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ABSTRACT 
The UBC CS Science Education Initiative (CSSEI) has resulted in 
a number of research projects.  New teaching methods and 
student assessment instruments are introduced to engage student 
learning and evaluations of their understanding.  In this paper, we 
report four of these recent initiatives and their initial findings. 

Categories and Subject Descriptors 
K.3.2 [Computers and Information Science Education]: 
Pedagogy, education research – just-in-time, BRACElet, in-class 
activities, attitudinal survey, problem-based learning, analysis.  

General Terms 
Experimentation, Measurement. 

Keywords 
Computer education, transformation, code understanding, survey 
analysis, grade analysis.  

1. Introduction 
The UBC CS Science Education Initiative (CSSEI) is part of the 
five-year, $12 million project at the University of British 
Columbia under the Carl Wieman Science Education Initiative 
(CWSEI), which began in 2007. The project aims to dramatically 
improve undergraduate science education by taking a four-step, 
scientific approach to teaching: 1) establishing what students 
should learn through the identification of learning goals, 2) 
scientifically measuring what students are actually learning, 3) 
adapting instructional methods and curriculum, and incorporating 
effective use of technology and pedagogical research to achieve 
desired learning goals, and 4) disseminating and adopting what 
works for student learning. In the UBC CS department, we have 
developed learning goals for five of our core courses [3]. We have 
also identified some of the difficulties students face in achieving 
these learning goals. This paper describes some of our ongoing 
research projects to help students better achieve these learning 
goals, and our initial results. 
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Just-in-Time Teaching  
Previous studies of our CPSC 121: Models of Computation 
course have shown that students have trouble connecting topics 
and retaining core ideas from term to term, and from lectures to 
labs.  Many students found the hands-on labs (often circuit-based) 
disconnected from the more theoretical material discussed in 
class.  Downstream courses also tend to extensively review (re-
teach) material that students learn in the course.  These problems 
remain despite significant development efforts on the course by 
many faculty over several years.  

In two sections of this course offered in the January to April 2009 
term, we have shifted towards a heavily problem-based lecture 
style enabled by Just-in-Time-Teaching (JITT) [5].  

The core tenets of JITT are two-fold.  Before a class, instructors 
assign reading and other preparatory work to students and expect 
them to complete it.  During the class, instructors avoid re-
covering the textbook material and instead use exercises to 
engage students in higher-level discourse and learning of the 
material. The key mechanism that feeds both elements of this 
process is some kind of assessment (e.g. a quiz) just before class.  
This quiz motivates students to do their preparation and enables 
instructors to assess how well students learned the preparatory 
material and where to focus attention during the classroom work.  

In CPSC 121, each (possibly multi-day) lecture ends with the 
preparatory assignment for the next lecture.  This assignment 
comes in three parts: a list of "pre-class learning goals" that 
students should achieve before the next lecture, a list of readings 
that students can use to achieve those goals, and suggested 
exercises to assess their progress.  In addition, before the next 
lecture, students are required to complete an online, low-credit 
quiz that assesses the pre-class learning goals.  Ideally, these 
quizzes would be drawn randomly from an immense bank of 
questions all targeted at the relevant learning goals. For now, the 
quizzes are fixed.  As a result, rather than resubmitting the quiz 
again and again with instant feedback, students are instead 
encouraged to look over the quiz as they begin their preparation 
(to focus their reading) and complete it at their leisure.  Feedback 
comes only after the deadline, however. Beyond the automatically 
graded questions targeting pre-class learning goals, each quiz also 
includes 1-2 open-ended questions that get students thinking 
about the next lecture's in-class learning goals.  These are graded 
purely for completeness.  

Just before the lecture (i.e. "just in time"), the instructor 
aggregates the results on the automatically graded questions and 
summarizes results on a sample of the open-ended questions.  
Where students did poorly on the automatically graded questions, 
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the instructor dynamically introduces new discussion and 
problems to reinforce those concepts.  The instructor usually 
summarizes students' responses on the open-ended question into a 
strategy guide that the class discusses before diving into closely 
related problems for in-class work.  

In-class work is weighted heavily toward working and discussing 
practical problems, often with (anonymous, ungraded) clicker 
questions used to gauge students' progress and summarize their 
results.  In the larger section (with ~90 students) two 
undergraduate TAs attend lecture to help the instructor facilitate 
problem solving sessions.  

As an example, the pre-class learning goals for the first lecture on 
predicate logic are stated as follows: 

By the start of class, the students are expected to be able to: 

• Evaluate the truth of predicates applied to particular 
values. 

• Show predicate logic statements are true by 
enumerating examples (i.e., all examples in the 
domain for a universal or one for an existential). 

• Show predicate logic statements are false by 
enumerating counterexamples (i.e., one 
counterexample for universals or all in the domain for 
existentials). 

• Translate between statements in formal predicate logic 
notation and equivalent statements in closely matching 
informal language (i.e. informal statements with clear 
and explicitly stated quantifiers). 

The online quiz asked 11 questions such as‚ “What can you say 
about the truth of the following statement: ∃x ∈ Z, ∃y ∈ Z, ∃z ∈ 
Z, x2 + y2 = z2?”  Students averaged over 80% on all but three 
questions; so, the instructor reviewed those three questions to 
begin the class. 

The in-class learning goal was for students to be able to build 
statements about the relationships between properties of various 
objects using predicate logic.  Problems may be drawn from real-
world examples like “every candidate got votes from at least two 
people in every province” or computing examples like “on the ith 
repetition of this algorithm, the variable min contains the smallest 
element in the list between element 0 and element i”.  These will 
then segue to open-ended predicate logic representation problems, 
including one asked on the quiz (defining precisely what it means 
for a list to be sorted).   

Since students already understood the basic terminology, as 
indicated by their quiz results, lecture focused on higher-level 
topics, including summarization and further development of the 
open-ended quiz question to precisely define what it means for a 
list to be sorted.  Lecture culminated with students defining a 
predicate GenerallyFaster(a1, a2) that indicates when one 
algorithm is “generally faster” than another based on a predicate 
Faster(a1, a2, n) that compares the algorithms for particular 
problem sizes.  Students invented several of their own definitions, 
including one that corresponds to the standard comparison of 
asymptotic performance for algorithms, and we discussed the 
strengths and weaknesses of each one. 

Anecdotally, the instructor feels he has a clearer sense of when 
students are able to apply core course concepts successfully.  In 
particular, rather than only discovering that students cannot solve 

real problems when they fail at assignments or exams, he can now 
discover and address students' difficulties early in the learning 
process.  An anonymous clicker survey shows that students 
generally now see the relevance of labs to the course material, 
possibly due to the increased connection between hands-on 
problems and theory in lecture.  

Finally, assessment results (e.g., the midterm) indicate that both 
sections that use a problem-based style in class are performing at 
least as well as the section using a more traditional lecture 
approach.  

2. Problem-Based Peer Learning  
In our Data Structures and Algorithms course (CPSC 221), we are 
faced with a wide range of topics that require students to 
transition smoothly between abstraction and implementation.  
This relationship can be difficult for students to understand 
without high-level problem solving practice paired with 
implementation practice.  Traditionally, CPSC 221 has seen 
implementation techniques taught during labs in the form of an 
algorithm and a partially-implemented framework, which students 
complete under the guidance of a lab assistant.  Higher level 
abstract concepts are then presented in a more traditional, lecture-
style environment.  Repeatedly, however, interactions with 
students (both exam-based and in-person) have shown a distinct 
lack of comprehension regarding the nature of abstraction versus 
implementation. In particular, students make inappropriate 
choices when deciding to address a problem at an abstract versus 
implementational level.  

To address this deficiency, during our two-section January to 
April 2009 offering of CPSC 221, an experiment was conducted 
to test the efficacy of a non-standard lecture model.   In our 
experiment, one section of the spring term was offered in the 
traditional format where classroom contact hours were spent 
presenting electronic slides (made available prior to the class), 
and clicker-style questions to help students review the material 
and assess their progress.  The second section was delivered using 
an alternate model of presentation presenting new course concepts 
in two components: an “offline” component where students were 
expected to read and learn the prescribed concepts before class; 
and an “introduction via problem” component where students 
were expected to solve a moderately sized problem, or series of 
problems, in groups during class.   

The offline-learning component was sometimes supplemented 
with a clicker-style quiz or short discussion administered at the 
start of the class to ensure students have done their preparatory 
readings and to identify any areas of confusion among the 
students (not unlike the JITT model described for the CPSC 121 
above).  After a brief discussion, the remaining class time was 
spent on the “introduction via problem” component using group 
exercises, which required the students to directly apply the 
concepts they were learning while the instructor monitored the 
progress of each group, offering hints and discussion points when 
appropriate.  Some of the exercises were presented in the form of 
a series of tasks that progressively led the students from newly 
acquired foundations toward more in-depth applications, or a 
large-scale problem in which the students had to determine and 
apply the relevant concepts to the solution.    

It should be noted that in the “introduction-via-problem” 
component, core concepts were introduced “cold”, that was 
without any prerequisite reading and a minimal introduction by 



the instructor. The students relied on their problem-solving skills 
and prior knowledge to solve the problem.  As an example, 
students were given two unidentified sorting algorithms at the 
start of the complexity unit for which they were to answer the 
questions, “What do these algorithms do?” and “Which algorithm 
is better?”  The ensuing group discussion served as a segue into 
complexity theory and how and why we wanted to compare 
algorithms.  

Aside from different presentation styles, both sections shared the 
same instructor, course material, labs, assignments, exams, and 
learning goals.    In both sections the course material was 
presented via three-hours of classroom-contact time, and two 
hours of lab time.  Furthermore, both sections used learning goals 
as concept “book ends” presented at the start and close of each 
unit.   

As of this writing, the final exam has not been administered yet.  
The final exam is composed of a question derived from a shared 
exercise that was run in both sections, and two questions for 
which the material explicitly appeared on an experimental 
exercise.  Each of these questions had high-level and low-level 
sub-questions to test performance between the two sections given 
the differing delivery of content.  Any significant differences 
between the sections will result in the lower section being scaled 
up to meet the higher section.   

An end-of-term informal survey has now been completed in the 
experimental section, indicating a highly favourable response to 
the experimental classroom setting.  While not conclusive, this 
nonetheless motivates this approach from the perspective of 
student engagement and enjoyment.  And although the midterms 
have thus far been statistically insignificant in their differences 
(though the average was higher in the section delivered using the 
alternate learning model), the true efficacy of this approach is 
more likely to be felt in long-term retention.  This effectiveness 
may already start to appear in the final exam as students are 
forced to revisit the material from the first half of the term.  Plans 
are underway for a follow-up study in approximately five months 
to test retention between both the experimental and control 
sections.    

The final outcome of this experiment will be analyzed on the 
basis of assessment outcomes between the two sections.  
Although the first midterm did not report a statistically significant 
result between the sections, the instructor reports that students did 
respond favourably to the learning environment, and there has 
been no push-back on the front-loading of course material.  In 
addition, there are fewer students during office hours from the 
alternate learning model section.  

3. BRACElet  
BRACElet [1] is a multi-institutional investigation into the 
reading and comprehension skills of novice programmers. The 
basic idea is that as a student or beginning programmer transitions 
from novice to expert, their explanations of what a piece of code 
does also change. 

 

For example when experts are presented with the following code 
sample:  

   bool bValid = true;  
   for (int i = 0; i < iMAX - 1; i++) {  
      if (iNumbers[i] > iNumbers[i+1]) {  
         bValid = false;  
      }  
   }  

and asked to explain what it does in plain English experts 
typically say the code checks to see if the numbers in an array are 
sorted [2]. Non-experts will typically engage in a line-by-line 
description of what the code does without relating what the body 
of code as a whole does.  

Based on this idea we wanted to explore how student explanations 
changed as they progressed through our various first and second 
year programming courses. Assuming these questions, in some 
dimension, express a student’s mastery of the concepts and 
techniques of a particular course, then these questions may serve 
as a baseline to measure the success, or lack thereof, of 
curriculum changes. In addition to tracking the progression of 
students from novice to expert, we also wanted to see if there was 
any relationship between a student’s performance on these 
questions and their final course grade. As the first step in this 
study, we administered several "explain in plain English" 
questions to students at various levels of computing at UBC. Our 
initial data was gathered from:  

1. Students who had just completed our primary introductory 
course in Computer Science (about 420 students).  

2. Non computer science students who had just completed a 
second programming course, but whose first programming 
course was not as comprehensive as the course in (1) (about 
140 students)  

3. Students just starting the course in (2) (about 210 students)  

In each case we provided our students with the same three code 
samples expressed in the primary programming language of that 
course. The samples were presented in order of increasing 
complexity. The first code sample swapped the value of two 
variables, the second computed the average of a collection of 
numbers in an array, and the third looked for the last occurrence 
of a character in a string. The first two questions were graded out 
of two. One mark was given for answers that provided a line-by-
line description of the code with two marks awarded for answers 
that described what the code as a whole did. No half marks were 
awarded. Full marks were given for answers that weren’t quite 
correct but were trying to explain what the code as a whole did as 
opposed to providing a line-by-line summary. The third question 
was graded out of three, with, again, one mark for a line-by-line 
description, two marks for a description of the code as a whole, 
and a third mark for indicating that the code was looking for the 
last occurrence of a character1

Although we have collected a substantial amount of data across 
the three identified student populations, the initial analysis has 

. The questions were administered 
as part of the final exam for the first two student populations and 
as an anonymous quiz on the first day of class for the third group.  

                                                                 
1 Students often realized the code was looking for a particular 

character but failed to realize it was the last occurrence being 
looked for. 



focused on the students who had just completed their second 
programming course and whether or not these questions were 
good predictors of student course grade. Our hope was that the 
scores on the three “explain in plain English” (i.e. BRACElet) 
questions would either collectively, or individually, exhibit a 
strong correlation with either or both the final exam and/or course 
grade.  

The approach we are using is to compute the correlation between 
the BRACElet question scores and the final grades in the course.  

The data corresponding to questions B1, B2, B3 in Table 1 shows 
the results of this computation. The correlation for the three 
BRACElet questions ranges from 0.35 to 0.47. In addition the 
correlation of the sum of the three questions, 0.56, is provided. 
Although these questions all exhibit a positive correlation with 
the course grade they are only moderate predictors.  

Since the BRACElet questions were not strong predictors (with 
correlation of 0.7 and greater) of a student's performance in this 
course we decided to expand our analysis to see if other questions 
on the final exam were better predictors. The rest of Table 1 lists 
all the questions on the final exam, their correlation to the 
student's final grade, and the number of marks the question was 
out of.  

Question  Correlation to 
Final Grade  

Maximum 
Score  

Average 
Mark  

Q1  0.64  10  7.16  

Q2  0.7  20  10.52  

B1  0.45  2  1.64  

B2  0.35  2  1.76  

B3  0.47  3  1.8  

Q4  0.66  4  2.72  

Q5  0.37  4  3.18  

Q6  0.56  17  9.27  

Q7  0.67  7  3.8  

Q8  0.47  6  3.24  

Q9  0.29  7  4.17  

Q10  0.7  12  8.43  

Q11  0.49  12  10.54  

Q12  0.62  9  5.8  

Q13  0.79  20  9.94  

Sum of 
BRACElet 
Questions  

0.56  7  5.2  

 

(B1, B2, B3 are BRACElet questions.) 

Table 1: Correlation between Questions on Final and Final 
Grade  

3.1 Analysis of the Data  
Our goal in looking at this data is to try to get a better 
understanding of the sorts of questions that correlate highly with a 
student's grade and the underlying skills required to be successful 
at these sorts of questions. The hope would be that if we can 
identify these skills we can then provide guidance to student's on 
how to improve these skills and hence their grade in the course. 
Similarly, if we find questions with a low correlation they need to 
be examined to see if there is something fundamentally wrong 
with the question, be it in the question's wording or in what we 
are testing for. In both scenarios the documented set of learning 
goals, which are given to students, are also used as part of the 
analysis. Students are also told that exam questions will always be 
mappable to one or more learning goals. In other words, the exam 
is in some sense a checklist of the level of knowledge and 
understanding of a subset of the course's learning goals. (There 
are usually too many learning goals to test all of them on a final 
exam.)  

To illustrate the use of this data consider two scenarios:  

1. Questions that have a high correlation to a student's final 
grade.  

2. Questions that have negative or little correlation to the final 
grade.  

Given these criteria three questions with a high correlation to the 
final grade (Q13, Q2, and Q10) and one with a low correlation 
(Q9) to the final grade are of particular interest. (The course 
instructor was pleased to see that no questions had a negative 
correlation.)  

Question 13 had the highest correlation at 0.79. This question 
leads students through the process of developing a piece of code 
to add a new node to a linked list. The students are asked to write 
comments about what some code does, draw pictures of how the 
structure of the list changes, write a five-line function to add a 
new node, analyze the time complexity of the code they wrote, 
and finally compare this implementation to one that uses a 
different type of linked list. In essence this question touches on 
multiple aspects of the course material and different parts of the 
question require different levels of understanding of the material. 
It also has the property that later parts of the question can be 
completed without getting earlier parts correct.  

In question 10, students are given snippets of C++ code and asked 
to label a picture of program memory. For example students 
might be expected to indicate where variable X is located and 
what value X has. If a pointer is involved, students would be 
expected to indicate the memory location the pointer points to. In 
total there were 6 snippets of code of varying degrees of 
complexity with respect to the resulting memory layout. Again 
like question 13 this question touches on multiple aspects of the 
course material. Some diagrams are relatively simple while others 
are fairly complex. To get full marks students would need to have 
a good understanding of the relationship between C++ code and 
how memory is used.  

Finally, question 2 also shows strong correlation.  Question 2 was 
comprised of a series of sub-questions requiring at most a short 
sentence to answer. The questions cover the breadth of the course 
material and typically focus on a key piece of information about a 
particular topic. An example of this would be a question that asks 



under what conditions would Quicksort exhibit the same running 
time complexity as a simple bubble sort.  

What do these three questions have in common? Not surprisingly 
they are all multi-part questions. In addition the sub-questions are 
not tightly tied to each other. That is, the inability to do one sub-
question does not preclude being able to answer other sub-
questions. Since both questions 10 and 13 explore one area at 
several levels of detail, one might refer to this as a breadth of 
understanding about a topic area. Question 2 has this same 
property of breadth but from the perspective of key ideas 
throughout the course. This observation raises the question as to 
the role of breadth play in a student's success and whether the 
ability to exhibit breadth of understanding in one area implies a 
breadth of understanding in another area? We might be able to 
gain some insights into this by looking for correlation between 
questions. For example is there a strong correlation between these 
three questions? We have not looked into this in detail, but our 
preliminary analysis suggests there is not. Taking this further, we 
also intend to take subsets of questions and explore the correlation 
between subsets of questions and final grades.  

As indicated earlier, another area of interest is questions that have 
a low correlation to the course grade. From this exam, question 9 
is a candidate. This question focuses on merge sort and asks a 
number of questions about how the sort works. Although this is a 
multipart question it has the property that if a student doesn't 
understand one part of the question it is likely that other parts of 
the question can't be completed. In some sense one can say that 
the question lacks breadth. Also, given the relatively low average 
mark for this question it is important to check the learning goals 
to ensure that the question is indeed testing students at the 
appropriate level for this material. In this case they were. Armed 
with this information the course instructor has a number of 
options:  

1. Re-work the question so that it tests for a broader 
understanding of the topic.  

2. Change the course learning goals to better reflect the 
expected learning outcomes and revise the question as 
necessary.  

3. Change or augment the way the material is taught.  
4. Do nothing and treat this as a question that only the top 

students in the class are expected to get.  

Note that having a low correlation to a final grade is not 
necessarily a bad thing. For example Q5 has a low correlation 
(.37) but the average is relatively high (3.18/4). In examining the 
question and the learning goals it was determined that this was an 
important question and the material was not tested anywhere else. 
It just happened that most students did quite well on this question, 
even if they didn't have a good course grade.  

Going forward, the questions with high correlation to final course 
grade (Q2, Q10, and Q13), or very similar ones, will be 
administered on the final exam for this course in April. From this 
we hope to see if these questions continue to be strong predictors 
given the difference student backgrounds in this offering of the 
course. Although the BRACElet questions were not strong 
predictors of a student's performance in this course, the questions 
provide useful metric for ranking students across the different 
courses. As a result, we will again be administering the 
BRACElet questions and we will also have the opportunity to 

compare the class's results with the same questions administered 
at the start of term.  

As we gather and analyze more of the data we will be able to 
make changes to our teaching and course delivery methods in an 
effort to improve outcomes.  The work we have described here 
will provide a way to measure our progress. In addition, we can 
also provide guidance to our students with respect to the things 
they can do to aid their learning. For example in this course we 
exhort our students to always draw pictures of data structures and 
their in-memory representations. Based on the results of our 
analysis (Q10) we can tell students in this class that the ability to 
draw out memory representations seems to be an important skill 
for course success. We know that students who can't draw 
memory representations do poorly. Unfortunately we don't know 
if drawing memory pictures causes students to have a better grasp 
of the course material or if it is the case that a better 
understanding of the material makes picture drawing easier. 
Knowing the answer to this and other similar questions would 
allow us to tell students how to be successful in this course and 
we hope to perform additional studies to answer these sorts of 
questions.  

4. Attitudinal Surveys  
Attitudinal surveys provide valuable information on the student 
perception of the course and their learning. This includes their 
perception of the level of difficulty of the course, their progress in 
the course, the way the material has been presented, the forms of 
assessment, their expectations, their self-efficacy, etc. While 
attitudes about the course can change in a very short time, 
attitudes about the students learning and expectations can provide 
useful insights to the instructors. We have conducted attitudinal 
surveys of students in each of the four levels of the CS program at 
UBC. Some of the questions asked include:  

• What are your three biggest expectations from this course?  
• How do you study for this course?  
• How have you been using the learning goals for this course?  
• Which of the following do you feel are most important to 

you when you work on a particular difficult assignment:  
 Regular meetings with TA / Prof to discuss about the 

assignment.  
 Bouncing off ideas with friends.  
 Sample code examples.  
 Regular feedback on progress.  
 Access to web resources.  
 Lecture / Assignment material.  
 Advice from students who have completed the course.  
 Help in the lab while working on the assignment.  
 Drop-in help at TA office hours.  

• How do you know when you have learned something?  

Responses from these questions allow instructors to have greater 
insights in the corresponding areas:  

• Whether students are intrinsically (e.g. want to learn 
something) or extrinsically (e.g. taking a course primarily to 
satisfy program requirement) motivated in this course.  

• Whether the students are spending appropriate and 
reasonable amount of time for this course.  

• Whether the learning goals are well defined to guide the 
students in their learning.  



• Whether appropriate support is made available to the 
students in their learning.  

• Whether the students are developing appropriate meta-
cognitive skills.  

As we have developed learning goals for a number of courses in 
our program, we were interested in finding out whether the 
students are using these learning goals in their study, and if so, 
whether this has any correlation with their course grades.  We 
were also interested whether students who are intrinsically 
motivated score higher in midterms / final than those who are 
extrinsically motivated.  In both cases, there is a slight 
correlation.  Students, however, are not usually good predictors of 
their own performance.  When asked what final grade they 
expected to get, almost none indicated that they would fail the 
course, although, many of them had failed the first midterm.  
Also, when students were asked how they studied for their course, 
most answered that by reading the textbook or notes.  This may 
not be the most effective ways in studying, especially for long 
term retention, where research shows that repeat testing is more 
effective [4].  

While attitudinal surveys provide valuable insights on student 
attitudes and perceptions in a number of areas, insights into their 
unique background and circumstances can be gained through  
follow-up one-on-one interviews.  These interviews are best 
conducted by an education researcher rather than by the instructor 
so that the students may freely express their opinions and point of 
views without concern of any impact on their grades. One of the 
questions that can provide particular insights for the instructors is 
how the students approach each question on the midterm or exam.  
The responses may reveal what strategies or the sources of 
material they use and this may provide insights for the instructors 
on what components of the course the students deemed to be 
useful for their learning.  As an example, in one of the courses, 
students find that the labs are helpful but not so much for the 
assignments.  A follow up investigation reveals that the 
assignments are too big and are worth too little towards the final 

course grade.  In another course, clicker questions are found to be 
helpful in particular types of questions on the midterm.  Such 
information is useful for the instructors for future offerings of the 
same course. 

5. Conclusion and Future Work 
In this paper, we have described a number of education research 
activities in UBC CS courses to improve student engagement and 
learning.  We have collected student performance and attitudinal 
data in these courses and made some initial conclusions.  We plan 
to correlate this data with similar data to be collected in the future 
terms for a longtitudinal study, especially in the area of long term 
retention.  We will also correlate the data with students’ prior 
education background and experience to ensure students success 
in our CS program.   
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