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Summary

We present a robust iterative sparseness-constrained interpola-
tion algorithm using 2-/3-D curvelet frames and Fourier-like
transforms that exploits continuity along reflectors in seismic
data. By choosing generic transforms, we circumvent the
necessity to make parametric assumptions (e.g. through lin-
ear/parabolic Radon or demigration) regarding the shape of
events in seismic data. Simulation and real data examples for
data with moderately sized gaps demonstrate that our algorithm
provides interpolated traces that accurately reproduce the
wavelet shape as well as the AVO behavior. Our method also
shows good results for de-aliasing judged by the behavior of the
(f − k)-spectrum before and after regularization.

Introduction

Price as well as constraints on marine and land acquisitions
typically preclude dense and equidistant spatial sampling. As a
result, seismic imaging may endure adverse affects limiting the
ability to accurately and artifact-free image or predict multiples,
as part of surface related multiple elimination. In addition, sys-
tematic under-sampling along the spatial acquisition coordinates
may also give rise to aliased data.

Typically, data continuation approaches involve some sort of a
minimization problem that aims to jointly minimize a quadratic
distance to the data penalized by a functional (regularization
term) on the interpolated data, which we will call the model.
The general form for these minimization problems, where miss-
ing data lie on a regular grid, has the following form

x̂ = arg min
x

1

2
‖P (d−Tx) ‖2

2 + λJ(x). (1)

In this expression,d represents the data on the interpolated grid
with P the picking operator that restricts the full data vector to
the acquired data according todacq. = Pd; λ the regularization
parameter balancing the emphasis of data misfitversus a pri-
ori information residing in the penalty termJ(x) andT either
a modeling operator such as the adjoint of the (linear/parabolic)
Radon, the apex-shifted Radon or the de-migration/de-DMO op-
erator [14, 13] or a generic orthogonal transform such as the Fast
or Discrete Fourier Transform [10, 4, 11].

Since the null space of the picking matrix is not trivial (i.e.
null(P) 6= Ø)), there is an infinitely large family of solutions
which account for the data. Unfortunately, not all these solu-
tions are physically acceptable. Regularization is a method of
imposing additional information and thus fill the null space of
P. The success of data regularization depends upon choices for
the modeling/transform operator and the penalty term.

Data continuation with sparseness constraints

Sparseness on the modelx by means of thè 1-norm, ‖x‖1

has widely been used in geophysics [10, 9] and corresponds
to the ability to represent the full data with minimal-structure,
i.e., with a sparse model vector. Recently,`1-minimization has
received a flare of interest in theoretical signal processing in the
context of decompositions of signals in redundant dictionaries
consisting of multiple transforms such as the Discrete Cosine
and Fast Curvelet Transforms [12, 1, 2]. These approaches have
proven to be very effective as long the data can be written as a
superposition of a limited number of ’waveforms’ residing in
the columns ofT.

In [7], we demonstrated that dictionaries consisting of direc-
tional 2-D Wavelet frames with Discrete Cosines represent a
suitable combination for data continuation. Following [12], we
define the augmented system with the two transforms and the
corresponding model vector as

T = [T1 · · ·T2] with x = [x1 · · ·x2]
T , (2)

whereT1,2 represent inverse 2 or 3-D Curvelet and Discrete Co-
sine transforms, respectively. To exploit the sparseness inx, we
solve Eq. 1 withJ(x) = ‖x‖1 using a block solver in combi-
nation with iterative soft thresholding [12, 3]. At each iteration,
evaluation of

xm
j = Ss

λm

 
xm−1

j + T∗
j (d−

2X
i=1

Tix
m−1
i )

!
(3)

for j = 1, · · · , 2 yields an approximate estimate for the co-
efficient vectorx. For large enough number of iterations, the
solution of Eq. 3 converges afterM iterations, to the following
minimization problem on the coefficients

x̃ = arg min
x

1

2
‖d−Tx‖2

2 + λ‖x‖1. (4)

with λ = λM . The soft thresholding element-by-element oper-
ation corresponds to

Ss
λ(x) =

(
x− sign(x)λ |x| ≥ λ

0 |x| < λ.
(5)

For T an orthonormal basis, soft thresholding solves the`1-
problem (cf. Eq. 4) explicitely while [3] demonstrated that the
above iterative scheme converges for redundant frames to the
solution of Eq. 4. The above solver provides an alternative to
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the widely used Iterated Re-weighted Least Squares (IRLS ) [8]
and has the advantage that the block solver is relatively simple
and flexible with regard to following the convergence and setting
the threshold.

As shown independently within both the seismic (see e.g. [10,
11, 14]) and image (see e.g. [5]) processing communities, Eq. 4
can simply be adapted to the situation of missing data by includ-
ing the picking operator

x̃ = arg min
x

1

2
‖P (d−Tx) ‖2

2 + λ‖x‖1, (6)

which corresponds to replacing Eq. 3 by

xm
j = Ss

λm

 
xm−1

j + T∗
jP(d−

2X
i=1

Tix
m−1
i )

!
. (7)

In practice, we typically setM ≤ 100 while λm is decreased
exponentially fromλ1 = λmax to λM = λmin. The maximum
thresholdλmax corresponds to a threshold that approximately
preserves10% of the energy of the acquired data whileλmin is
for noise-free data set close to zero,λnoise-free

min ≈ 0. For noisy
data, we set the threshold directly proportional to the standard
deviation (σn) of the noise,λnoisy

min ∝ σn. For more details on the
Curvelet transform refer to [7, 6] and the references therein.

We illustrate the performance of our method with respect to
missing data with moderately sized gaps and de-aliasing by
means of a sequence of 2-D synthetic and 2-/3-D real examples.
We use the Fast Curvelet Transform ofCurveLab [2] in 2- and
3-D.

Examples

Application to synthetic data: Our synthetic acquired
512 × 512 data with missing traces and Gaussian white noise
(SNR = 0dB) is presented in Fig. 1. We show in Fig. 3 a
window of the result of the sparseness-constrained interpolation
carried out on the full dataset. For comparison, Fig. 2 shows the
same window in the noisy acquired data with missing traces.
Notice that our algorithm provides interpolated traces that accu-
rately reproduce the wavelet shape as well as the AVO behavior.
Moreover, as a by-product of the interpolation algorithm, the
shot gather is denoised. Indeed, the sparsity-constraint not
only helps to interpolate but also to find the significant frame
coefficients of the noise-free image.

Aliased data (Fig. 4) gives rise to a wrap-around effect for the
(f − k) spectrum (see Fig. 5). To remove these aliasing effects,
we apply our algorithm to interleave traces. The(f − k) spec-
trum of the sparseness-constrained interpolation result is pre-
sented in Fig. 6 and shows that our algorithm also performs for
de-aliasing.

Application to real data: For 2-D (512 × 256) real data, the
selected windows are shown in Fig.’s. 7 and 8. Our interpola-
tion algorithm performs well for this data. For 3-D real data
(280x368 traces of 256 time samples), the results are even bet-
ter as shown in Fig.’s 9, 10 and 11. In the 3-D case, the 3-D
Curvelets pick up information from all (time, shot and receiver
coordinates) coordinates which helps the interpolation process.
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Fig. 1: Synthetic acquired data with missing traces and Gaussian white
noise (512 traces of 512 time samples) - SNR = 0 dB.

Discussion and conclusions

The success of our approach essentially derives from the par-
simoniousness of curvelet frames with respect to seismic data.
As such, simple (iterative) soft holding procedures on the
coefficients, based on weights that depend on the magnitude
of the coefficients only, suffice to effectively interpolate the
missing data. Soft thresholding can be seen as a mask that
mutes those regions in the data that with high probability do not
correlate with the waveforms in the colums of the Dictionary
(T). The method derives its robustness from the sparseness of
the tranform vectors. This sparseness facilitates the interpola-
tion and separates data from noise. Extension of our method
to the full 3-D case, clearly shows to be beneficial because the
curvelets pick up information on the wavefront from all three
coordinate directions ensuring continuity throughout. So far, we
assumed data to be caustic-free and the main challenge lies in
extending the method to cases where there are caustics.
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Fig. 2: Window of the synthetic acquired data with missing traces and
Gaussian white noise.
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Fig. 3: Window of the sparseness-constrained interpolation result.
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Fig. 4: Aliased data (171 traces of 512 time samples)
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Fig. 5: Wrap-around effect in the(f − k) spectrum of the aliased data.
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Fig. 6: (f − k) spectrum of the sparseness-constrained interpolation
result with wrap-around effect almost totally removed.
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Fig. 7: Window of the real data with missing traces.
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Fig. 8: Window of the sparseness-constrained interpolation result.
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Fig. 9: Acquired data with missing traces
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Fig. 10: Sparseness-constrained interpolation result.
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Fig. 11: Section of the sparseness-constrained interpolation result.


