In this case, we apply directly
on the data a wavelet transform in the ray-parameter domain
(Eq. 17) and hard threshold (Eq. 18) with a threshold level
µ = σ

√
2 loge N whereσ is the standard deviation of the noise

andN the number of data samples (?). We finally get the ap-
proximated data using the conventional method by taking the
inverse wavelet transform in the ray-parameter domain (Eq. 19).

Wpdpts = WpKptsmpts + Wpnpts (17)

d̂′pts = Θµ(Wpdpts) ≈ WpKptsmpts (18)

d̂pts = W−1
p Θµ(Wpdpts) ≈ Kptsmpts (19)

In Fig. 2, we can see that our method to denoise the data out-
performs the conventional method in the sense that our approx-
imated data is closer to the true data. This is especially true for
thed1 where the noise level is higher.
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Figure 2: Normalized misfit||d − d̂|| function of the ray-
parameter #. +- lines represent misfits using the conventional
methods, straight lines misfits using our method. In the upper
part, the misfits are related tod1, in the bottom part tod2.

For a better understanding, four sample reflectors were chosen
to compare the methods (Figs 3 & 4). For high level of noise,
the conventional method is not able to make the difference be-
tween the signal and the noise whereas our method does due

to the neighborhood-effect introduced by curvelets. An illustra-
tive example is reflector 3 in Fig. 3 around ray parameter #20.
The conventional method tends to follow the noise whereas our
method stays close to the true data.

Discussion

We developed and demonstrated in this paper a new method that
uses curvelet and wavelet transforms to stabilize the three-term
AVO inversion. Our method was successfully compared with a
conventional method on synthetic data for the denoising and the
neighborhood-effect of curvelets was highlighted.

By using the curvelet transform, we can determine and correct
for the dip.

Our method can be applied to data with post-criticals angles
without any problem.
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Figure 3: Denoised data using either our method (dotted line)
and a conventional one (dashed line) compared against each
other with respect to the true data and the noisy datad1 (SNR =
0) on the four sample reflectors.
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Figure 4: Denoised data using either our method (dotted line)
and a conventional one (dashed line) compared against each
other with respect to the true data and the noisy datad2 (SNR =
6) on the four sample reflectors.


