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Combinations of parsimonious signal 
representations with nonlinear sparsity promoting 
programs hold the key to the next-generation of 
seismic data processing algorithms ...
Since they

 allow for a formulation that is stable w.r.t. noise 
& incomplete data

 do not require prior information on the velocity 
or locations & dips of the events

Seismic data and images are complicated because
 wavefronts & reflectors are multiscale & multi-

directional
 the presence of caustics, faults and pinchouts



Curvelets



Properties curvelet transform:
 multiscale: tiling of the FK domain into 

dyadic coronae
 multi-directional: coronae sub-

partitioned into angular wedges, # of 
angle doubles every other scale

 anisotropic: parabolic scaling principle
 Rapid decay space
 Strictly localized in Fourier
 Frame with moderate redundancy

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)
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k2
angular

wedge
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2j/2

Representations for seismic data

fine scale data 

coarse scale data 



2-D curvelets

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!



Curvelet tiling & seismic data

Curvelet 
tiling

Angular
wedge



Real data frequency bands
             example
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Data is multiscale!
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Decomposition in
  angular wedges

6th scale image

Single frequency band
      angular wedges
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Data is multidirectional!
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Significant
curvelet coefficient Curvelet

coefficient~0

Wavefront detection

curvelet coefficient is determined
by the dot product of the curvelet
function with the data



Nonlinear approximation



Nonlinear approximation



Nonlinear approximation



Nonlinear approximation



Nonlinear approximation



Nonlinear approximation rates
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Sparsity promoting 
inversion



Key idea

x̃ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

data misfitsparsity
enhancement

When a traveler reaches a fork in the road, the l1 -norm tells him to take either one way or the 
other, but the l2 -norm instructs him to head off into the bushes. 

John F. Claerbout and Francis Muir, 1973 

New field “compressive sampling”: D. Donoho, E. Candes et. al.,  M. Elad  etc. 

Preceded by others in geophysics: M. Sacchi & T. Ulrych and co-workers etc.  

signal =y + n noise

curvelet representation 
of ideal data

x0

A



Applications
Sparsity promotion can be used to

 recovery from incomplete data: “Curvelet 
reconstruction with sparsity promoting inversion: 
successes & challenges and “Irregular sampling: from 
aliasing to noise” 

 migration amplitude recovery: “Just diagonalize: a 
curvelet-based approach to seismic amplitude 
recovery

 ground-roll removal: “Curvelet applications in surface 
wave removal”

 multiple prediction: “Surface related multiple 
prediction from incomplete data”

 seismic processing: “Seismic imaging and processing 
with curvelets”



Primary-multiple 
separation

Joint work with Eric Verschuur, Deli 
Wang, Rayan Saab and Ozgur 

Yilmaz



Multiple prediction with erroneous move out.

Move-out error



Move-out error

Curvelet-based result obtained by single soft 
threshold given by the predicted multiples

s̃1 = CT Tλ|Cs̆2|
(
Cs

)



Approach
Bayesian formulation of the primary-multiple 
separation problem 

 promotes sparsity on estimated primaries & 
multiples

 minimizes misfit between total data and sum of 
estimated primaries and multiples

 exploits decorrelation in the curvelet domain
 new: minimizes misfit between estimated and 

(SRME) predicted multiples

Separation formulated in terms of a sparsity 
promoting program robust under

 moderate timing and phase errors
 noise



Synthetic example

total data SRME predicted multiples



Synthetic example

SRME predicted primaries curvelet-thresholded



Synthetic example

SRME predicted primaries estimated



Curvelet-based 
recovery

joint work with Gilles Hennenfent



Sparsity-promoting inversion*
Reformulation of the problem

Curvelet Reconstruction with Sparsity-promoting 
Inversion (CRSI)

 look for the sparsest/most compressible,
physical solution KEY POINT OF THE 

RECOVERY

* inspired by Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. Tao, 
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) 
by P. Zwartjes

signal =y + n noise

curvelet representation 
of ideal data

x0

RCH

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃

Pε :

{
x̃ = arg minx ‖Wx‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = CT x̃









Focused recovery with 
curvelets

joint work with Deli Wang (visitor 
from Jilin university) and Gilles 

Hennenfent



Motivation

Can the recovery be extended to “migration-like” 
operators?

How can we incorporate prior information on the 
wavefield, e.g. information on major primaries from 
SRME?

How can we compress extrapolation operator?

Compound primary operator with inverse 
curvelet transform.



Primary operator
[Berkhout & Verschuur ‘96]

Frequency slice from data cube

Receivers

Shots

Shots

Receivers

Frequency

 

∆P



Primary operator
[Berkhout & Verschuur ‘96]

Maps primaries into first-order multiples. So its inverse 
focuses ....



Solve

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

Recovery with focussing

with
A := R∆PCT

ST := ∆PCT

y = RP(:)
R = picking operator.

and ∆P := FHblock diag{∆p}F
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Curvelet 
recovery

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-sampled data with missing traces

is a setting where a curvelet-based method will perform well (see e.g. Herrmann, 2005;

Hennenfent and Herrmann, 2006a, 2007). As with other transform-based methods, sparsity

is used to reconstruct the wavefield by solving Pε. It is also shown that the recovery

performance can be increased when information on the major primary arrivals is included

in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corresponds to the inversion

of the picking operator R. This operator models missing data by inserting zero traces at

source-receiver locations where the data is missing. The task of the recovery is to undo this

operation by filling in the zero traces. Since seismic data is sparse in the curvelet domain,

the missing data can be recovered by compounding the picking operator with the curvelet

modeling operator, i.e., A := RCT . With this definition for the modeling operator, solving

Pε corresponds to seeking the sparsest curvelet vector whose inverse curvelet transform,

followed by the picking, matches the data at the nonzero traces. Applying the inverse

transform (with S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in Figure 1, where a real 3-D seismic

data volume is recovered from data with 80 % traces missing (see Figure 1(b)). The missing

traces are selected at random according to a discrete distribution, which favors recovery (see

e.g. Hennenfent and Herrmann, 2007), and corresponds to an average sampling interval of

125 m . Comparing the ’ground truth’ in Figure 1(a) with the recovered data in Figure 1(c)
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Focused curvelet 
recovery
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SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-
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Conclusions
Curvelets represent a versatile transform that

 brings robustness w.r.t. moderate shifts and 
phase rotations to primary multiple separation

 allows for the nonlinear recovery for severely sub-
Nyquist data

 leads to an improved recovery when compounded 
with “migration like” operators

Opens tentative perspectives towards a new 
sampling theory

 for seismic data
 that includes migration operators ...
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