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Abstract

A non-linear edge-preserving solution to the least-squares migration
problem with sparseness & illumination constraints is proposed. The
applied formalism explores Curvelets as basis functions. By virtue of
their sparseness and locality, Curvelets not only reduce the dimension-
ality of the imaging problem but they also naturally lead to a dense
preconditioning that almost diagonalizes the normal/Hessian operator.
This almost diagonalization allows us to recast the imaging problem
into a ’simple’ denoising problem. As such, we are in the position to use
non-linear estimators based on thresholding. These estimators exploit
the sparseness and locality of Curvelets and allow us to compute a
first estimate for the reflectivity, which approximates the least-squares
solution of the seismic inverse scattering problem. Given this estimate,
we impose sparseness and additional amplitude corrections by solving
a constrained optimization problem. This optimization problem is
initialized and constrained by the thresholded image and is designed to
remove remaining imaging artifacts and imperfections in the estimation
and reconstruction.

Introduction

Least-squares migration and migration deconvolution has been a topic
that received a recent flare of interest [7, 8]. This interest is for a good
reason because inverting for the normal operator (the demigration-
migration operator) restores many of the amplitude artifacts related
to acquisition and illumination imprints. However, the downside to
this approach is that (unconstrained) least-squares tends to fit noise
and smear the energy. In addition, artifacts may be created due to
imperfections in the model and possible null space of the normal
operator [11]. Regularization can alleviate some of these problems, but
may go at the expense of resolution, certainly when quadratic penalty
functions are used. By imposing sparseness constraints and illumination
normalization on the imaged reflectivity [see for instance 13, 8, 11],
significant progress has been made to improve the signal-to-noise ratio
(SNR) and frequency content of seismic images.

In this paper, we combine above techniques with recent developments in
Applied Computational Harmonic Analysis, non-linear estimation the-
ory and global constrained optimization. Our approach is designed to (i)
deal with substantial amounts of noise (SNR ≤ 0); (ii) use the optimal
(sparse & local) representation properties of Curvelets; (iii) exploit their
almost diagonalization of the normal/Gramm/Hessian operator; (iv) use
non-linear thresholding estimation techniques, supplemented by (v) con-
strained optimization on the estimated coefficients. This optimization
not only imposes additional sparseness on the model but also restores
the amplitudes within constraints given by the illumination [11].

The main motivation for this paper is to derive an imaging scheme that
is robust in cases where there is substantial amounts of noise in the data
space (SNR ≤ 0). These noise-levels are intended to mimic situations
where the high frequencies are severely deteriorated by the presence of
noise. Without loss of generality, we will assume the additive noise to
be white Gaussian. Refer for coherent noise removal (such as multi-
ples) in the data space to other contributions by the first author to these
Proceedings [see also 6].

As with adaptive subtraction [6], the key component of our algorithm
is the use of basis functions that are local both in position and dip and

that are well behaved under the operators. In that respect, we are in the
business of finding the appropriatefull preconditioners for the seismic
imaging problem. If indeed, recently developed non-separable wavelets,
such as Curvelets, can be used as preconditioners for the seismic imaging
problem, then we can use non-linear estimators to significantly improve
the SNR and resolution of noisy seismic images.

The paper is organized as follows. First, we briefly discuss the imaging
problem and motivate why preconditioning is important, in particular
when the preconditioner is defined by a generic transform (non-problem
specific) that is close to an unconditional basis which is local and sparse
on the model space. Next, we argue that diagonally weighted Curvelets
are close to the ideal preconditioners for seismic imaging. We proceed
by introducing a non-linear thresholding estimator that acts on the pre-
conditioned image space. In the image space, the normal and covari-
ance operators are close to being diagonalized by what one can call the
’Curvelet symbol’ of the normal operator. Because thresholding on the
coefficients of local and sparse basis functions approaches asymptoti-
cally minimax (minimize the maximum error given the worst possible
Gaussianprior [see e.g. 9]), we obtain an edge-preserved least-squares
image with good SNR by simply thresholding and weighting the mi-
grated image. This image is subsequently used as a starting point for a
global optimization scheme that is designed to impose sparseness (via
a global sparseness constraint); remove imaging artifacts related to the
basis-function decomposition, eliminate false thresholding and poor il-
lumination. The method will be illustrated by a synthetic example using
a ’wave-equation’ depth-migration operator [11].

The seismic imaging problem preconditioned

In all generality, the seismic imaging problem can after linearization be
cast into the following form for the forward model describing our data

d = Km + n, (1)

whereK is the wave-equation demigration operator based on the single-
square-root equation [12];m the model with the reflectivity andn white
Gaussian noise. The pertaining inverse problem has the following gen-
eral form [see e.g. 9, 14]

m̂ : min
m

1

2
‖d−Km‖22 + µλJ(m), (2)

whereJ(m) is an additional penalty functional that containsprior in-
formation on the model, such as particular sparseness constraints. The
control-parameterµλ depends on the noise levelλ.

Question now is how can we find the appropriate domain to solve this
inverse problem, whose formal solution in the noise-free case can be
found by taking the More-Penrose pseudo-inverse,

m =


ΨDO︷ ︸︸ ︷
K∗K


−1

K∗︸︷︷︸
FIO

d = K†d. (3)

Several approaches exist to compute the solution of this least-squares
problem. These solutions range from explicit analytical constructions
for the pseudo-inverse of the normal operator [see e.g. 1, and the ref-
erences therein] to iterative solutions with Conjugate-gradient type of



FIO ΨDO d, m
Fourier

√ √
×

Wavelets × × ×
Curvelets

√ √ √
Table 1: Properties of Curvelet with regard to seismic imaging. As one
can see Curvelets not only score representing the data and model but also
score for the operators. Fourier is good for the operators (as the name
FIO suggests) but fails representing the data/model sparsely.

algorithms [see e.g. 7, 8]. The first approaches derive from the obser-
vation that the leading-order behavior for the (de)-migration operators
corresponds to that of certain Fourier Integral Operators (FIO’s), while
the composition of these two operators corresponds, under certain con-
ditions, to aninvertibleelliptic pseudo-differential operator (ΨDO) [1].
The FIO’s are responsible for moving the events from model to data
space andvice versa, while theΨDO can be interpreted as a general-
ized non-stationary filtering operator that does not (re)-move or create
events (read singularities). While the first of these approaches, has the
distinct advantage of being numerically fast, it requires an explicit con-
struction of the operators and may suffer from the typical less than ideal
data acquisition. The second approach is more flexible, since it only re-
quires access to the migration and demigration operators and it may be
less sensitive to the acquisition. However, noise, computational cost and
inaccuracies in the operators may still be a limiting factor.

Therefore, we opt for a “combination” of afore mentioned methods by
constructing explicit preconditioners thatalmost(as compared to FIO’s
andΨDO’s, which are purely diagonal in the Fourier domain)diagonal-
ize, while also beingsparse& local on the model space. In this way,
we are not only well positioned for computing iterative solutions to the
problem, but we are also able to use diagonal non-linear estimation tech-
niques [9] in combination with global constrained optimization [10] in
order to remove the noise; restore the amplitudes; impose sparseness
constrains and incorporate the influence of illumination.

Our first priority is to find the appropriate preconditioners for the system
in Eq. 3. To be more specific, we would need to construct precondition-
ers that use generic local basis functions that allow us to write

BT d = BT Bx + BT n. (4)

In this expression,B = KP, BT = PT KT are the preconditioned
demigration and migration operators and the model is related to the new
model according to the linear functionalx = PT m. Successful pre-
conditioning, yields an almost diagonalization for the normal equations,
which corresponds to the following propertyBT B ≈ I.

Question now is can we find a generic (i.e. not ’depending’ onK and
KT ) close to orthonormal “miracle” basis-function transform,C, that
allows us to write the preconditioner in the following form:P =
CT Γ−1, whereΓ−1 is a diagonal matrix, whose entries are defined by
the regularized reciprocal ofdiag{Γ}. Provided such a transform ex-
ists, we are not only in good shape to iteratively solve the least-squares
problem, but, more importantly, we also will be able to explore thatC
and henceP are close to unconditional bases for the model space. Be-
fore going into detail how to construct non-linear estimators, we first
introduce Curvelet frames that almost diagonalize the normal operator.

Curvelets and seismic imaging

Curvelets as proposed by [3], are a relatively new family of non-
separable Wavelets that effectively represent seismic images with
reflectors on piece-wise smooth curves (m ∈ C2). For these type of
functions, Curvelets obtain near optimal nonlinear approximation rates.
i.e. the error isO(m−2) as opposed toO(m−1/2) for Fourier, where
m is the number of magnitude-sorted coefficients in the reconstruction.

Besides this grealy improved nonlinear approximation rate, Curvelets
are local both in position and dip. This locality combined with the high

approximation rate and the fact that Curvelets are close to an uncondi-
tional basis (for the above class of functions), allows the definition of
diagonal estimators that asymptotically obtain minimax for denoising
[see e.g. 9]. These non-linear estimators minimize the maximal error
given the worst Bayesianprior [9] and are given by

x̂ = C†Θλ (Cy) . (5)

This basis function decomposition, followed by thresholding and subse-
quent reconstruction, solves for the model given noisy data, i.e. solves
for x given y = x + nλ with nλ = N(0, λ2), by applying a hard
thresholdingΘλ (·), with a threshold level that depends on the standard
deviationλ of the noise. Since Curvelets are local and sparse on the
model, it is relatively easy to understand why this thresholding procedure
works because the edges in the model end up in the large coefficients
which survive the thresholding. The thresholding depends only on the
magnitude of the coefficients and not on their sign or phase, which is a
direct consequence of their (close to) unconditional-basis property. How
do Curvelets obtain such a high non-linear approximation rate? Without
being all inclusive [see for details 3], Curvelets are

• multi-scale, i.e. they live in different dyadic corona in the 2D
Fourier-domain.

• multi-directional, i.e. they live on wedges within these corona.

• anisotropic, i.e. they obey the following scaling law width∝
length2.

• directional selectivewith # orientations∝ 1√
scale

.

• local both in(x, z) and(kx, kz).

• almostorthogonal, they aretight frames.

Besides their high non-linear approximation rate, Curvelet are well be-
haved under certain (homogeneous) operators [4, see the references
therein]. This property has led to Quasi-SVD techniques, where the sin-
gular vectors of the operators are replaced by generic basis functions
and their images under the operators. These methods work because the
basis functions remain approximately invariant under the operators. As
we can see from Fig. 1, this property also holds true for imaging op-
erators, where not only Curvelets remain Curvelet-like, but where also
a rapid decay for the Curvelet coefficients is observed. These obser-
vations are consistent with recent work by [2], where it is shown that
FIO’s are sparse in the Curvelet domain and, consequently,ΨDO’s can
be expected to be almost diagonal.

Non-linear diagonal estimation by thresholding

Obviously, above listed properties make Curvelets ideal for seismic
imaging. Unfortunately, the background velocity-dependence and
shear size of seismic data, makes it prohibitively expensive to use
the Quasi-SVD methods because these techniques require a separate
(de)-migration for each Curvelet to compute the quasi-singular values
(the Γ’s, see below). Instead, we settle for a formulation, where the
normal and Covariance operators (for the noise) are approximately di-
agonalized. By using Curvelets in the definition for the preconditioners
(cf. Eq. 4), whereCKT KCT ≈ diag{CKT KCT } = diag{Γ2},
the preconditioned system can approximately be written in the form

y = x + n. (6)

Not only does the preconditioning take care off the operator, it also
’whitens’ the noise, so we are set to use thresholding to obtain a min-
imax estimate forx, using

x̂0 = Θλ (y) . (7)

This expression is equivalent to the approximate solution for the model
presented in [5]

m̂0 = C† (
Γ2

)†
ΘλΓ

(
CKT d

)
= PΘλ

(
PT KT d

)
(8)
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Fig. 1: Properties of the Curvelet Transform under imaging.Top
row: Curvelet and its demigration for constant velocity Kirchoff.Sec-
ond row: Same for ’wave-equation’ migration Hessian in Marmousi
model. For both cases, Curvelets remain Curvelet-like.Third row: FK-
spectrum and plot of the rapid decay for the “off-diagonal” coefficients
of the Curvelet-images.Fourth row: Axtrue which should be close to
Imtrue andC†Γ, the inverse transform of the Curvelet ’symbol’.

in which the thresholded adjoint is corrected by the pseudo-inverse of

Curvelet ’symbol’ of the normal operator:
(
Γ2

)†. The different steps
that lead to the above diagonal estimate are summarized in Fig. 1 and 2.
From the Fig.??, it is clear that Curvelets remain more or less curvelet-
like under the operators whileA ≈ I.

Amplitude restoration by global optimization

So far, we have been able to make the argument that the bulk of the
noise can be removed and amplitudes partly restored. However, the
approach is approximate and one could expect improved results by
computing the following pseudo-inverse

x̂ = A†x̂0, (9)

whereA = BT B. Even tough this approach may seem very attractive,
since we can argue that the preconditioning improves the condition num-
ber of the matrix (see other contributions by the authors to the Proceed-
ings of this Conference), there remains the problem of left-over noise;
high computational cost; shortcomings in the operator and the inclusion
of sparseness constraints on the model:x = PT m. To accommodate
for these issues, we formulate the following approximate (the opera-
torA can be included) constrained-optimization problem (this approach
was motivated by [3], who applies a similar technique for denoising)

m̂ : min
m

J(m) s.t. |x− x̂0|µ ≤ eµ ∀µ (10)

with the tolerances set according to

eµ =

{
Iµ if | ˆ̃m0|µ ≥ |λI|µ
λIµ if | ˆ̃m0|µ < |λI|µ.

(11)

In this formulation, the initial guess for the preconditioned modelx̂0 is
updated such that the additional sparseness constraint is minimized. The
optimization runs over all the index spaceµ and the tolerance differs
by λ for those coefficients that have initially been thresholded to obtain
the first estimate and those that survived the thresholding. The coeffi-
cients that were perceived to be noise are allowed to vary more as part of
the optimization. This global optimization procedure is solved using an
Augmented-Lagrangian technique [10] with the Lagrangian multipliers
set by the thresholded result,x̂0. The solution uses a Steepest Decent
technique and involves in each iteration an inverse Curvelet transform
combined with a weighting that depends on the diagonalized normal op-
erator.

Above approach, depends heavily on how well the preconditioners are
able to diagonalize the normal operator. Since, iterating withA is gen-
erally prohibitively expensive one may consider to use (i) the Lanczos
tri-diagonalization method (see other contributions to these Proceedings)
or (ii) the illumination-based normalization method [11], that uses the
following diagonal weighting to approximate the normal operator

W−2 = diag{x̂0} · [diag{Ax̂0}]−1 ≈ A† (12)

for a reference model that is close to the actual model. We use this diag-
onal preconditioner in the following constrained-optimization problem

m̂ : min
m

J(m) s.t. |W2x− ŷ0|µ ≤ eµ ∀µ. (13)

with ŷ0 = Ax̂0. In this formulation, the initial guess for the reference
model, which we naturally take to be the result obtained by thresholding,
is updated such that the additional constraint is minimized. The elegance
of this formulation lies in the fact that (i) explicit use is made of the al-
most diagonalization of the operators, i.e. the weighted Curvelets are
non-diagonal preconditioners; (ii) the algorithm is constrained so that it
can not wander off to far from the initial guess. Because of the mini-
max property of thresholding, we can be assured that the initial guess
predominantly contains features with high SNR, rendering the above il-
lumination normalization effective.

Example

To illustrate our proposed method, we included a synthetic example
of a ’wave-equation’ depth-migration for the Marmousi dataset. A
Monte-Carlo sampling technique was used to compute theΓ2 [5, see for
detail]. Fig. 2 includes the results of our imaging algorithm. We applied
the algorithm to data with a SNR=0 and the noisy image is included in
Fig. 2 (top). Next, we threshold the noisy image with Eq. 7, followed
by applying theΓ−2-correction (cf. Eq. 8). The threshold parameter
λ = 2.5. As we can see from Fig. 2 (second-third), the thresholding
and subsequent correction have an influence. The thresholding removes
the noise and preserves most of the edges. The correction restores part
of the amplitudes and gives us a first approximation to the least-squares
imaging problem. This approximation is used as a starting point for
the constrained-optimization problem presented in Eq. 10. The results
for this optimization are plotted in Fig. 2 (bottom). TheL1-constraint
clearly removes more noise which goes at the expense of some details.

Conclusions and discussion

The methodology presented is an example of a divide-and-conquer
approach. First, we obtain a reasonable estimate for the image by
thresholding then we continue by restoring the amplitudes and remov-
ing the artifacts. Our approach builds on the premise that one stands
a much better chance to solve an inverse problem into the appropriate



domain. The combination of migration with the Curvelet transform
provides such a domain, where the energy is collapsed onto a limited
number of coefficients that correspond to coherent features along which
the Curvelets align. Since Curvelets are local in space and spatial
frequency, thresholding can be used on the image. By using Curvelets
to precondition the inverse scattering problem, we arrived at an elegant
formulation that serves as a point of departure for our non-linear
estimation procedure. Not only did we almost diagonalize the normal
operator, turning the migration into an almost orthogonal transform,
but we also included non-linear thresholding and global optimization
in the formulation. Results, so far, for the Marmousi dataset are
certainly promising but fall short somewhat of being conclusive. We
hope to present compelling results at the Meeting that demonstrate
the full potential of the presented method to deal with very noisy data
(SNR ≤ 0).
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Fig. 2: Synthetic ’wave-equation depth-migration example for the Mar-
mousi dataset.Top: Noisy image forSNR = 0 on the data space.
Second:Image after thresholding (cf. 8).Third: Thresholded after cor-
rection for the ’symbol’ of the normal operator (cf. 8). As we can see the
amplitudes are partly restored.Bottom: Result after applying the con-
strained optimization (cf. 10) withλ = 2.5. The optimization clearly
removes more noise while enhancing the sparseness. This procedure
does, however, go at the expense of some details which is to be expected
for this high noise level.
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