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Combinations of parsimonious signal
representations with nonlinear sparsity promoting
programs hold the key to the next-generation of
seismic data processing algorithms ...

Since they

m allow for formulations that are stable w.r.t.

noise

incomplete data
moderate phase rotations and amplitude errors

Finding a sparse representation for seismic data &
images is complicated because of

® wavefronts & reflectors are multiscale & multi-
directional

= the presence of caustics, faults and pinchouts







Representations for seismic data

Transform Underlying assumption

FK blane waves

linear/parabolic Radon transform | linear/parabolic events

wavelet transform noint-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

Properties curvelet transform:
= multiscale: tiling of the FK domain into 1
dyadic coronae zﬂI | / / ~ edge

multi-directional: coronae sub-
partitioned into angular wedges, # of
angle doubles every other scale

/
I
anisotropic: parabolic scaling principle N —
Rapid decay space x
Strictly localized in Fourier

Frame with moderate redundancy (8
X in 2-D and 24 X in 3-D)

fine scale data
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coarse scale data
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2-D curvelets

-0.4 -0.2

curvelets are strictly localized
in frequency

X-t f-K
Oscillatory in one direction and smooth in the others!
Obey parabolic scaling relation length ~ width?
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Curvelet tiling & seismic data
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Real data frequency bands
example
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Single frequency band
angular wedges
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Data is multidirectional!
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Wavefront detection

Offset (m)

Significant
curvelet coefficient Curvfel_et
coefficient~0
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Extenstion to 3-D

Cartesian Fourier space

[courtesy Demanet ‘05, Ying ‘05]
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Curvelets live in a wedge in the 3 D Fourier plane...




3-D curvelets

Curvelets are oscillatory in one direction and smooth in the others. @su M
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COEFFICIENTS AMPLITUDE DECAY
IN TRANSFORM DOMAINS
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PARTIAL RECONSTRUCTION
CURVELETS (1% LARGEST COEFFICIENTS)
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Forward model

Linear model for the measurements of a function mo:

y Kmg+n
with
data
the modeling matrix
the model vector

noise

= inversion of K either ill-posed or underdetermined.
® seek a prior on m.




Key idea

x = argmin ||x]|; s.t. ||[Ax—y|2 <e¢
X
t t

sparsity data misfit
enhancement

When a traveler reaches a fork in the road, the |1 -norm tells him to take either one way or the
other, but the |12 -norm instructs him to head off into the bushes.

John FE. Claerbout and Francis Muir, 1973

New field “compressive sampling”: D. Donoho, E. Candes et. al., M. Elad etc.

Preceded by others in geophysics: M. Sacchi & T. Ulrych and co-workers etc.
L \SLIM
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Inline

Linear quadratic (Isqr):

X = argmin ||x||2 s. Ax —yll2 <€
X

e model Gaussian

Non-linear

i:arg;nionﬂl S. Ax —y|2 <

e model Cauchy (sparse)

Problem:

e data does not contain point scatterers

® nOt s arse . elsmic Laboratory for
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curvelets on seismic data &

Exploit pars




Sparsity-promoting program

Problems boils down to solving for xo

signal— +

curvelet representation

of ideal data

= exploit sparsity in the curvelet domain as a prior

" find the sparsest set of curvelet coefficients that
match the data, i.e., y ~ KC'x

" invert an underdetermined system




Initialize:

Choose: L, ||ATy]loo > A > Ao > -+
while ||y — Ax'[| > ¢ do

for [ =1 to L do

X =Ty, (x' + AT (y - AxX'))

end for
1 =1+ 1;

end while

f =Clx,

Seismic Laborato ry for
Imaging and Modeling



Applications

Problems in seismic processing can be cast in to P,
= stable under noise
= stable under missing data

Obtain a formulation that
= explicitly exploits compression by curvelets
® js stable w.r.t. noise
= exploits the “invariance” of curvelets under imaging

Applications include
® seismic data regularization
= primary-multiple separation
® seismic amplitude recovery







Motivation
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Irregular sub-sampling
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incoherent noise

Noisy because of irreqular sampling ...
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Sparsity-promoting inversion®

Reformulation of the problem

signal— RC H

curvelet representation
of ideal data

Curvelet Reconstruction with Sparsity-promoting
Inversion (CRSI)

= |look for the sparsest/most compressible,

physical solution <@=KEY POINT OF THE
RECOVERY

sparsity constraint data misfit
——— - ™ ~

P . = argminy |[Wx|[; s.t. [[Ax—yls <e€

* inspired by Stable Signal Recovery (SSR) theory by E. Candes, J. Romberg, T. Tao,
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) |
by P. Zwartjes :




Original data




80 % missing




»/) CRSI recovery
' with 3-D

curvelets




Joint work with Eric Verschuur, Deli
Wang, Rayan Saab and Ozgur
Yilmaz




Motivation

Primary-multiple separation step is crucial
® moderate prediction errors
= 3-D complexity & noise

Inadequate separation leads to

" remnant multiple energy
= deterioration primary energy
Introduce a transform-based technique
= stable
® insensitive to moderate shifts & phase rotations

Exploit sparsity and parameterization transformed
domain




Move-out error

total data multiple data

i
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Move-out error
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The problem

Sparse signal model:

y = AXp +n,

]T

A= [Al Az] and X)) = [X()l X0?2

®" augmented synthesis and sparsity vectors
" index 1 <-> primary
" index 2 <-> multiple




The solution

The weighted norm-one optimization problem:
miny |X||w,1 subjectto |y —Ax|><E€
§1 — Alﬁl and §2 — Azﬁz

given: §; and w(y,$;)

}T

:Wl y W2
(S¥el)
predicted multiples
S-S




Solution cont’d

The weights

®= during minimization signal components are driven
apart

= curvelet compression helps

® separates on the basis of position, scale and
direction




Synthetic example
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Synthetic example
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Synthetic example
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<eal example
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<eal example
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Motivation

Migration generally does not correctly recover the
amplitudes.

Least-squares migration is computationally unfeasible.

Amplitude recovery (e.g. AGC) lacks robustness w.r.t.
noise.

Existing diagonal amplitude-recovery methods

= do not always correct for the order (1 - 2D) of the
Hessian [see Symes '07]

®= do not invert the scaling robustly

Moreover, these (scaling) methods assume that there
® are no conflicting dips (conormal) in the model
is infinite aperture
are infinitely-high frequencies
etc.




" Am
" Am
" Am

Existing scaling methods

Methods are based on a diagonal approximation of .
= [llumination-based normalization (Rickett '02)

dlituc
dlituc

dlituc

e preserved migration (Plessix & Mulder '04)
e corrections (Guitton '04)
e scaling (Symes '07)

We are interested in an 'Operator and image adaptive’
scaling method which

= estimates the action of W from a reference vector
close to the actual image

" assumes a smooth symbol of JJ in space and angle

= does not require the reflectors to be conormal <=>
allows for conflicting dips

= stably inverts the diagonal



Our approach

“Forward” model:
y = K/'Km+e
AX() + &

migrated data

C'T

K'Kr

the demigration operator
migrated noise.

®= diagonal approximation of the demigration-migration
operator

= costs one demigration-migration to estimate the
diagonal weighting




Solution

ming J(x) subject to |y — Ax|ls <e
m = (AH)Tx

sparsity

/_/\ﬁ -‘-
J(x) = aflx|1 +5 (1A (A7) x|,
—/_/

continuity




Example

SEGAA' data:
= “broad-band” half-integrated wavelet [5-60 Hz]
® 324 shots, 176 receivers, shot at 48 m
= 5 s of data

Modeling operator

= Reverse-time migration with optimal check pointing
(Symes '07)

= 8000 time steps
= modeling 64, and migration 294 minutes on 68 CPU’s

Scaling requires 1 extra migration-demigration
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Nonlinear data
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Conclusions

The combination of the parsimonious curvelet
transform with nonlinear sparsity & continuity
promoting program allowed us to...

® recover seismic data from large percentages
missing traces

® separate primaries & multiples

= recover migration amplitudes

This success is due to the curvelet’s ability to

= detect wavefronts <=> multi-D geometry

= differentiate w.r.t. positions, angle(s) and scale

= diagonalize the demigration-migration operator
Because of their parsimoniousness on seismic data

and images, curvelets open new perspectives on
seismic processing ...
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