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Combinations of parsimonious signal 
representations with nonlinear sparsity promoting 
programs hold the key to the next-generation of 
seismic data processing algorithms ...
Since they

 allow for formulations that are stable w.r.t. 
 noise 
 incomplete data
 moderate phase rotations and amplitude errors

Finding a sparse representation for seismic data & 
images is complicated because of

 wavefronts & reflectors are multiscale & multi-
directional

 the presence of caustics, faults and pinchouts



The curvelet transform



Properties curvelet transform:
 multiscale: tiling of the FK domain into 

dyadic coronae
 multi-directional: coronae sub-

partitioned into angular wedges, # of 
angle doubles every other scale

 anisotropic: parabolic scaling principle
 Rapid decay space
 Strictly localized in Fourier
 Frame with moderate redundancy (8 

X in 2-D and 24 X in 3-D)

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

k1

k2
angular

wedge
2j

2j/2

Representations for seismic data

fine scale data 

coarse scale data 



2-D curvelets

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!
Obey parabolic scaling relation length ≈ width2



Curvelet tiling & seismic data

Curvelet tiling

Angular
wedge

# of angles doubles every other scale doubling!



Real data frequency bands
             example
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Data is multiscale!



Seismic Laboratory for Imaging and Modeling

Decomposition in
  angular wedges

6th scale image

Single frequency band
      angular wedges

6

Data is multidirectional!
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Curvelets live in a wedge in the 3 D Fourier plane...

Extenstion to 3-D
Cartesian Fourier space

[courtesy Demanet ‘05, Ying ‘05] 



Curvelets are oscillatory in one direction and smooth in the others.

3-D curvelets



Coefficients Amplitude Decay 

In Transform Domains

Fourier

Wavelets

Curvelets



Partial Reconstruction

Curvelets (1% largest coefficients)

SNR = 6.0 dB



Curvelet sparsity 
promotion



Forward model
Linear model for the measurements of a function m0:

 inversion of K either ill-posed or underdetermined.
 seek a prior on m.

y = Km0 + n
with

y = data
K = the modeling matrix

m0 = the model vector
n = noise



Key idea

x̃ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

data misfitsparsity
enhancement

When a traveler reaches a fork in the road, the l1 -norm tells him to take either one way or the 
other, but the l2 -norm instructs him to head off into the bushes. 

John F. Claerbout and Francis Muir, 1973 

New field “compressive sampling”: D. Donoho, E. Candes et. al.,  M. Elad  etc. 

Preceded by others in geophysics: M. Sacchi & T. Ulrych and co-workers etc.  
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Linear quadratic (lsqr):

• model Gaussian

Non-linear       :

• model Cauchy (sparse)

Problem:

• data does not contain point scatterers

• not sparse
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x̃ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

x̃ = arg min
x

‖x‖2 s.t. ‖Ax− y‖2 ≤ ε



Our contribution

Model as superposition of little 
plane waves.

Compound modeling operator 
with curvelet synthesis:

Exploit parsimoniousness of 
curvelets on seismic data & 
images ...
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K !→ KCT

m0 !→ x0

m̃ = CT x̃



Sparsity-promoting program
Problems boils down to solving for

with 

 exploit sparsity in the curvelet domain as a prior
 find the sparsest set of curvelet coefficients that 

match the data, i.e.,
 invert an underdetermined system

signal =y + n noise

curvelet representation 
of ideal data

x0

A

x0

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

m̃ = CT x̃

y ≈ KCT x̃



Solver
Initialize:

i = 0; x0 = 0;

Choose: L, ‖ATy‖∞ > λ1 > λ2 > · · ·

while ‖y −Axi‖2 > ε do

for l = 1 to L do

xi+1 = T s
λi

(
xi + AT

(
y −Axi

))

end for

i = i + 1;

end while

f̃ = CTxi.

Table 1: The cooling method with iterative thresholding.
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Applications
Problems in seismic processing can be cast in to     

 stable under noise
 stable under missing data

Obtain a formulation that
 explicitly exploits compression by curvelets
 is stable w.r.t. noise
 exploits the “invariance” of curvelets under imaging

Applications include
 seismic data regularization
 primary-multiple separation
 seismic amplitude recovery

Pε



Seismic data 
regularization

joint work with Gilles Hennenfent



Motivation



Irregular sub-sampling

incoherent noise

Noisy because of irregular sampling ...



Sparsity-promoting inversion*
Reformulation of the problem

Curvelet Reconstruction with Sparsity-promoting 
Inversion (CRSI)

 look for the sparsest/most compressible,
physical solution KEY POINT OF THE 

RECOVERY

* inspired by Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. Tao, 
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) 
by P. Zwartjes

signal =y + n noise

curvelet representation 
of ideal data

x0

RCH

(P0)


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x̃= arg

sparsity constraint
︷ ︸︸ ︷
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‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P0)
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x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃

Pε :

{
x̃ = arg minx ‖Wx‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = CT x̃



Original data



80 % missing



CRSI recovery
 with 3-D 
curvelets



Primary multiple 
separation

Joint work with Eric Verschuur, Deli 
Wang, Rayan Saab and Ozgur 

Yilmaz



Motivation
Primary-multiple separation step is crucial

 moderate prediction errors
 3-D complexity & noise

Inadequate separation leads to
 remnant multiple energy
 deterioration primary energy

Introduce a transform-based technique
 stable
 insensitive to moderate shifts & phase rotations

Exploit sparsity and parameterization transformed 
domain



Move-out error



Move-out error



The problem
Sparse signal model:

with

 augmented synthesis and sparsity vectors
 index 1 <-> primary
 index 2 <-> multiple

!2-norm penalizes the outliers while the !1-norm promotes the outliers bringing out the primaries.

Sparsity-domain primary-multiple separation

Motivated by recent results on the stable signal recovery from overcomplete representations (see

e.g. Starck et al., 2004; Elad et al., 2005), the primary-multiple separation problem is formulated

in terms of a nonlinear optimization problem. The solution of this problem provides simultaneous

estimates for the multiples and primaries given predictions for the multiples. As in stable signal

recovery, the method exploits sparsity in a transformed domain for both signal components. In that

respect our method differs fundamentally from matched filtering (see e.g. Verschuur and Berkhout,

1997), since it exploits a representation that is sparse, i.e., a transform that leads to a rapid decay

for the magnitude-sorted coefficients in the sparsity vectors for the two signal components.

Sparse signal model: Following the ideas of morphological component analysis (MCA, see e.g.

Starck et al., 2004), an augmented sparsity synthesis matrix is defined consisting of an inverse trans-

form for the synthesis of each of the two signal components in Eq. 1. Again the data is described as

a sparse superposition of now two sparsity matrices one for each signal component,

y = Ax0 +n, (13)

with

A = [A1 A2] and x0 = [x01 x02]T (14)

the augmented sparsity synthesis matrix and sparsity vector, respectively. In this formulation, the

subscripts 1 and 2 are reserved for primaries and multiples. The above signal model with the coef-

ficients of x0 sparse, forms the basis of MCA. Even though MCA was initially designed to separate

signal components that are sparse in different sparsity representations, we show that this method can
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The solution
The weighted norm-one optimization problem:

be extended to signal components with similar characteristics. Because primaries and multiples are

both solutions of the wave equation, we can not expect to find a generic overcomplete signal rep-

resentation that separates these two components without providing prior information on the wave

arrivals. We argue that these signal components can still be separated as long as there exist reason-

able predictions for the signal components. These predictions are used as weights that allow us to

recover the two signal components using the same signal representation for each component.

The weighted !1-norm optimization problem: If the two signal components permit a sparse

representation then the predicted multiples can be used as weights in the sparsity promoting !1

norm. These weights drive the two signal components apart during the optimization and x0 can be

recovered to reasonable accuracy‡. The w-weighted optimization problem becomes

Pw :






minx ‖x‖w,1 subject to ‖y−Ax‖2 ≤ ε

ŝ1 = A1x̂1 and ŝ2 = A2x̂2

given: s̆2 and w(y, s̆2)

(15)

with w = [w1, w2]T the weighting vectors with strictly positive weights defined in terms of the

predicted multiples. The estimates for the primaries and multiples are computed from the sparsity

vector that minimizes Pw. During the optimization, the sparsity vector is recovered by minimizing

the weighted !1 norm subject to a recovery that is within the tolerance.

The weights: The weighting vectors are based on an a-priori prediction for the multiples, ob-

tained by SRME prediction (see e.g. Berkhout and Verschuur, 1997) or by other means. The cor-

responding prediction for the primaries is obtained through simple subtraction. When the predicted
‡For an orthonormal sparsity representation, this recovery can be expected to be within the noise-level when the two

sparsity vectors x01 and x02 are disjunct, i.e. x1,µ = 0 when x2,µ $= 0 or x2,µ = 0 when x1,µ $= 0 for µ ∈M .
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with
w :=

[
w1, w2

]T

A :=
[
CT , CT ]

s̆2 := predicted multiples
s̆1 := S− S̆2



Solution cont’d

The weights

 during minimization signal components are driven 
apart

 curvelet compression helps
 separates on the basis of position, scale and 

direction

{
w1 := max

(
σ ·
√

2 log N, C1|ŭ1|
)

w2 := max
(
σ ·
√

2 log N, C2|ŭ2|
)

with
ŭ1 ≈ Cs̆1

ŭ2 ≈ Cs̆2



Synthetic example

total data SRME predicted multiples



Synthetic example

SRME predicted primaries curvelet-thresholded



Synthetic example

SRME predicted primaries estimated



Real example

total data
SRME 
predicted 
multiples



Real example

curvelet 
thresholded

curvelet 
estimated



curvelet 
estimated
primaries

SRME 
predicted
primaries



Seismic amplitude 
recovery

Joint work with Chris Stolk and 
Peyman Moghaddam



Motivation
Migration generally does not correctly recover the 
amplitudes.

Least-squares migration is computationally unfeasible.

Amplitude recovery (e.g. AGC) lacks robustness w.r.t. 
noise.
Existing diagonal amplitude-recovery methods

 do not always correct for the order (1 - 2D) of the 
Hessian [see Symes ‘07]

 do not invert the scaling robustly

Moreover, these (scaling) methods assume that there
 are no conflicting dips (conormal) in the model
 is infinite aperture 
 are infinitely-high frequencies
 etc.



Existing scaling methods
Methods are based on a  diagonal approximation of   .

 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

We are interested in an ‘Operator and image adaptive’ 
scaling method which

 estimates the action of    from a reference vector 
close to the actual image

 assumes a smooth symbol of     in space and angle
 does not require the reflectors to be conormal <=> 

allows for conflicting dips
 stably inverts the diagonal 

Ψ

Ψ

Ψ



Our approach
“Forward” model:

 diagonal approximation of the demigration-migration 
operator

 costs one demigration-migration to estimate the 
diagonal weighting

with
y = migrated data
A := CT Γ

AAT r ≈ KT Kr
K = the demigration operator
ε = migrated noise.

y = KT Km + ε

≈ Ax0 + ε



Solution
Solve

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.



Example
SEGAA’ data:

 “broad-band” half-integrated wavelet [5-60 Hz]
 324 shots, 176 receivers, shot at 48 m
 5 s of data

Modeling operator
 Reverse-time migration with optimal check pointing 

(Symes ‘07)
 8000 time steps
 modeling 64, and migration 294 minutes on 68 CPU’s

Scaling requires 1 extra migration-demigration









Migrated data Amplitude-corrected & denoised 
migrated data



Noise-free data Noisy data
(3 dB)

Data from 
migrated image

Data from 
amplitude-corrected 
& denoised migrated 

image



Nonlinear data



The combination of the parsimonious curvelet 
transform with nonlinear sparsity & continuity 
promoting program allowed us to...

 recover seismic data from large percentages 
missing traces

 separate primaries & multiples
 recover migration amplitudes

This success is due to the curvelet’s ability to
 detect wavefronts <=> multi-D geometry
 differentiate w.r.t. positions, angle(s) and scale
 diagonalize the demigration-migration operator

Because of their parsimoniousness on seismic data 
and images, curvelets open new perspectives on 
seismic processing ...

Conclusions
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