
Pedagogical Transformations in the UBC CS Science
Education Initiative

Donald Acton, Kimberly Voll, Steven Wolfman, Benjamin Yu
University of British Columbia

Department of Computer Science
2366 Main Mall

Vancouver BC V6T 1Z4
{acton, kvoll, wolf, benyu}@cs.ubc.ca

ABSTRACT
The UBC CS Science Education Initiative (CSSEI) has resulted in
a number of research projects. New teaching methods and
student assessment instruments are introduced to engage student
learning and evaluations of their understanding. In this paper, we
report four of these recent initiatives and their initial findings.

Categories and Subject Descriptors
K.3.2 [Computers and Information Science Education]:
Pedagogy, education research – just-in-time, BRACElet, in-class
activities, attitudinal survey, problem-based learning, analysis.

General Terms
Experimentation, Measurement.

Keywords
Computer education, transformation, code understanding, survey
analysis, grade analysis.

1. Introduction
The UBC CS Science Education Initiative (CSSEI) is part of the
five-year, $12 million project at the University of British
Columbia under the Carl Wieman Science Education Initiative
(CWSEI), which began in 2007. The project aims to dramatically
improve undergraduate science education by taking a four-step,
scientific approach to teaching: 1) establishing what students
should learn through the identification of learning goals, 2)
scientifically measuring what students are actually learning, 3)
adapting instructional methods and curriculum, and incorporating
effective use of technology and pedagogical research to achieve
desired learning goals, and 4) disseminating and adopting what
works for student learning. In the UBC CS department, we have
developed learning goals for five of our core courses [3]. We have
also identified some of the difficulties students face in achieving
these learning goals. This paper describes some of our ongoing
research projects to help students better achieve these learning
goals, and our initial results.

© ACM, 2009. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in:
Proceedings of the 14th Western Canadian Conference on
Computing Education, DOI:
http://doi.acm.org/10.1145/1536274.1536280

Just-in-Time Teaching
Previous studies of our CPSC 121: Models of Computation
course have shown that students have trouble connecting topics
and retaining core ideas from term to term, and from lectures to
labs. Many students found the hands-on labs (often circuit-based)
disconnected from the more theoretical material discussed in
class. Downstream courses also tend to extensively review (re-
teach) material that students learn in the course. These problems
remain despite significant development efforts on the course by
many faculty over several years.

In two sections of this course offered in the January to April 2009
term, we have shifted towards a heavily problem-based lecture
style enabled by Just-in-Time-Teaching (JITT) [5].

The core tenets of JITT are two-fold. Before a class, instructors
assign reading and other preparatory work to students and expect
them to complete it. During the class, instructors avoid re-
covering the textbook material and instead use exercises to
engage students in higher-level discourse and learning of the
material. The key mechanism that feeds both elements of this
process is some kind of assessment (e.g. a quiz) just before class.
This quiz motivates students to do their preparation and enables
instructors to assess how well students learned the preparatory
material and where to focus attention during the classroom work.

In CPSC 121, each (possibly multi-day) lecture ends with the
preparatory assignment for the next lecture. This assignment
comes in three parts: a list of "pre-class learning goals" that
students should achieve before the next lecture, a list of readings
that students can use to achieve those goals, and suggested
exercises to assess their progress. In addition, before the next
lecture, students are required to complete an online, low-credit
quiz that assesses the pre-class learning goals. Ideally, these
quizzes would be drawn randomly from an immense bank of
questions all targeted at the relevant learning goals. For now, the
quizzes are fixed. As a result, rather than resubmitting the quiz
again and again with instant feedback, students are instead
encouraged to look over the quiz as they begin their preparation
(to focus their reading) and complete it at their leisure. Feedback
comes only after the deadline, however. Beyond the automatically
graded questions targeting pre-class learning goals, each quiz also
includes 1-2 open-ended questions that get students thinking
about the next lecture's in-class learning goals. These are graded
purely for completeness.

Just before the lecture (i.e. "just in time"), the instructor
aggregates the results on the automatically graded questions and
summarizes results on a sample of the open-ended questions.
Where students did poorly on the automatically graded questions,

http://doi.acm.org/10.1145/1536274.1536280�

the instructor dynamically introduces new discussion and
problems to reinforce those concepts. The instructor usually
summarizes students' responses on the open-ended question into a
strategy guide that the class discusses before diving into closely
related problems for in-class work.

In-class work is weighted heavily toward working and discussing
practical problems, often with (anonymous, ungraded) clicker
questions used to gauge students' progress and summarize their
results. In the larger section (with ~90 students) two
undergraduate TAs attend lecture to help the instructor facilitate
problem solving sessions.

As an example, the pre-class learning goals for the first lecture on
predicate logic are stated as follows:

By the start of class, the students are expected to be able to:

• Evaluate the truth of predicates applied to particular
values.

• Show predicate logic statements are true by
enumerating examples (i.e., all examples in the
domain for a universal or one for an existential).

• Show predicate logic statements are false by
enumerating counterexamples (i.e., one
counterexample for universals or all in the domain for
existentials).

• Translate between statements in formal predicate logic
notation and equivalent statements in closely matching
informal language (i.e. informal statements with clear
and explicitly stated quantifiers).

The online quiz asked 11 questions such as‚ “What can you say
about the truth of the following statement: ∃x ∈ Z, ∃y ∈ Z, ∃z ∈
Z, x2 + y2 = z2?” Students averaged over 80% on all but three
questions; so, the instructor reviewed those three questions to
begin the class.

The in-class learning goal was for students to be able to build
statements about the relationships between properties of various
objects using predicate logic. Problems may be drawn from real-
world examples like “every candidate got votes from at least two
people in every province” or computing examples like “on the ith
repetition of this algorithm, the variable min contains the smallest
element in the list between element 0 and element i”. These will
then segue to open-ended predicate logic representation problems,
including one asked on the quiz (defining precisely what it means
for a list to be sorted).

Since students already understood the basic terminology, as
indicated by their quiz results, lecture focused on higher-level
topics, including summarization and further development of the
open-ended quiz question to precisely define what it means for a
list to be sorted. Lecture culminated with students defining a
predicate GenerallyFaster(a1, a2) that indicates when one
algorithm is “generally faster” than another based on a predicate
Faster(a1, a2, n) that compares the algorithms for particular
problem sizes. Students invented several of their own definitions,
including one that corresponds to the standard comparison of
asymptotic performance for algorithms, and we discussed the
strengths and weaknesses of each one.

Anecdotally, the instructor feels he has a clearer sense of when
students are able to apply core course concepts successfully. In
particular, rather than only discovering that students cannot solve

real problems when they fail at assignments or exams, he can now
discover and address students' difficulties early in the learning
process. An anonymous clicker survey shows that students
generally now see the relevance of labs to the course material,
possibly due to the increased connection between hands-on
problems and theory in lecture.

Finally, assessment results (e.g., the midterm) indicate that both
sections that use a problem-based style in class are performing at
least as well as the section using a more traditional lecture
approach.

2. Problem-Based Peer Learning
In our Data Structures and Algorithms course (CPSC 221), we are
faced with a wide range of topics that require students to
transition smoothly between abstraction and implementation.
This relationship can be difficult for students to understand
without high-level problem solving practice paired with
implementation practice. Traditionally, CPSC 221 has seen
implementation techniques taught during labs in the form of an
algorithm and a partially-implemented framework, which students
complete under the guidance of a lab assistant. Higher level
abstract concepts are then presented in a more traditional, lecture-
style environment. Repeatedly, however, interactions with
students (both exam-based and in-person) have shown a distinct
lack of comprehension regarding the nature of abstraction versus
implementation. In particular, students make inappropriate
choices when deciding to address a problem at an abstract versus
implementational level.

To address this deficiency, during our two-section January to
April 2009 offering of CPSC 221, an experiment was conducted
to test the efficacy of a non-standard lecture model. In our
experiment, one section of the spring term was offered in the
traditional format where classroom contact hours were spent
presenting electronic slides (made available prior to the class),
and clicker-style questions to help students review the material
and assess their progress. The second section was delivered using
an alternate model of presentation presenting new course concepts
in two components: an “offline” component where students were
expected to read and learn the prescribed concepts before class;
and an “introduction via problem” component where students
were expected to solve a moderately sized problem, or series of
problems, in groups during class.

The offline-learning component was sometimes supplemented
with a clicker-style quiz or short discussion administered at the
start of the class to ensure students have done their preparatory
readings and to identify any areas of confusion among the
students (not unlike the JITT model described for the CPSC 121
above). After a brief discussion, the remaining class time was
spent on the “introduction via problem” component using group
exercises, which required the students to directly apply the
concepts they were learning while the instructor monitored the
progress of each group, offering hints and discussion points when
appropriate. Some of the exercises were presented in the form of
a series of tasks that progressively led the students from newly
acquired foundations toward more in-depth applications, or a
large-scale problem in which the students had to determine and
apply the relevant concepts to the solution.

It should be noted that in the “introduction-via-problem”
component, core concepts were introduced “cold”, that was
without any prerequisite reading and a minimal introduction by

the instructor. The students relied on their problem-solving skills
and prior knowledge to solve the problem. As an example,
students were given two unidentified sorting algorithms at the
start of the complexity unit for which they were to answer the
questions, “What do these algorithms do?” and “Which algorithm
is better?” The ensuing group discussion served as a segue into
complexity theory and how and why we wanted to compare
algorithms.

Aside from different presentation styles, both sections shared the
same instructor, course material, labs, assignments, exams, and
learning goals. In both sections the course material was
presented via three-hours of classroom-contact time, and two
hours of lab time. Furthermore, both sections used learning goals
as concept “book ends” presented at the start and close of each
unit.

As of this writing, the final exam has not been administered yet.
The final exam is composed of a question derived from a shared
exercise that was run in both sections, and two questions for
which the material explicitly appeared on an experimental
exercise. Each of these questions had high-level and low-level
sub-questions to test performance between the two sections given
the differing delivery of content. Any significant differences
between the sections will result in the lower section being scaled
up to meet the higher section.

An end-of-term informal survey has now been completed in the
experimental section, indicating a highly favourable response to
the experimental classroom setting. While not conclusive, this
nonetheless motivates this approach from the perspective of
student engagement and enjoyment. And although the midterms
have thus far been statistically insignificant in their differences
(though the average was higher in the section delivered using the
alternate learning model), the true efficacy of this approach is
more likely to be felt in long-term retention. This effectiveness
may already start to appear in the final exam as students are
forced to revisit the material from the first half of the term. Plans
are underway for a follow-up study in approximately five months
to test retention between both the experimental and control
sections.

The final outcome of this experiment will be analyzed on the
basis of assessment outcomes between the two sections.
Although the first midterm did not report a statistically significant
result between the sections, the instructor reports that students did
respond favourably to the learning environment, and there has
been no push-back on the front-loading of course material. In
addition, there are fewer students during office hours from the
alternate learning model section.

3. BRACElet
BRACElet [1] is a multi-institutional investigation into the
reading and comprehension skills of novice programmers. The
basic idea is that as a student or beginning programmer transitions
from novice to expert, their explanations of what a piece of code
does also change.

For example when experts are presented with the following code
sample:

 bool bValid = true;
 for (int i = 0; i < iMAX - 1; i++) {
 if (iNumbers[i] > iNumbers[i+1]) {
 bValid = false;
 }
 }

and asked to explain what it does in plain English experts
typically say the code checks to see if the numbers in an array are
sorted [2]. Non-experts will typically engage in a line-by-line
description of what the code does without relating what the body
of code as a whole does.

Based on this idea we wanted to explore how student explanations
changed as they progressed through our various first and second
year programming courses. Assuming these questions, in some
dimension, express a student’s mastery of the concepts and
techniques of a particular course, then these questions may serve
as a baseline to measure the success, or lack thereof, of
curriculum changes. In addition to tracking the progression of
students from novice to expert, we also wanted to see if there was
any relationship between a student’s performance on these
questions and their final course grade. As the first step in this
study, we administered several "explain in plain English"
questions to students at various levels of computing at UBC. Our
initial data was gathered from:

1. Students who had just completed our primary introductory
course in Computer Science (about 420 students).

2. Non computer science students who had just completed a
second programming course, but whose first programming
course was not as comprehensive as the course in (1) (about
140 students)

3. Students just starting the course in (2) (about 210 students)

In each case we provided our students with the same three code
samples expressed in the primary programming language of that
course. The samples were presented in order of increasing
complexity. The first code sample swapped the value of two
variables, the second computed the average of a collection of
numbers in an array, and the third looked for the last occurrence
of a character in a string. The first two questions were graded out
of two. One mark was given for answers that provided a line-by-
line description of the code with two marks awarded for answers
that described what the code as a whole did. No half marks were
awarded. Full marks were given for answers that weren’t quite
correct but were trying to explain what the code as a whole did as
opposed to providing a line-by-line summary. The third question
was graded out of three, with, again, one mark for a line-by-line
description, two marks for a description of the code as a whole,
and a third mark for indicating that the code was looking for the
last occurrence of a character1

Although we have collected a substantial amount of data across
the three identified student populations, the initial analysis has

. The questions were administered
as part of the final exam for the first two student populations and
as an anonymous quiz on the first day of class for the third group.

1 Students often realized the code was looking for a particular

character but failed to realize it was the last occurrence being
looked for.

focused on the students who had just completed their second
programming course and whether or not these questions were
good predictors of student course grade. Our hope was that the
scores on the three “explain in plain English” (i.e. BRACElet)
questions would either collectively, or individually, exhibit a
strong correlation with either or both the final exam and/or course
grade.

The approach we are using is to compute the correlation between
the BRACElet question scores and the final grades in the course.

The data corresponding to questions B1, B2, B3 in Table 1 shows
the results of this computation. The correlation for the three
BRACElet questions ranges from 0.35 to 0.47. In addition the
correlation of the sum of the three questions, 0.56, is provided.
Although these questions all exhibit a positive correlation with
the course grade they are only moderate predictors.

Since the BRACElet questions were not strong predictors (with
correlation of 0.7 and greater) of a student's performance in this
course we decided to expand our analysis to see if other questions
on the final exam were better predictors. The rest of Table 1 lists
all the questions on the final exam, their correlation to the
student's final grade, and the number of marks the question was
out of.

Question Correlation to
Final Grade

Maximum
Score

Average
Mark

Q1 0.64 10 7.16

Q2 0.7 20 10.52

B1 0.45 2 1.64

B2 0.35 2 1.76

B3 0.47 3 1.8

Q4 0.66 4 2.72

Q5 0.37 4 3.18

Q6 0.56 17 9.27

Q7 0.67 7 3.8

Q8 0.47 6 3.24

Q9 0.29 7 4.17

Q10 0.7 12 8.43

Q11 0.49 12 10.54

Q12 0.62 9 5.8

Q13 0.79 20 9.94

Sum of
BRACElet
Questions

0.56 7 5.2

(B1, B2, B3 are BRACElet questions.)

Table 1: Correlation between Questions on Final and Final
Grade

3.1 Analysis of the Data
Our goal in looking at this data is to try to get a better
understanding of the sorts of questions that correlate highly with a
student's grade and the underlying skills required to be successful
at these sorts of questions. The hope would be that if we can
identify these skills we can then provide guidance to student's on
how to improve these skills and hence their grade in the course.
Similarly, if we find questions with a low correlation they need to
be examined to see if there is something fundamentally wrong
with the question, be it in the question's wording or in what we
are testing for. In both scenarios the documented set of learning
goals, which are given to students, are also used as part of the
analysis. Students are also told that exam questions will always be
mappable to one or more learning goals. In other words, the exam
is in some sense a checklist of the level of knowledge and
understanding of a subset of the course's learning goals. (There
are usually too many learning goals to test all of them on a final
exam.)

To illustrate the use of this data consider two scenarios:

1. Questions that have a high correlation to a student's final
grade.

2. Questions that have negative or little correlation to the final
grade.

Given these criteria three questions with a high correlation to the
final grade (Q13, Q2, and Q10) and one with a low correlation
(Q9) to the final grade are of particular interest. (The course
instructor was pleased to see that no questions had a negative
correlation.)

Question 13 had the highest correlation at 0.79. This question
leads students through the process of developing a piece of code
to add a new node to a linked list. The students are asked to write
comments about what some code does, draw pictures of how the
structure of the list changes, write a five-line function to add a
new node, analyze the time complexity of the code they wrote,
and finally compare this implementation to one that uses a
different type of linked list. In essence this question touches on
multiple aspects of the course material and different parts of the
question require different levels of understanding of the material.
It also has the property that later parts of the question can be
completed without getting earlier parts correct.

In question 10, students are given snippets of C++ code and asked
to label a picture of program memory. For example students
might be expected to indicate where variable X is located and
what value X has. If a pointer is involved, students would be
expected to indicate the memory location the pointer points to. In
total there were 6 snippets of code of varying degrees of
complexity with respect to the resulting memory layout. Again
like question 13 this question touches on multiple aspects of the
course material. Some diagrams are relatively simple while others
are fairly complex. To get full marks students would need to have
a good understanding of the relationship between C++ code and
how memory is used.

Finally, question 2 also shows strong correlation. Question 2 was
comprised of a series of sub-questions requiring at most a short
sentence to answer. The questions cover the breadth of the course
material and typically focus on a key piece of information about a
particular topic. An example of this would be a question that asks

under what conditions would Quicksort exhibit the same running
time complexity as a simple bubble sort.

What do these three questions have in common? Not surprisingly
they are all multi-part questions. In addition the sub-questions are
not tightly tied to each other. That is, the inability to do one sub-
question does not preclude being able to answer other sub-
questions. Since both questions 10 and 13 explore one area at
several levels of detail, one might refer to this as a breadth of
understanding about a topic area. Question 2 has this same
property of breadth but from the perspective of key ideas
throughout the course. This observation raises the question as to
the role of breadth play in a student's success and whether the
ability to exhibit breadth of understanding in one area implies a
breadth of understanding in another area? We might be able to
gain some insights into this by looking for correlation between
questions. For example is there a strong correlation between these
three questions? We have not looked into this in detail, but our
preliminary analysis suggests there is not. Taking this further, we
also intend to take subsets of questions and explore the correlation
between subsets of questions and final grades.

As indicated earlier, another area of interest is questions that have
a low correlation to the course grade. From this exam, question 9
is a candidate. This question focuses on merge sort and asks a
number of questions about how the sort works. Although this is a
multipart question it has the property that if a student doesn't
understand one part of the question it is likely that other parts of
the question can't be completed. In some sense one can say that
the question lacks breadth. Also, given the relatively low average
mark for this question it is important to check the learning goals
to ensure that the question is indeed testing students at the
appropriate level for this material. In this case they were. Armed
with this information the course instructor has a number of
options:

1. Re-work the question so that it tests for a broader
understanding of the topic.

2. Change the course learning goals to better reflect the
expected learning outcomes and revise the question as
necessary.

3. Change or augment the way the material is taught.
4. Do nothing and treat this as a question that only the top

students in the class are expected to get.

Note that having a low correlation to a final grade is not
necessarily a bad thing. For example Q5 has a low correlation
(.37) but the average is relatively high (3.18/4). In examining the
question and the learning goals it was determined that this was an
important question and the material was not tested anywhere else.
It just happened that most students did quite well on this question,
even if they didn't have a good course grade.

Going forward, the questions with high correlation to final course
grade (Q2, Q10, and Q13), or very similar ones, will be
administered on the final exam for this course in April. From this
we hope to see if these questions continue to be strong predictors
given the difference student backgrounds in this offering of the
course. Although the BRACElet questions were not strong
predictors of a student's performance in this course, the questions
provide useful metric for ranking students across the different
courses. As a result, we will again be administering the
BRACElet questions and we will also have the opportunity to

compare the class's results with the same questions administered
at the start of term.

As we gather and analyze more of the data we will be able to
make changes to our teaching and course delivery methods in an
effort to improve outcomes. The work we have described here
will provide a way to measure our progress. In addition, we can
also provide guidance to our students with respect to the things
they can do to aid their learning. For example in this course we
exhort our students to always draw pictures of data structures and
their in-memory representations. Based on the results of our
analysis (Q10) we can tell students in this class that the ability to
draw out memory representations seems to be an important skill
for course success. We know that students who can't draw
memory representations do poorly. Unfortunately we don't know
if drawing memory pictures causes students to have a better grasp
of the course material or if it is the case that a better
understanding of the material makes picture drawing easier.
Knowing the answer to this and other similar questions would
allow us to tell students how to be successful in this course and
we hope to perform additional studies to answer these sorts of
questions.

4. Attitudinal Surveys
Attitudinal surveys provide valuable information on the student
perception of the course and their learning. This includes their
perception of the level of difficulty of the course, their progress in
the course, the way the material has been presented, the forms of
assessment, their expectations, their self-efficacy, etc. While
attitudes about the course can change in a very short time,
attitudes about the students learning and expectations can provide
useful insights to the instructors. We have conducted attitudinal
surveys of students in each of the four levels of the CS program at
UBC. Some of the questions asked include:

• What are your three biggest expectations from this course?
• How do you study for this course?
• How have you been using the learning goals for this course?
• Which of the following do you feel are most important to

you when you work on a particular difficult assignment:
 Regular meetings with TA / Prof to discuss about the

assignment.
 Bouncing off ideas with friends.
 Sample code examples.
 Regular feedback on progress.
 Access to web resources.
 Lecture / Assignment material.
 Advice from students who have completed the course.
 Help in the lab while working on the assignment.
 Drop-in help at TA office hours.

• How do you know when you have learned something?

Responses from these questions allow instructors to have greater
insights in the corresponding areas:

• Whether students are intrinsically (e.g. want to learn
something) or extrinsically (e.g. taking a course primarily to
satisfy program requirement) motivated in this course.

• Whether the students are spending appropriate and
reasonable amount of time for this course.

• Whether the learning goals are well defined to guide the
students in their learning.

• Whether appropriate support is made available to the
students in their learning.

• Whether the students are developing appropriate meta-
cognitive skills.

As we have developed learning goals for a number of courses in
our program, we were interested in finding out whether the
students are using these learning goals in their study, and if so,
whether this has any correlation with their course grades. We
were also interested whether students who are intrinsically
motivated score higher in midterms / final than those who are
extrinsically motivated. In both cases, there is a slight
correlation. Students, however, are not usually good predictors of
their own performance. When asked what final grade they
expected to get, almost none indicated that they would fail the
course, although, many of them had failed the first midterm.
Also, when students were asked how they studied for their course,
most answered that by reading the textbook or notes. This may
not be the most effective ways in studying, especially for long
term retention, where research shows that repeat testing is more
effective [4].

While attitudinal surveys provide valuable insights on student
attitudes and perceptions in a number of areas, insights into their
unique background and circumstances can be gained through
follow-up one-on-one interviews. These interviews are best
conducted by an education researcher rather than by the instructor
so that the students may freely express their opinions and point of
views without concern of any impact on their grades. One of the
questions that can provide particular insights for the instructors is
how the students approach each question on the midterm or exam.
The responses may reveal what strategies or the sources of
material they use and this may provide insights for the instructors
on what components of the course the students deemed to be
useful for their learning. As an example, in one of the courses,
students find that the labs are helpful but not so much for the
assignments. A follow up investigation reveals that the
assignments are too big and are worth too little towards the final

course grade. In another course, clicker questions are found to be
helpful in particular types of questions on the midterm. Such
information is useful for the instructors for future offerings of the
same course.

5. Conclusion and Future Work
In this paper, we have described a number of education research
activities in UBC CS courses to improve student engagement and
learning. We have collected student performance and attitudinal
data in these courses and made some initial conclusions. We plan
to correlate this data with similar data to be collected in the future
terms for a longtitudinal study, especially in the area of long term
retention. We will also correlate the data with students’ prior
education background and experience to ensure students success
in our CS program.

6. REFERENCES
[1] BRACElet. 2006. BRACElet. Retrieved on February 19,

2009 from
http://online.aut.ac.nz/Bracelet/repository2.nsf/HomePage?O
penPage.

[2] Lister, R., Simon, B., Thompson, E., Whalley, J., 2006.
Novice Programmers and the SOLO Taxonomy. 11th
Conference on Innovation and Technology in Computer
Science Education (ITiCSE).

[3] Simon, B. 2008. Computer Science Learning Goals. Carl
Wieman Science Education Initiative at the University of
Britist Columbia. Retrieved on February 19, 2009 from
http://www.cwsei.ubc.ca/departments/computer_learning_go
als.htm.

[4] Roediger, H.. Karpicke, J. 2006. Test-Enhanced Learning,
Taking Memory Tests Improves Long-Term Retention.
Psychological Science. 17(3), pp249 – 255

[5] Novak, G., Gavrin, A., Wolfgang, C., Patterson, E. 1999.
Just-in-Time Teaching: Blending Active Learning with Web
Technology. Upper Saddle river, NJ: Prentice Hall.

	1. Introduction
	2. Problem-Based Peer Learning
	3. BRACElet
	3.1 Analysis of the Data

	4. Attitudinal Surveys
	5. Conclusion and Future Work
	6. REFERENCES

