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Abstract 

As essential effectors in protein quality control, molecular chaperones serve as the primary 

checkpoint to assist proper protein folding, and prevent misfolded proteins from denaturation and 

aggregation. In addition, chaperones can function to direct terminally-misfolded proteins to the 

proteolytic system for degradation. Viruses rely on host cell machineries for productive infection. 

Like for many other processes, various viruses have been shown to evolve mechanisms to utilize 

or subvert the host protein quality control machinery to support the completion of their life cycle. 

Furthermore, recent studies suggest that some viruses encode for their own chaperone-like 

proteins to enhance their infectivity. This review summarizes the current understanding of the 

interplay between molecular chaperones and viral proteins, highlights the chaperone activities of 

a number of viral proteins, and discusses potential anti-viral therapeutic strategies targeting the 

virus-chaperone interactions. (Words: 135) 
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Introduction 

Molecular chaperones have traditionally been defined as a class of proteins that assist the 

non-covalent folding and assembly of other macromolecular structures, but are not part of these 

structures upon maturation. It is now evident that chaperone function is not limited to protein 

folding and assembly, but also include helping to prevent newly synthesized polypeptide chains 

and assembled subunits from aggregating into non-functional structures, transporting protein 

across membranes, and escorting terminally-misfolded proteins to the proteolytic system for 

degradation 
55, 78

. The general function of the intracellular molecular chaperones has been 

suggested mainly to involve housekeeping and cytoprotection against various environmental 

stresses. Studies indicate that many chapenones are induced during viral infection to either 

facilitate viral pathogenesis or to participate in a cellular response mechanism to alleviate the 

stress caused by infection 
46, 60, 78

. In addition to using host chaperone proteins, some viruses 

encode for their own chaperone-like proteins to enhance their infectivity 
41, 75, 83

. This review will 

outline the diversity and complexity of interactions between virus and chaperones, discuss the 

chaperone activities of a number of virus proteins, and summarize potential anti-viral therapeutic 

strategies targeting the virus-chaperone interactions.  

 

Molecular Chaperones and Their Biological Functions 

Molecular chaperones are a family of structurally unrelated proteins which participate in 

the regulation of multiple biological processes to maintain cellular homeostasis. As alluded to 

above, chaperones bind to misfolded or unfolded polypeptides to assist in their correct folding 

and assembly, regulate protein transport and translocation, and facilitate misfolded polypeptides 

for degradation by the ubiquitin-proteasome system (Figure 1) 
3, 53, 55

. Dysregulation or 
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mutations in molecular chaperones has been associated with a number of human diseases, 

including cardiovascular diseases, neurodegenerative diseases, and cancer 
58, 61

.    

There are at least 20 different families of proteins with chaperone activity (refer to review 

28
 for a detailed list). The best-characterized stress-induced chaperone families are the heat shock 

proteins (Hsps). Hsps are classified into at least six families on the basis of their molecular 

weight (e.g small Hsps, Hsp40 (DnaJ), Hsp60 (chaperonins), Hsp70, Hsp90, and Hsp100) 
39, 58

. 

These families of chaperones are highly conserved during evolution and are present in both 

cytosol and endoplasmic reticulum (ER) in almost all cell types. They recognize and interact 

with various non-native polypeptides via different mechanisms of action and promote their 

refolding to the native state 
39, 58

. This process is usually regulated by one or several co-

chaperones which function to modulate the activity of the chaperone. Most Hsps are 

constitutively synthesized but further induced in response to adverse environmental conditions 

such as high temperature, oxidative stress, and inflammation 
39, 58

.  

The ER contains a large set of particular molecular chaperones helping the folding and 

assembly of newly synthesized proteins or misfolded proteins under ER stress. Malfunction of 

ER chaperones induced by ER stress leads to the unfolded protein response 
53, 61

. There are two 

major groups of ER chaperones: the glucose-regulated proteins (GRPs), and the 

calnexin/calreticulin chaperones 
53, 61

. The GRP78 (also known as BiP) and GRP94 are the ER 

homologues of Hsp70 and Hsp90, respectively. GRP78 assists in protein folding through 

specifically interacting with proteins containing hydrophobic residues in their 

misfolded/unfolded regions. While the function of GRP94 in ER protein quality control has not 

been fully elucidated, it was suggested that GRP94 may provide a platform for the assembly of 

the large ER chaperone complex under conditions of ER stress 
53, 61

. Calnexin is a type I ER 
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membrane protein and calreticulin is a soluble ER lumen protein. These lectin-like ER 

chaperones recognize and interact with proteins that carry N-linked glycans for subsequent 

protein folding and assembly 
53, 61

.  

In addition to their intracellular localization and functions as discussed above, some 

molecular chaperones can also be present on the cell surface and/or secreted into the extracellular 

space under certain stress conditions. These membrane-associated or released chaperones have 

been reported to possess extracellular functions as important mediators of cell-cell signaling 
14

. 

Among their multiple extracellular functions, their ability in eliciting both innate and adaptive 

immune responses makes them attractive targets for the development of vaccine 
8, 69

.  

Document 

Interplay between Viruses and Host Chaperones 

Virus infection often leads to increased production of cellular chaperones but it remains 

unclear whether this is a direct effect of virus infection or an indirect response to cellular stress 

induced by infection 
46, 60, 78

. Viruses can regulate host chaperones at different levels, including 

transcription, translation, posttranslational modification, and cellular localization. Increased 

expression of heat shock proteins has been suggested to be biomarkers for some viral infections. 

As an example, Zhu et al. 
90

 found that the elevated expression of the heat shock protein GRP94 

significantly correlates with the disease progression of hepatitis B virus (HBV) infection and can 

therefore be used as a prognostic or diagnostic biomarker for HBV-induced diseases. Similarly, 

the expression of GRP78/BiP and Hsp90 was also reported to be upregulated in HBV-related 

hepatocellular carcinomas, suggesting that these chaperones may serve as important prognostic 

biomarkers for HBV-induced hepatic cancer 
49

.  

Accumulating evidence has indicated that chaperones have a wide array of functions during 

viral infection, and that each chaperone may play different roles during a particular viral 
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infection. This review focuses on the functions of chaperones in viral host entry, viral genome 

nuclear import, viral replication, viral protein folding, virion assembly, host immunity regulation, 

and manipulating host apoptotic pathway. A summary of the interaction between viruses and 

host chaperones in regulating virus infection is illustrated in Figure 2. 

 

Cell Entry and Nuclear Import  

Viruses are known to exploit chaperones for effective cellular entry by using them as part 

of the viral uncoating mechanism or as viral receptors. As an example, rotavirus entry requires 

the interaction with heat shock cognate protein 70 (Hsc70) at a postattachment step, functioning 

as part of a complex that brings about a conformational change of the viral capsid to facilitate its 

entry into the cytoplasm 
32, 68, 89

. Similarly, simian virus 40 (SV40) was reported to utilize the 

host protein folding machinery for virus uncoating and entry into the host cells 
74

. Additionally, 

chaperone proteins presented on cell surface can be utilized as viral receptors, such as Hsp90 and 

Hsp70 for dengue virus 
73

, Hsp70 for Japanese encephalitis virus  
25

, and GRP78 for 

coxsackievirus A9 
84

.   

After successful host internalization, most DNA viruses and some RNA viruses, such as 

the retroviruses and the influenza viruses, require their genome to be imported into the nucleus, 

where replication takes place. Rainey-Barger et al. 
71

 demonstrated that the ER chaperone 

protein ERp29 alters the conformation of polyomavirus capsid protein VP1 and exposes the 

internal viral protein VP2, which then perforates the ER membrane to allow the viral genome to 

reach the nucleus for replication. In addition, Hsc70 was also implicated to play a role in 

polyomavirus genome nuclear import through its association with viral capsid proteins 
23

.  
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During human immunodeficiency virus type 1 (HIV-1) infection, Hsp70 plays a similar 

role to that of the HIV-1 viral protein R (Vpr), stimulating an interaction between the viral 

preintegration complex and karyopherin-α to promote viral nuclear import 
1
. Interestingly, 

Iordanskiy et al. 
35

 argued for an antiviral role of Hsp70, where it only functions similarly as Vpr 

when expressed alone, but in the presence of Vpr, it neutralizes Vpr function and inhibits its 

nuclear translocation, rendering it unable to assist the nuclear translocation of the viral 

preintegration complex.  

 

Viral Replication and Gene Expression 

The next steps following viral entry are the replication of the viral genome and the 

expression of viral proteins, which are also facilitated by host chaperons. Cyclophilins are 

molecular chaperones that promote protein folding through their isomerase activity 
2
. It was 

reported that hepatitis C virus (HCV) non-structural protein 5B (NS5B), an RNA-dependent 

RNA polymerase essential for viral genome replication, associates with the enzymatic pocket of 

cyclophilin A, exploiting its isomerase or chaperone activity to enhance its maturation 
17

. 

Similarly, Waxman et al. 
86

 also identified Hsp90 chaperone as an essential factor for the 

maturation and activity of the HCV NS2/3 protease, which is necessary for viral replication. 

Other studies further elucidated the role of Hsp90 in HCV RNA replication by forming a 

chaperone complex with NS5A, a component of viral replicase, and FKBP8, a member of the 

FK506-binding protein family 
62

.   

Hsp90 has been demonstrated to be involved in the reverse transcription of HBV genome. 

It was suggested that Hsp90 helps bridge the two separate reverse transcriptase domains of HBV 

together to enable the formation of a ribonucleoprotein complex with the HBV RNA 
34

. As for 
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the replication of HBV RNA genome, the glucose-regulated chaperone protein GRP94 is found 

to be a critical regulator in the stabilization and activation of HBV RNA polymerase, allowing its 

preferential binding to the HBV ε RNA 
38

. Furthermore, the molecular chaperonin Hsp60 is 

shown to participate in the activation of HBV polymerase prior to its encapsidation into the core 

particle, which is required for initiating HBV replication in newly infected cells 
65, 66, 76

.  

During influenza virus infection, Hsp90 interacts with the viral RNA-dependent RNA 

polymerase, playing a role in the assembly and nuclear transport of viral RNA polymerase 

subunits en route to the formation of a mature polymerase complex 
57, 59

. Additionally, heat 

shock proteins Hsp70 and Hsp40 enhance binding of the papillomavirus replication initiator E1 

helicase to the origin of DNA replication, thus indirectly enhancing viral replication 
50

. As 

another example, flock house virus infection induces the expression of Hsp90, which participates 

in viral RNA replication as part of cellular pathways used by the virus for assembling RNA 

replication complexes on intracellular membranes 
37

.  

Chaperones can also be involved in regulating viral gene expression. For instance, it has 

been shown that HIV-1 protein Nef indirectly facilitates viral gene expression by inducing the 

expression of Hsp40 and interacting with Hsp40 to promote its nuclear translocation and 

association with the cyclin-dependent kinase 9 transcription complex that regulates long terminal 

repeat-mediated gene expression 
42

.  

 

Folding/Assembly of Viral Protein 

True to their definition, a major function of chaperones is to assist the folding and 

assembly of viral proteins and virions into functional conformations. In particular, the 
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dependence of viruses on the ER for folding/assembly renders ER chaperones the major 

facilitators of proper viral morphogenesis, but other chaperones are often recruited as well.  

An important step in viral morphogenesis of enveloped viruses is the formation of the 

viral envelope. In the case of HCV infection, the ER chaperone calnexin is involved in the 

productive assembly of the envelope glycoproteins E1 and E2 into a heterodimer, and that it is 

during this dimerization process that the proper folding of the glycoproteins is achieved 
20, 26, 27

. 

Other ER chaperones, GRP78/BiP and calreticulin, were reported to interact with misfolded 

aggregates containing HCV viral glycoproteins, likely involved in their repair 
27

.  

HBV infection leads to the large L envelope protein acquiring a dual membrane topology 

in order to mediate hepatocyte receptor binding and envelopment of cytosolic nucleocapsids 
70

. 

The preS domain of L protein initially remains in the cytosol as the S domain is cotranslationally 

inserted into the ER membrane, and subsequently, the preS domain is translocated to the lumenal 

space 
70

. Studies revealed that Hsc70 and Hsp40 associate with L protein, likely to assist the 

initial suppression of the cotranslational translocation of the preS domain, and also identified the 

ER chaperone GRP78/BiP to be responsible for assisting the subsequent posttranslational 

translocation of the preS domain 
4, 19, 43, 52

. HBV M protein also requires the chaperone activity of 

calnexin, which selectively binds to the N-glycan specific to viral M protein to facilitate proper 

folding and trafficking 
70

.  

During polyomavirus infection, it was demonstrated that Hsc70 binds coat protein VP1 and 

regulates the quality and location of viral capsid assembly 
21

. Final assembly of viruses such as 

rotavirus and cytomegalovirus, occurs in the ER. It has been demonstrated that the ER 

chaperones GRP78/BiP, calnexin, and calreticulin are involved in the maturation of the 

oligosaccharide chains of the non-structural viral protein NSP4, oxidative folding of VP7, and 
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formation of disulfide bonds of VP7. All of these processes are important for correct assembly of 

viral particles 
54

. A recent study by Buchkovich et al. 
11

 found that protein levels of the ER 

chaperone GRP78/BiP are tightly regulated during cytomegalovirus infection, and showed that 

this regulation enhances cytoplasmic virion assembly and egress. 

  The well-characterized ability to facilitate glycoprotein folding renders ER chaperones 

essential to some viruses. For influenza virus, early maturation steps of its glycoprotein 

hemagglutinin involve glycosylation by N-linked glycans, leading to the binding of ER 

chaperones calnexin and calreticulin that facilitate productive folding of this viral glycoprotein 
24

. 

During measles virus infection, it was revealed that nascent viral fusion glycoprotein binds to 

calnexin as a vital step in achieving its functional conformation, and that ER chaperones may 

withhold the migration of viral glycoproteins to the cell surface, possibly to repair misfolding 
9
. 

Immunoprecipitation studies also showed that GRP78/BiP binds maximally to early folding 

intermediates of vesicular stomatitis virus glycoprotein, whereas calnexin binds subsequently to 

more folded molecules 
33

. This binding sequence is necessary for efficient folding of vesicular 

stomatitis virus glycoprotein and for the retention of its partially folded forms 
33

. Similarly, the 

unfolded glycoprotein of rabies virus is associated first with GRP78/BiP and subsequently with 

calnexin, perhaps as part of a folding mechanism 
29

. 

Other chaperone involvement in virus folding/assembly has also been described. It was 

shown that Hsp90 binds in a p53-independent and ATP-dependent manner to immature 

conformations of the SV40 large tumour antigen (TAg), possibly to assist its formation into a 

functional structure 
56

. Recently, Hsp90 was also suggested to be involved in the process of viral 

capsid protein folding and assembly of various picornavirus, including poliovirus, rhinovirus, 

and coxsackievirus 
30

. A virion morphology study revealed that the chaperone cyclophilin A 
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modulates HIV-1 infectivity through its interactions with viral gag structural proteins 
77

. In the 

presence of cyclosporine A, a cyclophilin A inhibitor, viral particles display immature virion 

morphology, indicating that cyclophilin A plays an important role in the maturation of HIV-1 

particles that is essential for virion assembly 
77

.  

 

Apoptosis Regulation and Host Immunity  

Various viruses have evolved different mechanisms to modulate the apoptotic pathway to 

benefit their growth in host cells. Chaperones can be utilized by viruses to participate in 

regulating cell apoptosis. It was demonstrated that HIV-1 infection induces overexpression of 

Hsp70, which interacts with Hsp27 and Vpr to protect cells from virus-induced G2 arrest and 

apoptosis 
12, 35

. As another example, the Epstein-Barr virus nuclear oncoprotein EBNA3A 

induces transcriptional upregulation and nuclear translocation of Hsp70 and formation of an 

active Hsp70 chaperone complex, which helps ensure protein stability and contributes to the 

immortalization of B cells as part of an anti-apoptotic effect 
88

. In addition, the E2 envelope 

protein of HCV has been shown to block virus-induced apoptosis by inducing the overexpression 

of the glucose-regulated chaperone proteins GRP94 
44, 48

. Chaperones have also been reported to 

facilitate apoptosis. Tanaka et al. 
81

 reported that during HBV infection, HBx interaction with 

chaperone Hsp60 brings about their colocalization in the mitochondria, where Hsp60 promotes 

HBx-induced apoptosis. 

As discussed previously, some extracellular chaperones also have immunological 

properties 8, 69 . They activate dendritic cells and natural killer cells, promote antigen presentation, 

and stimulate adaptive T-lymphocyte and humoral immune responses against antigenic peptides. 

During virus infection, molecular chaperones are also involved in the regulation of virus-induced 
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host immune response. For example, during Epstein-Barr virus infection, Hsp90 was identified 

to play an important role in promoting γδ T proliferation in B cells as part of the host immune 

response against virus infection 
40

.  

 

The Chaperone-Like Activities of Virus Proteins 

In addition to utilizing host chaperones, some viral proteins also exhibit chaperone-like 

activity that facilitates their infection. The virus-encoded proteins with chaperone function are 

summarized and shown in Table 1.  

A well-studied viral-encoded chaperone is the SV40 TAg. This multifunctional protein has 

functional J domains of Hsp40, which is required for the recruitment of host Hsp70 to complete 

the SV40 virion assembly 
75

. The chaperone-like functions of TAg is also found to facilitate viral 

replication, transcriptional regulation, and cell cycle alteration 
79

.  

In addition, the R1 subunit of HSV ribonucleotide reductase, which protects cells against 

apoptosis, has chaperone-like activity similar to Hsp27 
15

. This chaperone activity has been 

proposed to have an anti-apoptotic effect that contributes to the successful infection of the virus 

15
. HSV type 2 was also reported to encode for a homologue (ICP10PK) to small Hsp11 to 

modulate virus-induced apoptosis via activation of the ERK signaling pathway, stabilization of 

Bcl-2 and upregulation of other apoptosis regulators such as Hsp70 and Hsp27 
31

. The rotavirus 

non-structural glycoprotein NSP4 was also shown to act as an ER chaperone to regulate the 

folding of structural protein VP4 and also facilitate the transport systems through the ER 

membrane during virion assembly 
80

. During African swine fever virus infection, virus-encoded 

capsid-associated protein 80 functions as a chaperone assisting proper folding of the major 

capsid protein p73 
22

. 
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Virus can also encode for their own nucleic acid chaperones to assist proper viral 

RNA/DNA folding for efficient viral replication. The most extensively studied example is the 

ability of HIV-1 to encode for nucleocapsid (NC) protein to chaperone viral DNA replication 
82

. 

Specifically, the HIV-1 NC is involved in the two obligatory strand transfers required during 

reverse transcription to convert its genomic RNA into proviral DNA 
72, 82

. Furthermore, HIV-1 

encoded small nuclear transcriptional activator Tat has also been demonstrated to have nucleic 

acid-chaperoning activities. The Tat protein is required for HIV-1 replication due to its 

regulation of proviral DNA transcription to generate full-length viral mRNA 
41

. In this paper, we 

have discussed only a few examples of nucleic acid chaperones in viral replication as this topic 

has been extensively reviewed 
91

.  

 

Molecular Chaperones in Antiviral Therapy 

In light of the wide array of interactions between viruses and chaperones, putative 

therapeutic strategies against viral infection involving chaperones have emerged. Chaperone 

inhibitors have been explored in the development of antiviral strategies. For examples, Hsp90 

inhibitors have been suggested as therapeutic agents for picornavirus infection 
30

. One of the 

best-known chaperone inhibitor is geldanamycin (GA), which specifically competes for ATP 

binding with Hsp90 to block its ATPase activity and thus prevent client protein cycling and 

maturation 
60

. It was shown that pharmacological inhibition of Hsp90 by GA impairs the 

replication of poliovirus, rhinovirus, and coxsackievirus in cells, and in vivo administration of 

GA significantly decreases virus load in poliovirus-infected mice without the emergence of drug-

resistant escape mutants 
30

.  The mechanism of action of GA on picornaviral infection is likely 

the inhibition of viral capsid protein folding and assembly 
30

. Studies also showed that GA, or its 
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derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG), delays the growth of influenza 

virus by inhibiting nuclear import and assembly of viral RNA polymerase complex 
16

, and 

suppresses the replication of HCV through destabilizing non-structural protein NS3 
85

. In 

addition, GA inhibits HSV-1 replication by promoting aberrant folding, mislocalization, and 

proteasomal degradation of the viral polymerase 
13, 47

. In the case of HBV infection, a study by 

Liu et al. 
51

 established the multichaperone machine formed by Hsp90 and Hsp70/Hsp60 as a 

potential target for development of antiviral therapeutic strategies. Some host signaling 

molecules including phosphatidylinositol 3-kinase (PI3K) and AKT proteins are also identified 

to be the client proteins of the Hsp90. As for Epstein-Barr virus, a therapeutic strategy was 

proposed to target the PI3K/Akt pathway 
36

. It was speculated that Hsp90 inhibitors can disrupt 

the PI3K/Akt pathway, and can potentially be used for achieving control of the natural killer/T-

cell lymphoma associated with Epstein-Barr virus infection 
36

. GA was also reported to block 

cytomegalovirus replication via disruption of the PI3K/Akt signaling pathway 
7
. Thus, the 

dependence of viral infection on Hsp90-dependent client proteins makes GA and other Hsp90 

inhibitors promising anti-viral compounds.  

Other chaperone inhibitors also have therapeutic potential. Chen et al. 
18

 identified novel 

non-peptidic inhibitors against chaperone cyclophilin A as potential anti-HIV compounds. 

Cyclophilin inhibitors such as cyclosporine A, Debio 025, NIM811 and SCY-635 are also 

potential anti-HCV compounds due to their ability to inhibit HCV replication 
17

. Recently, 

Wright et al. 
87

 also identified the small molecular compound MAL2-11B as a novel inhibitor for 

the chaperone activity of the SV40 TAg, thus indicating a novel approach to combating 

polyomavirus-mediated disease.  
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As alluded to earlier, the ability of heat shock proteins to interact with viral proteins, 

together with their inherent adjuvant and immunogenic properties, render them as attractive 

candidates for the development of anti-viral vaccines 
10

. Lehner et al. 
45

 suggested a novel 

strategy of immunization with Hsp70 linked to antigen to generate both cognate and innate 

immunity to prevent binding and transmission of simian immunodeficiency virus. In particular, 

Babaahmady et al. 
5
 showed that microbial Hsp70 exerts a dose-dependent inhibitory effect on 

HIV-1 infection of CD4+ T cells, and proposed a combined treatment with Hsp70 and antibody 

to the CCR5 strain of CD4+ T cells as a potential immunization strategy against HIV-1 infection. 

They also proposed a vaccination approach of utilizing a Hsp70-containing trimolecular complex 

of human antisera to elicit broadly neutralizing antibody activity to HIV-1 
6
. Similarly, Peng et al. 

67
 identified the mycobacterium tuberculosis Hsp70 as a potential adjuvant for the development 

of prophylactic and therapeutic vaccines for chronic HBV infection. Hsp70 was also proposed to 

be useful in the design of vaccines for HSV 
63, 64

. 

Table 2 summarizes the therapeutic strategies targeting molecular chaperones for the 

treatment of virus infection. 

 

Conclusion 

 It is evident that chaperones are elicited during a wide array of viral infections to play 

important roles at various stages of the viral life cycle to either enhance or inhibit pathogenesis. 

This review of the roles played by heat shock proteins and other chaperones is by no means 

comprehensive, but simply a broad sketch of studies done in this expanding area. As evidenced 

by the numerous potential therapeutic modalities against virus infection based on our 
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understanding of chaperone involvement, further understanding of this particular aspect of virus 

infection will have significant therapeutic potential.   
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Table 1. Virus-encoded chaperones which assist viral infection 

 

 

SV40, simian virus 40; TAg, large tumor antigen; NSP4, non-structural protein 4; Tat, 

transcriptional activator; Hsp, heat shock protein; Hsc, heat shock cognate protein; VP4, viral 

protein 4; HSV, herpes simplex virus; HIV, human immunodeficiency virus ; ICP10PK, herpes 

simplex virus type 2 anti-apoptotic protein. 

Virus 

Viral protein with 

chaperone-like 

activity 

Function 
Effect on viral 

infection 
Reference 

SV40 TAg Has J Domain of Hsp40 

required for host Hsp70 

recruitment 

Viral assembly 

 

 

Spence et al. 1994 [75]  

 

 

Interaction with host 

Hsc70 

Viral replication Sullivan and Pipas 2002 [79] 

 

HSV Ribonucleotide 

reductase S1 

subunit 

 

Hsp27-like chaperone 

activity 

 

Anti-apoptosis 

 

Chabaud et al. 2003  [15]  

 

 

ICP10PK 

 

Homologue to host 

Hsp11 

 

Modulation of virus-

induced apoptosis 

 

Gober et al. 2005 [31] 

 

NSP4 

 

ER chaperone-like 

activity 

Structural protein 

VP4 folding 

 

Suzuki 1996 [80]  

 

African 

swine fever 

virus 

 

Capsid-associated 

protein 80 

Chaperone-like activity Capsid protein p73 

folding 

Cobblod et al. 2001 [22]  

HIV Tat 

 

Nucleic acid chaperone Viral DNA replication Kuciak et al. 2008  [41] 

Nucleocapsid 

protein 

Nucleic acid chaperone Viral DNA replication Thomas et al. 2008 [82]; 

Ramalanjaona et al. 2007 [72] 
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Table 2. Therapeutic potentials by targeting molecular chaperones for the treatment of viral 

infection 

 

Virus Treatment Chaperone Mechanism of action Reference 
Poliovirus, 

Rhinovirus, 

Coxsackievirus 

 

Geldanamycin 

(Hsp90 inhibitor) 

Hsp90 Disrupt viral capsid protein 

folding/assembly 

Geller et al. 2007 [30]  

 

Influenza virus Gelanamycin or its 

derivative 17-AAG 

(Hsp90 inhibitors) 

Hsp90 

 

Prevent nuclear import and 

assembly of viral RNA 

polymerase complex 

 

Chase et al. 2008  [16]  

 

HCV 

 

17-AAG 

(Hsp90 inhibitor)  

 

Hsp90 

 

Destabilize HCV non-

structural protein NS3  

Ujino et al. 2009 [85] 

Cyclosporine A, 

Debio 025, 

NIM811, and SCY-

635 (Cyclophilin A 

inhibitors) 

 

Cyclophilin A Inhibit the chaperone 

activity of cyclophilin A 

Chatterji et al. 2009 [17] 

 

HSV-1 Geldanamycin 

(Hsp90 inhibitor) 

 

 

Hsp90 

 

 

 

Promote aberrant folding, 

mislocalization, and 

degradation of viral 

polymerase 

 

Burch et  al. 2005 [13]; 

Li et al. 2004 [47] 

 

Hsp70 vaccine Hsp70 Stimulate host innate and 

adaptive immune responses 

 

Pack et al. 2005 [63];  

Pack et al. 2008 [64] 

HBV 17-AAG  

(Hsp90 inhibitor) 

 

Hsp90/Hsp70/

Hsp60 

Disrupt the interaction of 

Hsp90 with Hsp70/Hsp60 

Liu et al. 2009 [51] 

 

Hsp70 vaccine Hsp70 Elicit host immune 

responses 

 

Peng et al. 2006 [67] 

Cytomegalovirus Geldanamycin 

(Hsp90 inhibitor) 

Hsp90 Disrupt PI3K/Akt pathway 

 

Basha et al. 2005 [7] 

Epstein-Barr virus Gelanamycin or its 

derivative 17-AAG 

(Hsp90 inhibitors) 

 

Hsp90 Disrupt PI3K/Akt pathway Jeon et al. 2007 [36] 

HIV Small molecular 

compounds 

Cyclophilin A 

 

Inhibit the chaperone 

activity of cyclophilin A 

Chen et al. 2007 [18] 

 

Hsp70 vaccine Hsp70 Elicit host immunity against 

HIV 

 

Babaahmady et al. 2007 [5]; 

Babaahmady et al. 2008 [6] 

SV40 Small molecular 

compound  

TAg Inhibit TAg’s chaperone 

activity 

 

Wright et al. 2009  [87] 

 

SIV Hsp70 vaccine Hsp70 Elicit host innate and 

adaptive immunity 

 

Lehner et al. 2000 [45] 
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17-AAG, 17-allylamino-17-demethoxygeldanamycin ; Hsp, heat shock protein; HCV, hepatitis C 

virus ; NS3, non-structural protein 3 ; HBV, hepatitis B virus ; PI3K, phosphatidylinositol 3-

kinase; HSV, herpes simplex virus; HIV, human immunodeficiency virus ; SV40, simian virus 

40 ; TAg, large tumor antigen ; SIV, simian immunodeficiency virus. 
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Figure legends 

 

Figure 1. Schematic illustration of the functions of molecular chaperones. Molecular chaperones 

assist folding and assembly of newly synthesized polypeptides to the native proteins. Chaperones 

also bind to misfolded proteins induced by stress to help correct folding and assembly. 

Terminally-misfolded or unfolded proteins are escorted by chaperones for degradation through 

the ubiquitin-proteasome system.   

 

Figure 2. Interplay between viruses and host chaperones. Virus infection can lead to increased 

production of host chaperones either as a direct effect of virus infection or an indirect response to 

cellular stress induced by infection. Through different mechanisms, both direct and indirect, 

chaperones can have diverse pro-viral or anti-viral roles during various stages of the viral life 

cycle including cell entry, nuclear import, viral genome replication, and the folding/assembly of 

viral proteins. In addition, chaperones can have a significant effect on viral pathogenesis due to 

their involvement in the regulation of host immunity and apoptosis. Hsc70, heat shock cognate 

protein 70; Hsp: heat shock protein; GRP, glucose-regulated protein; HCV, hepatitis C virus; 

HBV, hepatitis B virus; HIV, human immunodeficiency virus.    
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Figure 2. 
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